Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 醫學工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71239
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林文澧(Win-Li lin)
dc.contributor.authorPo-Neng Leien
dc.contributor.author雷博能zh_TW
dc.date.accessioned2021-06-17T05:00:21Z-
dc.date.available2022-08-01
dc.date.copyright2018-08-01
dc.date.issued2018
dc.date.submitted2018-07-25
dc.identifier.citation1. Hanahan, D. and R.A. Weinberg, Hallmarks of cancer: the next generation. Cell, 2011. 144(5): p. 646-74.
2. Massague, J. and A.C. Obenauf, Metastatic colonization by circulating tumour cells. Nature, 2016. 529(7586): p. 298-306.
3. Labelle, M., S. Begum, and R.O. Hynes, Direct signaling between platelets and cancer cells induces an epithelial-mesenchymal-like transition and promotes metastasis. Cancer Cell, 2011. 20(5): p. 576-90.
4. Contursi, A., et al., Platelets as crucial partners for tumor metastasis: from mechanistic aspects to pharmacological targeting. Cell Mol Life Sci, 2017. 74(19): p. 3491-3507.
5. Gay, L.J. and B. Felding-Habermann, Contribution of platelets to tumour metastasis. Nat Rev Cancer, 2011. 11(2): p. 123-34.
6. Ma, J., et al., The anti-tumor effect of aspirin: What we know and what we expect. Biomed Pharmacother, 2017. 95: p. 656-661.
7. Tantry, U.S., E. Mahla, and P.A. Gurbel, Aspirin resistance. Prog Cardiovasc Dis, 2009. 52(2): p. 141-52.
8. Thun, M.J., E.J. Jacobs, and C. Patrono, The role of aspirin in cancer prevention. Nat Rev Clin Oncol, 2012. 9(5): p. 259-67.
9. Langley, R.E. and P.M. Rothwell, Potential biomarker for aspirin use in colorectal cancer therapy. Nat Rev Clin Oncol, 2013. 10(1): p. 8-10.
10. Guillem-Llobat, P., et al., Aspirin prevents colorectal cancer metastasis in mice by splitting the crosstalk between platelets and tumor cells. Oncotarget, 2016. 7(22): p. 32462-77.
11. Thomas, I. and B. Gregg, Metformin; a review of its history and future: from lilac to longevity. Pediatr Diabetes, 2017. 18(1): p. 10-16.
12. Kasznicki, J., A. Sliwinska, and J. Drzewoski, Metformin in cancer prevention and therapy. Ann Transl Med, 2014. 2(6): p. 57.
13. Goldberg, S.N., G.S. Gazelle, and P.R. Mueller, Thermal ablation therapy for focal malignancy: a unified approach to underlying principles, techniques, and diagnostic imaging guidance. AJR Am J Roentgenol, 2000. 174(2): p. 323-31.
14. Hildebrandt, B., et al., The cellular and molecular basis of hyperthermia. Crit Rev Oncol Hematol, 2002. 43(1): p. 33-56.
15. Noessner, E., et al., Tumor-Derived Heat Shock Protein 70 Peptide Complexes Are Cross-Presented by Human Dendritic Cells. The Journal of Immunology, 2002. 169(10): p. 5424-5432.
16. Binder, R.J. and P.K. Srivastava, Peptides chaperoned by heat-shock proteins are a necessary and sufficient source of antigen in the cross-priming of CD8+ T cells. Nat Immunol, 2005. 6(6): p. 593-9.
17. Bu, N., et al., Exosome-loaded dendritic cells elicit tumor-specific CD8+ cytotoxic T cells in patients with glioma. J Neurooncol, 2011. 104(3): p. 659-67.
18. Dai, S., et al., More efficient induction of HLA-A*0201-restricted and carcinoembryonic antigen (CEA)-specific CTL response by immunization with exosomes prepared from heat-stressed CEA-positive tumor cells. Clin Cancer Res, 2005. 11(20): p. 7554-63.
