Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7122Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 吳文方 | |
| dc.contributor.author | Guan-Lin Chen | en |
| dc.contributor.author | 陳冠霖 | zh_TW |
| dc.date.accessioned | 2021-05-17T15:59:43Z | - |
| dc.date.available | 2020-02-04 | |
| dc.date.available | 2021-05-17T15:59:43Z | - |
| dc.date.copyright | 2020-02-04 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-01-20 | |
| dc.identifier.citation | [1] A. Crowther, V. Ramakrishnan, N. A. Zaidi and C. Halse, “Sources of time-varying contact stress and misalignments in wind turbine planetary sets,” Wind Energy, vol. 14, no. 5, pp. 637 – 651, Jan. 2011.
[2] J. Ribrant and L. M. Bertling, “Survey of failures in wind power systems with focus on Swedish wind power plants during 1997–2005,” IEEE Transactions on Energy Conversion, vol. 22, no. 1, pp. 167-173, Feb. 2007. [3] S. McFadden and B. Basu, “Wind turbine gearbox design with drivetrain dynamic analysis,” in Offshore Wind Farms, Woodhead Publishing, pp. 137-158, 2016. [4] F. Spinato, P. J. Tavner, G. J. W. van Bussel and E. Koutoulakos, “Reliability of wind turbine subassemblies,” IET Renewable Power Generation, vol. 3, no. 4, pp. 387-401, Dec. 2009. [5] J. M. P. Pérez, F. P. G. Márquez, A. Tobias and M. Papaelias, ‘‘Wind turbine reliability analysis,’’ Renewable and Sustainable Energy Review, vol. 23, pp. 463–472, Jul. 2013. [6] A.R. Nejad, Z. Gao and T. Moan, “On long-term fatigue damage and reliability analysis of gears under wind loads in offshore wind turbine drivetrains,” International Journal of Fatigue, vol. 61, pp. 116 – 128, Apr. 2014. [7] A.R. Nejad, Z. Gao and T. Moan, “Fatigue reliability-based inspection and maintenance planning of gearbox components in wind turbine drivetrains,” Energy Procedia, vol. 53, pp. 248-257, 2014. [8] W. Dong, Y. Xing, T. Moan and Z. Gao, “Time domain-based gear contact fatigue analysis of a wind turbine drivetrain under dynamic conditions,” International Journal of Fatigue, vol. 48, pp. 133–146, Mar. 2013. [9] L. Wang, T. Shen, C. Chen and H. Chen, “Dynamic reliability analysis of gear transmission system of wind turbine in consideration of randomness of loadings and parameters,” Mathematical Problem in Engineering, vol. 2014, pp. 1-10, 2014. [10] F. Ding, Z. Tian, F. Zhao and H. Xu, “An integrated approach for wind turbine gearbox fatigue life prediction considering instantaneously varying load conditions,” Renewable Energy, vol. 129, pp. 260–270, Dec. 2018. [11] J. A. Collins, Failure of Materials in Mechanical Design: Analysis, Prediction, Prevention, 2nd ed. New York, John Wiley & Sons, 1981. [12] R. G. Budynas and J. K. Nisbett, Shigley's Mechanical Engineering Design, 10th ed. New York, McGraw-Hill, 2011. [13] Standard Practices for Cycle Counting in Fatigue Analysis, ASTM E1049-85, 2017. [14] S. D. Downing and D. F. Socie, “Simple rainflow counting algorithms,” International Journal of Fatigue, vol. 4, no. 1, 1982. [15] C. E. Ebeling, An Introduction to Reliability and Maintainability Engineering, McGraw-Hill, New York, 1997. [16] K. E. Johnson, L. Y. Pao, M. J. Balas and L. J. Fingersh, 'Control of variable-speed wind turbines: standard and adaptive techniques for maximizing energy capture,' IEEE Control Systems Magazine, vol. 26, vo. 3, pp. 70-81, June 2006. [17] A. Cooperman and M. Martinez, “Load monitoring for active control of wind turbines,” Renewable and Sustainable Energy Reviews, vol. 41, pp. 189-201, Jan. 2015. [18] W. Shi, C.W. Kim, C.W. Chung and H.C. Park, “Dynamic modeling and analysis of a wind turbine drivetrain using the torsional dynamic model,” International Journal of Precision Engineering and Manufacturing, vol. 14, no. 1, pp. 153–159, Jan. 2012. [19] H. H. Lin and Ch. H. Liou, 'A parametric study of spur gear dynamics,' NASA/Cr_1998-206598, University of Memphis, Jan. 1998. [20] H-H. Lin, R. L. Huston and J. J. Coy, “On dynamic loads in parallel shaft transmissions: Part I—Modeling and analysis,” Journal Mechanism, Transmission, and Automation in Design, vol. 110, pp. 221–225, June 1988. [21] J. Ginsberg, Engineering Dynamics, Cambridge University Press, New York, 2008. [22] C. E. Wilson, J. P. Sadler, Kinematics and Dynamics of Machinery, 3rd ed. Harlow Pearson Education Limited, 2014. [23] R. W. Cornell and W. W. Westervelt, “Dynamic tooth loads and stressing for