19. Toraya-Brown, S. and S. Fiering, Local tumour hyperthermia as immunotherapy for metastatic cancer. Int J Hyperthermia, 2014. 30(8): p. 531-9.
20. Liu, H.L., et al., Combining microbubbles and ultrasound for drug delivery to brain tumors: current progress and overview. Theranostics, 2014. 4(4): p. 432-44.
21. Sirsi, S.R. and M.A. Borden, State-of-the-art materials for ultrasound-triggered drug delivery. Adv Drug Deliv Rev, 2014. 72: p. 3-14.
22. Rico, M., et al., Metformin and propranolol combination prevents cancer progression and metastasis in different breast cancer models. Oncotarget, 2017. 8(2): p. 2874-2889.
23. Hsieh, M.T., et al., New bis(hydroxymethyl) alkanoate curcuminoid derivatives exhibit activity against triple-negative breast cancer in vitro and in vivo. Eur J Med Chem, 2017. 131: p. 141-151.
24. Nagrath, S., et al., Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature, 2007. 450(7173): p. 1235-9.
25. Xiao, Z., W. Wu, and V. Poltoratsky, Metformin Suppressed CXCL8 Expression and Cell Migration in HEK293/TLR4 Cell Line. Mediators Inflamm, 2017. 2017: p. 6589423.
26. Yu, T., et al., Metformin inhibits SUV39H1-mediated migration of prostate cancer cells. Oncogenesis, 2017. 6(5): p. e324.
27. Hao, B., et al., Metformin-induced activation of AMPK inhibits the proliferation and migration of human aortic smooth muscle cells through upregulation of p53 and IFI16. Int J Mol Med, 2018. 41(3): p. 1365-1376.
28. Li, W.D., et al., Metformin inhibits endothelial progenitor cell migration by decreasing matrix metalloproteinases, MMP-2 and MMP-9, via the AMPK/mTOR/autophagy pathway. Int J Mol Med, 2017. 39(5): p. 1262-1268.
29. Cerezo, M., et al., Metformin blocks melanoma invasion and metastasis development in AMPK/p53-dependent manner. Mol Cancer Ther, 2013. 12(8): p. 1605-15.
30. Bao, B., et al., Metformin inhibits cell proliferation, migration and invasion by attenuating CSC function mediated by deregulating miRNAs in pancreatic cancer cells. Cancer Prev Res (Phila), 2012. 5(3): p. 355-64.
31. Hirsch, H.A., et al., Metformin selectively targets cancer stem cells, and acts together with chemotherapy to block tumor growth and prolong remission. Cancer Res, 2009. 69(19): p. 7507-11.
32. Rothwell, P.M., et al., Short-term effects of daily aspirin on cancer incidence, mortality, and non-vascular death: analysis of the time course of risks and benefits in 51 randomised controlled trials. Lancet, 2012. 379(9826): p. 1602-12.
33. Cook, N.R., et al., Low-dose aspirin in the primary prevention of cancer: the Women's Health Study: a randomized controlled trial. JAMA, 2005. 294(1): p. 47-55.
34. Reagan-Shaw, S., M. Nihal, and N. Ahmad, Dose translation from animal to human studies revisited. FASEB J, 2008. 22(3): p. 659-61.
35. Fantozzi, A. and G. Christofori, Mouse models of breast cancer metastasis. Breast Cancer Res, 2006. 8(4): p. 212.
36. Chen, W., et al., Organotropism: new insights into molecular mechanisms of breast cancer metastasis. npj Precision Oncology, 2018. 2(1).
37. Arpino, G., et al., Infiltrating lobular carcinoma of the breast: tumor characteristics and clinical outcome. Breast Cancer Res, 2004. 6(3): p. R149-56.
38. Yates, L.R., et al., Genomic Evolution of Breast Cancer Metastasis and Relapse. Cancer Cell, 2017. 32(2): p. 169-184 e7.
39. Ji, Y., et al., Necrosis targeted combinational theragnostic approach using radioiodinated Sennidin A in rodent tumor models. Oncotarget, 2014. 5(10): p. 2934-46.
40. Dey, B., G.P.R. Sekhar, and S.K. Mukhopadhyay, In vivo mimicking model for solid tumor towards hydromechanics of tissue deformation and creation of necrosis. J Biol Phys, 2018.
41. Dey, B. and G.P.R. Sekhar, Hydrodynamics and convection enhanced macromolecular fluid transport in soft biological tissues: Application to solid tumor. J Theor Biol, 2016. 395: p. 62-86.
42. Jurikova, M., et al., Ki67, PCNA, and MCM proteins: Markers of proliferation in the diagnosis of breast cancer. Acta Histochem, 2016. 118(5): p. 544-52.
43. Chen, W.-J., et al., Ki-67 is a Valuable Prognostic Factor in Gliomas: Evidence from a Systematic Review and Meta-analysis. Asian Pacific Journal of Cancer Prevention, 2015. 16(2): p. 411-420.
44. Petrelli, F., et al., Prognostic value of different cut-off levels of Ki-67 in breast cancer: a systematic review and meta-analysis of 64,196 patients. Breast Cancer Res Treat, 2015. 153(3): p. 477-91.
45. Matsumoto, A., et al., Biological markers of invasive breast cancer. Jpn J Clin Oncol, 2016. 46(2): p. 99-105.
46. Roti Roti, J.L., Cellular responses to hyperthermia (40-46 degrees C): cell killing and molecular events. Int J Hyperthermia, 2008. 24(1): p. 3-15.
47. Li, T., et al., Aspirin enhances IFN-alpha-induced growth inhibition and apoptosis of hepatocellular carcinoma via JAK1/STAT1 pathway. Cancer Gene Ther, 2013. 20(6): p. 366-74.
48. Tian, Y., et al., Aspirin promotes apoptosis in a murine model of colorectal cancer by mechanisms involving downregulation of IL-6-STAT3 signaling pathway. Int J Colorectal Dis, 2011. 26(1): p. 13-22.
49. Zhao, M., et al., Aspirin and metformin exhibit antitumor activity in murine breast cancer. Oncol Rep, 2018. 39(3): p. 1414-1422.
50. Mu, Q., et al., Metformin inhibits proliferation and cytotoxicity and induces apoptosis via AMPK pathway in CD19-chimeric antigen receptor-modified T cells. Onco Targets Ther, 2018. 11: p. 1767-1776.
51. Wu, Y., et al., SIRT3 aggravates metformin-induced energy stress and apoptosis in ovarian cancer cells. Exp Cell Res, 2018. 367(2): p. 137-149.
52. Harmon, B.V., et al., Cell Death Induced in a Murine Mastocytoma by 42–47°C Heatingin Vitro: Evidence that the Form of Death Changes from Apoptosis to Necrosis Above a Critical Heat Load. International Journal of Radiation Biology, 2009. 58(5): p. 845-858.
53. Ren, G., et al., Ultrasound hyperthermia induces apoptosis in head and neck squamous cell carcinoma: An in vitro study. Med Oral Patol Oral Cir Bucal, 2017. 22(3): p. e289-e296.
54. Yurdagul, A., Jr., et al., Mechanisms and Consequences of Defective Efferocytosis in Atherosclerosis. Front Cardiovasc Med, 2017. 4: p. 86.
55. Tajbakhsh, A., et al., Efferocytosis in atherosclerotic lesions: Malfunctioning regulatory pathways and control mechanisms. Pharmacol Ther, 2018.
56. Sakaguchi, Y., et al., Apoptosis in tumors and normal tissues induced by whole body hyperthermia in rats. Cancer Res, 1995. 55(22): p. 5459-64.
57. Katschinski, D.M., et al., Pivotal role of reactive oxygen species as intracellular mediators of hyperthermia-induced apoptosis. J Biol Chem, 2000. 275(28): p. 21094-8.