high contact ratio spur gears,” Journal of Mechanical Design, vol. 100, pp. 69-76, 1978. [24] R. Errichello and J. Muller, “Application requirements for wind turbine gearboxes,” National Renewable Energy Laboratory, US, NREL/TP-442-7076, pp. 1–56, 1994. [25] K. E. Johnson, “Adaptive torque control of variable speed wind turbines,” National Renewable Energy Laboratory, Golden, CO, NREL/TP-500-36265, Aug. 2004. [26] S. Heier, Grid Integration of Wind Energy Conversion Systems, 2nd ed. John Wiley, 2006. [27] B. Beltran, T. Ahmed-Ali and M. E. H. Benbouzid, 'Sliding Mode Power Control of Variable-Speed Wind Energy Conversion Systems,' in IEEE Transactions on Energy Conversion, vol. 23, no. 2, pp. 551-558, June 2008. [28] E. Mulijadi and C. P. Butterfield, “Pitch-controlled variable-speed wind turbine generation,” IEEE Transaction on Industry Application, vol.37, no.1, pp. 240-246, 2001. [29] J. Aho et al., “A tutorial of wind turbine control for supporting grid frequency through active power control,” 2012 American Control Conference (ACC), pp. 3120-3131, Montreal, QC, Canada, 2012. [30] A. D. Wright and L. J. Fingersh, “Advanced control design for wind turbines — Part I: Control design, implementation, and initial tests,” National Renewable Energy Laboratory, Golden, CO, USA, 2008. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7122 | - |
| dc.description.abstract | 風機傳動系統在風機產電過程中佔有一席之地,該系統中之齒輪箱失效率較其它機械零組件高,為避免齒輪箱失效所造成之供電及財務損失,齒輪箱之可靠度研究相當重要。本研究以現有彰濱地區風速資料針對一風機齒輪箱進行動態模擬,估算齒輪箱內關鍵齒輪根部所受應力,而後藉由雨流計數法及Miner’s原則評估該齒輪每年所受到之疲勞損傷,最後再評估齒輪之疲勞壽命。由於風速具有隨機特性,本研究考慮該隨機特性,所模擬出來之齒輪壽命亦具有隨機性,而為一隨機壽命分布,可據以評估齒輪之可靠度。本研究案例分析所估算出來的風機齒輪中位壽命為16.5年,該齒輪如不經任何維修,在20年風機設計壽命後,其疲勞可靠度由開始使用時之1降至0.4,約有68%之可能性會在25年內失效。在實務上,設備之檢查與維修自然會增加風機齒輪之可靠度。 | zh_TW |
| dc.description.abstract | The drivetrain is an important mechanical part of a wind turbine. In order to prevent failure of the drivetrain, reliability analysis of its gear is very important. This study performs dynamic simulation of the drivetrain system of a wind turbine in consideration of wind data recorded in harbor areas of Chang-Hua. The result is used for identifying the critical gear in the system and finding stress history of the critical gear. With the help of rain-flow cyclic counting method and Miner’s rule, the annual fatigue damage of the gear is estimated. Its fatigue life is estimated as well. Owing to the random nature of wind data, the estimated fatigue life is also random and possesses a certain kind of probability distribution. Reliability is estimated based on the fatigue life distribution. It is found in a case study that, if there are no maintenances, the median fatigue life of the gear is 16.5 years, and its reliability decreases from 1 at the beginning of service to 0.4 at the end of the 20-year design life of the wind turbine. The chance of fatigue failure of the gear in 25 years of operation is 68%. Of course, maintenances will increase the reliability of the gear. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-17T15:59:43Z (GMT). No. of bitstreams: 1 ntu-109-R06522534-1.pdf: 5117336 bytes, checksum: 380b3307e06bae1b278dcab49b332174 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 致謝 I
摘要 II ABSTRACT III 目錄 IV 圖目錄 VI 表目錄 X 符號說明 XI 1. 緒論 1 1.1 研究背景與動機 1 1.2 文獻回顧 2 1.3 論文架構 3 2. 研究方法 4 2.1 路易斯彎曲方程式 4 2.2 疲勞分析 7 2.2.1 疲勞破壞機制 7 2.2.2 疲勞壽命分析 8 2.3 可靠度基本理論 15 2.3.1 定義 15 2.3.2 機率分布函數 17 2.3.3 經驗分析法 20 2.3.4 機率紙法 22 3. 風機齒輪箱動態模型 27 3.1 動態方程式 31 3.2 齒輪設計 34 3.3 風機之系統控制 39 3.3.1 葉片俯仰角控制 40 3.3.2 發電機力矩控制 42 4. 疲勞可靠度分析 44 4.1 齒根應力分析 44 4.2 疲勞累積損傷 49 4.2.1 十分鐘內疲勞損傷 49 4.2.2 不同風速條件下之疲勞損傷 52 4.3 可靠度分析 68 5. 結論 80 參考文獻 81 | |
| dc.language.iso | zh-TW | |
| dc.title | 風力發電機傳動齒輪之振動與疲勞可靠度分析 | zh_TW |
| dc.title | Vibration and Fatigue Reliability Analysis of Gears in Wind Turbine Drivetrains | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 單秋成,徐冠倫 | |
| dc.subject.keyword | 風機齒輪,風速,動態模擬,疲勞損傷,疲勞可靠度, | zh_TW |
| dc.subject.keyword | wind turbine gear,wind data,dynamic simulation,fatigue damage,fatigue reliability., | en |
| dc.relation.page | 84 | |
| dc.identifier.doi | 10.6342/NTU202000209 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2020-01-21 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
| Appears in Collections: | 機械工程學系 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-109-1.pdf | 5 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