58. Rosner, K., et al., Late type apoptosis and apoptosis free lethal effect of quercetin in human melanoma. Biosci Biotechnol Biochem, 2006. 70(9): p. 2169-77.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71239-
dc.description.abstract研究背景與目的:癌症的共同特徵概念在2011年被提出,希望能藉由抑制越多的癌腫瘤共同特徵來達到抑制腫瘤的生長和轉移。普遍來說癌腫瘤的轉移是導致死亡的主要原因,導致癌細胞轉移的因素有很多種,其詳細的機制目前尚不明瞭,但目前多數認為癌細胞的轉移早在癌症初期就開始了,因此在抑制癌細胞的轉移上是目前諸多研究的方向。阿斯匹靈與二甲雙胍都是發展歷史悠久老藥,近年來的研究發現他們在抗癌上有不錯的效果。超音波的熱效應與非熱效應有對癌腫瘤有不錯的療效,也能提升全身性抗癌免疫反應。本研究主要探討阿斯匹靈與二甲雙胍結合超音波熱治療,對於原位腫瘤與癌細胞肺臟轉移的影響。
實驗材料與方法:本研究有細胞實驗與動物實驗兩方面,細胞實驗細胞株使用乳癌腫瘤細胞4T1,進行細胞存活率分析與傷口癒合試驗,細胞存活率分析的治療分組為阿斯匹靈組、二甲雙胍組、阿斯匹靈+二甲雙胍組以及阿斯匹靈+二甲雙胍+熱治療組。阿斯匹靈組的藥物濃度為0、0.25、0.5、1、2、4和8 mM,二甲雙胍組的藥物濃度為0、1、2、4、8、16、32和64 mM,之後再結合熱治療和不同濃度的阿斯匹靈與二甲雙胍藥物。傷口癒合試驗的治療分組為阿斯匹靈組、二甲雙胍組、阿斯匹靈+二甲雙胍組。阿斯匹靈組的藥物濃度為0.25 mM,二甲雙胍組的藥物濃度為1 mM。動物實驗分為兩部分,細胞株都是使用乳癌腫瘤細胞4T1;小鼠品系為BALB/cByNarl。主要治療方式為每天管餵藥物阿斯匹靈與二甲雙胍以及超音波熱治療,阿斯匹靈劑量為20 mg/kg;二甲雙胍劑量為200 mg/kg。超音波熱治療使用物理治療用超音波探頭,第一部分設定參數為發射頻率:1 MHz;發射強度:3 W/cm2;工作週期:50%;治療時間:15分鐘。有效發射面積:0.9 cm2;第二部分設定參數為發射頻率:3 MHz;發射強度:0.55 W/cm2;工作週期:50%;治療時間:15分鐘。有效發射面積:5 cm2。實驗流程為先在小鼠右背上種腫瘤,經過10天後開始治療以及尾靜脈注射腫瘤細胞,超音波治療在第0、3、6、9天,每天管餵藥物,15天後犧牲小鼠觀察肺臟腫瘤結節數。治療分組有控制組、阿斯匹靈+二甲雙胍組、超音波組、阿斯匹靈+超音波治療組以及合併治療組。兩部分的實驗差異性主要為尾靜脈注射的腫瘤細胞數目的不同。
實驗結果:在細胞實驗上本研究所選用的阿斯匹靈與二甲雙胍,在對於4T1癌腫瘤細胞都有生長抑制效果,這兩種藥物的結合對於4T1細胞生長有加乘的抑制效果(p<0.0001),且熱治療與藥物也對4T1細胞生長有加乘的抑制效果(p<0.0001)。傷口癒合試驗結果顯示阿斯匹靈+二甲雙胍,最能有效抑制4T1細胞移行能力(p<0.05)。在動物實驗第一與第二部分上,小鼠右背上的原位腫瘤體積,合併治療組相較於單獨藥物組與控制組來說,腫瘤體積較小(p<0.05);在肺臟腫瘤結節數上的表現,第一部分實驗合併治療組較其他三組來的少(p<0.05)。第二部分實驗結果,可能由於尾靜脈注射癌細胞數量過少,導致各組別間的肺臟腫瘤結節數皆很少,故無統計上的差異。H&E切片染色可以看出合併治療組的腫瘤組織結構較為鬆散,TUNEL檢測的結果顯示合併治療組的細胞凋亡比例較高。
結論:在細胞實驗上,阿斯匹靈與二甲雙胍結合熱治療能有效抑制4T1腫瘤細胞生長,而阿斯匹靈結合二甲雙胍能有效抑制4T1細胞移行能力。在動物實驗方面,阿斯匹靈合併二甲雙胍與熱治療能有效降低原位腫瘤生長速度,以及肺臟轉移腫瘤形成。
zh_TW
dc.description.abstractBackground and Purpose: The hallmarks of cancer were proposed in 2011, in hopes of inhibiting these characteristics to prevent tumor growth and migration. In general, the metastasis of tumor is the primary cause of patient death. Many factors are involved in tumor metastasis. It is believed that metastasis of tumor cells starts at early cancer stage. Therefore, inhibition of tumor cell migration is the major research and therapeutic direction. Aspirin (Asp) and metformin (Met) are common drugs used for anti-inflammation and diabetes, respectively; and their anti-tumor effects have been reported. The thermal and non-thermal effects of ultrasound (US) can be used for tumor treatment. US can also enhance immune response against cancer. This research primarily investigated the influence of combining US with Asp/Met on primary tumor growth and metastatic tumor formation.
Materials and Methods: The research involved in-vitro and in-vivo studies. For in-vitro studies, breast cancer cell line 4T1 was used. The MTT assay was conducted along with the wound healing assay. The treatment groups of MTT assay included Asp alone, Met alone, Asp plus Met, Asp plus Met with hyperthermia (HT) groups. The concentrations of Asp were 0, 0.25, 0.5, 1, 2, 4 and 8 mM. The concentrations of Met were 0, 1, 2, 4, 8, 16, 32 and 64 mM. In addition, HT was performed along with different concentrations of Asp and Met. The treatment groups of wound healing assay included Asp alone, Met alone and Asp (0.25 mM) plus Met (1 mM) groups. There were two parts of in-vivo studies, and breast cancer cell strain 4T1 and BALB/cByNarl mice were used. Primary treatment included daily oral feeding of Asp (20 mg/kg) and Met (200 mg/kg), and pulsed-wave ultrasound hyperthermia (pUSHT). The setting for the first part included: ultrasound frequency 1 MHz, intensity 3 W/cm2, duty cycle 50%, duration 15 minutes and effective radiating area 0.9 cm2. The parameters for the second part included: ultrasound frequency 3 MHz, intensity 0.55 W/cm2, duty cycle 50%, duration 15 minutes and effective radiating area 5 cm2. The procedure was as follows: Tumor cells were implanted on the right back of the mice. Ten days later, treatment started with tumor cell injected via tail vein, with pUSHT on day 0, 3, 6 and 9 and oral feeding the drugs. Fifteen days after the first treatment, the mice were euthanized and dissected to observe tumor nodules in the lungs. There are control, Asp plus Met, pUSHT alone, Asp plus pUSHT and Asp plus Met plus pUSHT groups. The difference between these two parts of experiment is the number of cancer cells injected into the tail vein.
Results: In-vitro study showed that Asp and Met had inhibitory effects on the growth of 4T1 cancer cells. The combination of these two drugs had a multiplicatively inhibitory effects on 4T1 cell growth (p<0.0001), while HT plus drugs also had a multiplicatively inhibitory effects on the growth of 4T1 cells (p<0.0001). Wound healing assay showed that Asp plus Met had the most effective inhibition on 4T1 cell migration ability (p<0.05). In the first and second parts of the animal experiment, the tumor volume on the right back of mice in the combined treatment group was smaller than those of the drugs and the control groups (p<0.05). Furthermore, the combined treatment group also showed less tumor nodules in the lungs than the other three groups (p<0.05), but the number of tumor nodules of the second part of experiment were all small and had no statistical difference among the groups. H&E staining displayed that tumor tissue structure in the combined treatment group was relatively loose. The TUNEL assay showed that the proportion of apoptotic cells in the combined treatment group was higher.
Conclusion: In in-vitro studies, the combination of Asp and Met could effectively inhibit the growth and the migration of 4T1 tumor cells. In in-vivo studies, pUSHT combined with Asp and Met could effectively reduce the growth of primary tumor and the metastasis of tumor formation in the lung.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T05:00:21Z (GMT). No. of bitstreams: 1
ntu-107-R05548010-1.pdf: 3459679 bytes, checksum: 499a6b33034067910d1c15da8bdc22ef (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents誌謝 i
中文摘要 ii
Abstract iv
縮寫與翻譯對照表 vii
目錄 ix
圖目錄 xii
表目錄 xiv
第一章 緒論 1
1.1 癌腫瘤 1
1.1.1 癌腫瘤轉移 1
1.2 阿斯匹靈 Aspirin 2
1.2.1 阿斯匹靈在癌症上的應用 2
1.3 二甲雙胍 Metformin 4
1.4 超音波腫瘤熱治療 5
1.5 腫瘤細胞株 6
1.6 研究目的 7
第二章 材料與方法 9
2.1 實驗材料 9
2.1.1 腫瘤細胞株 9
2.1.2 實驗動物 9
2.1.3 阿斯匹靈與二甲雙胍 9
2.2 實驗流程 10
2.3 實驗方法 12
2.3.1 MTT細胞存活率分析 12
2.3.2 傷口癒合試驗 13
2.3.3 超音波系統與儀器參數設定 14
2.3.4 超音波治療熱電偶溫度量測 15
2.3.5 動物實驗 16
2.3.6 肺臟染色 19
2.3.7 癌腫瘤組織切片染色 19
2.3.8 數值統計與分析 21
第三章 實驗結果 22
3.1 4T1腫瘤細胞存活率 22
3.2 傷口癒合試驗 27
3.3 熱電偶溫升測試 29
3.4 動物實驗 30
3.4.1 小鼠原位癌腫瘤模式 30
3.4.2 小鼠癌腫瘤尾靜脈模式 34
3.4.3 小鼠體重變化 38
3.5 腫瘤組織切片 39
3.5.1 H&E染色 39
3.5.2 IHC染色 41
3.5.3 TUNEL檢測 43
第四章 討論 45
第五章 結論與未來展望 53
第六章 參考文獻 54
dc.language.isozh-TW
dc.subject阿斯匹靈zh_TW
dc.subject二甲雙胍zh_TW
dc.subject脈衝式超音波熱治療zh_TW
dc.subject癌症zh_TW
dc.subject癌轉移zh_TW
dc.subjecttumor metastasisen
dc.subjectaspirinen
dc.subjectpulsed-wave ultrasound hyperthermia (pUSHT)en
dc.subjectcanceren
dc.subjectmetforminen
dc.title超音波熱治療時二甲雙胍與阿斯匹靈對原位腫瘤生長與腫瘤轉移的形成之影響zh_TW
dc.titleThe Effects of Metformin and Aspirin on Primary Tumor Growth and Metastatic Tumor Formation during Ultrasound Hyperthermiaen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張富雄(Fu-Hsiung Chang),謝銘鈞(Ming-Jium Shieh),繆希椿(Shi-Chuen Miaw)
dc.subject.keyword阿斯匹靈,二甲雙胍,脈衝式超音波熱治療,癌症,癌轉移,zh_TW
dc.subject.keywordaspirin,metformin,pulsed-wave ultrasound hyperthermia (pUSHT),cancer,tumor metastasis,en
dc.relation.page59
dc.identifier.doi10.6342/NTU201801894
dc.rights.note有償授權
dc.date.accepted2018-07-26
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept醫學工程學研究所zh_TW
顯示於系所單位:醫學工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
3.38 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved