請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71229
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳永芳(Yang-Fang Chen) | |
dc.contributor.author | Shu-Yi Cai | en |
dc.contributor.author | 蔡書逸 | zh_TW |
dc.date.accessioned | 2021-06-17T04:59:48Z | - |
dc.date.available | 2021-08-01 | |
dc.date.copyright | 2018-08-01 | |
dc.date.issued | 2018 | |
dc.date.submitted | 2018-07-25 | |
dc.identifier.citation | Reference
1 Choi, S., Lee, H., Ghaffari, R., Hyeon, T. & Kim, D. H. Recent advances in flexible and stretchable bio‐electronic devices integrated with nanomaterials. Adv. Mater. 28, 4203-4218 (2016). 2 Chortos, A. & Bao, Z. Skin-inspired electronic devices. Mater. Today 17, 321-331 (2014). 3 Kim, D.-H. et al. Epidermal electronics. Science 333, 838-843 (2011). 4 Leung, S. F. et al. A Self‐Powered and Flexible Organometallic Halide Perovskite Photodetector with Very High Detectivity. Adv. Mater. 30, 1704611 (2018). 5 Hanna, A. N., Kutbee, A. T., Subedi, R. C., Ooi, B. & Hussain, M. M. Wavy Architecture Thin‐Film Transistor for Ultrahigh Resolution Flexible Displays. Small 14, 1703200 (2018). 6 Liu, W., Song, M. S., Kong, B. & Cui, Y. Flexible and stretchable energy storage: recent advances and future perspectives. Adv. Mater. 29, 1603436 (2017). 7 Rim, Y. S., Bae, S. H., Chen, H., De Marco, N. & Yang, Y. Recent progress in materials and devices toward printable and flexible sensors. Adv. Mater. 28, 4415-4440 (2016). 8 Bao, Z. & Chen, X. Flexible and stretchable devices. Adv. Mater. 28, 4177-4179 (2016). 9 Zang, Y., Zhang, F., Di, C.-a. & Zhu, D. Advances of flexible pressure sensors toward artificial intelligence and health care applications. Mater. Horiz. 2, 140-156 (2015). 10 Norton, J. J. et al. Soft, curved electrode systems capable of integration on the auricle as a persistent brain–computer interface. P. Natl. Acad. Sci. 112, 3920-3925 (2015). 11 Wang, X. et al. Flexible Energy‐Storage Devices: Design Consideration and Recent Progress. Adv. Mater. 26, 4763-4782 (2014). 12 Wang, Z., Shaygan, M., Otto, M., Schall, D. & Neumaier, D. Flexible Hall sensors based on graphene. Nanoscale 8, 7683-7687 (2016). 13 Münzenrieder, N. et al. Entirely Flexible On‐Site Conditioned Magnetic Sensorics. Advanced Electronic Materials 2, 1600188 (2016). 14 Melzer, M. et al. Wearable magnetic field sensors for flexible electronics. Adv. Mater. 27, 1274-1280 (2015). 15 Melzer, M. et al. Imperceptible magnetoelectronics. Nat. Commun. 6, 6080 (2015). 16 Makarov, D., Melzer, M., Karnaushenko, D. & Schmidt, O. G. Shapeable magnetoelectronics. Applied Physics Reviews 3, 011101 (2016). 17 Laschi, C., Mazzolai, B. & Cianchetti, M. Soft robotics: Technologies and systems pushing the boundaries of robot abilities. Sci. Robot. 1, eaah3690 (2016). 18 Lum, G. Z. et al. Shape-programmable magnetic soft matter. P. Natl. Acad. Sci. 113, E6007-E6015 (2016). 19 Rus, D. & Tolley, M. T. Design, fabrication and control of soft robots. Nature 521, 467 (2015). 20 Shi, J. et al. Multilevel modulation scheme using the overlapping of two light sources for visible light communication with mobile phone camera. Opt. Express 25, 15905-15912 (2017). 21 Leba, M., Riurean, S. & Lonica, A. in Information Systems and Technologies (CISTI), 2017 12th Iberian Conference on. 1-6 (IEEE). 22 Khan, L. U. Visible light communication: Applications, architecture, standardization and research challenges. Digit. Commun. Netw. 3, 78-88 (2017). 23 Leydecker, T. et al. Flexible non-volatile optical memory thin-film transistor device with over 256 distinct levels based on an organic bicomponent blend. Nat. Nanotechnol. 11, 769-775 (2016). 24 Ríos, C. et al. Integrated all-photonic non-volatile multi-level memory. Nat. Photonics 9, 725 (2015). Reference 1 Mannsfeld, S. C. et al. Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers. Nat. Mater. 9, 859 (2010). 2 Mata, A., Fleischman, A. J. & Roy, S. Characterization of polydimethylsiloxane (PDMS) properties for biomedical micro/nanosystems. Biomed. Microdevices 7, 281-293 (2005). 3 Stankova, N. et al. Optical properties of polydimethylsiloxane (PDMS) during nanosecond laser processing. Appl. Surf. Sci. 374, 96-103 (2016). 4 Schneider, F., Draheim, J., Kamberger, R. & Wallrabe, U. Process and material properties of polydimethylsiloxane (PDMS) for Optical MEMS. Sensor Actuat. A-Phys. 151, 95-99 (2009). 5 Lötters, J. C., Olthuis, W., Veltink, P. & Bergveld, P. The mechanical properties of the rubber elastic polymer polydimethylsiloxane for sensor applications. J. Micromech. Microeng. 7, 145 (1997). 6 Kumar, A. K., Wan Bae, C., Piao, L. & Kim, S.-H. Silver nanowire based flexible electrodes with improved properties: High conductivity, transparency, adhesion and low haze. Mater. Res. Bull. 48, 2944-2949 (2013). 7 Lee, J. et al. Room‐temperature nanosoldering of a very long metal nanowire network by conducting‐polymer‐assisted joining for a flexible touch‐panel application. Adv. Funct. Mater. 23, 4171-4176 (2013). 8 Yu, Z. et al. Highly flexible silver nanowire electrodes for shape‐memory polymer light‐emitting diodes. Adv. Mater. 23, 664-668 (2011). 9 Hu, L., Kim, H. S., Lee, J.-Y., Peumans, P. & Cui, Y. Scalable coating and properties of transparent, flexible, silver nanowire electrodes. ACS Nano 4, 2955-2963 (2010). 10 Sivasubramaniam, S. & Alkaisi, M. M. Inverted nanopyramid texturing for silicon solar cells using interference lithography. Microelectron. Eng. 119, 146-150 (2014). 11 Yang, C.-R., Chen, P.-Y., Chiou, Y.-C. & Lee, R.-T. Effects of mechanical agitation and surfactant additive on silicon anisotropic etching in alkaline KOH solution. Sensor Actuat. A-Phys. 119, 263-270 (2005). 12 Tee, B. C. K. et al. Tunable flexible pressure sensors using microstructured elastomer geometries for intuitive electronics. Adv. Funct. Mater. 24, 5427-5434 (2014). 13 Rozenberg, M., Inoue, I. & Sanchez, M. Nonvolatile memory with multilevel switching: a basic model. Phys. Rev. Lett. 92, 178302 (2004). 14 Lin, W. P., Liu, S. J., Gong, T., Zhao, Q. & Huang, W. Polymer‐Based Resistive Memory Materials and Devices. Adv. Mater. 26, 570-606 (2014). 15 Waser, R., Dittmann, R., Staikov, G. & Szot, K. Redox‐based resistive switching memories–nanoionic mechanisms, prospects, and challenges. Adv. Mater. 21, 2632-2663 (2009). 16 Wong, H.-S. P. et al. Metal–oxide RRAM. P. IEEE 100, 1951-1970 (2012). 17 Kim, S.-J. & Lee, J.-S. Flexible organic transistor memory devices. Nano Lett. 10, 2884-2890 (2010). 18 Waser, R. & Aono, M. Nanoionics-based resistive switching memories. Nat. Mater. 6, 833 (2007). 19 Kim, K. M., Jeong, D. S. & Hwang, C. S. Nanofilamentary resistive switching in binary oxide system; a review on the present status and outlook. Nanotechnology 22, 254002 (2011). 20 Feng, P. et al. Nonvolatile resistive switching memories-characteristics, mechanisms and challenges. Prog. Nat. Sci-Mater. 20, 1-15 (2010). 21 Schindler, C., Meier, M., Waser, R. & Kozicki, M. in Non-Volatile Memory Technology Symposium, 2007. NVMTS'07. 82-85 (IEEE). 22 Li, G., Zhu, R. & Yang, Y. Polymer solar cells. Nat. Photonics 6, 153 (2012). 23 Kaltenbrunner, M. et al. Flexible high power-per-weight perovskite solar cells with chromium oxide–metal contacts for improved stability in air. Nat. Mater. 14, 1032 (2015). 24 Griffini, G. & Turri, S. Polymeric materials for long‐term durability of photovoltaic systems. J. Appl. Polym. Sci. 133 (2016). 25 Bae, S.-H. et al. Printable solar cells from advanced solution-processible materials. Chem. 1, 197-219 (2016). 26 Kojima, A., Teshima, K., Shirai, Y. & Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050-6051 (2009). 27 Li, G. et al. in Materials For Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group 80-84 (World Scientific, 2011). 28 Günes, S., Neugebauer, H. & Sariciftci, N. S. Conjugated polymer-based organic solar cells. Chem. Rev. 107, 1324-1338 (2007). 29 Padinger, F., Rittberger, R. S. & Sariciftci, N. S. Effects of postproduction treatment on plastic solar cells. Adv. Funct. Mater. 13, 85-88 (2003). 30 Kim, J. Y. et al. New architecture for high‐efficiency polymer photovoltaic cells using solution‐based titanium oxide as an optical spacer. Adv. Mater. 18, 572-576 (2006). 31 Dennler, G., Scharber, M. C. & Brabec, C. J. Polymer‐fullerene bulk‐heterojunction solar cells. Adv. Mater. 21, 1323-1338 (2009). 32 Blom, P. W., Mihailetchi, V. D., Koster, L. J. A. & Markov, D. E. Device physics of polymer: fullerene bulk heterojunction solar cells. Adv. Mater. 19, 1551-1566 (2007). 33 Shrotriya, V. et al. Accurate measurement and characterization of organic solar cells. Adv. Funct. Mater. 16, 2016-2023 (2006). 34 Shockley, W. & Queisser, H. J. Detailed balance limit of efficiency of p‐n junction solar cells. J. Appl. Phys. 32, 510-519 (1961). Reference 1 Hines, L., Petersen, K., Lum, G. Z. & Sitti, M. Soft Actuators for Small-Scale Robotics. Adv. Mater. 29, 1603483, doi:10.1002/adma.201603483 (2017). 2 Khan, Y., Ostfeld, A. E., Lochner, C. M., Pierre, A. & Arias, A. C. Monitoring of vital signs with flexible and wearable medical devices. Adv. Mater. 28, 4373-4395 (2016). 3 Hanna, A. N., Kutbee, A. T., Subedi, R. C., Ooi, B. & Hussain, M. M. Wavy Architecture Thin-Film Transistor for Ultrahigh Resolution Flexible Displays. Small, doi:10.1002/smll.201703200 (2017). 4 Kim, J. et al. A wearable multiplexed silicon nonvolatile memory array using nanocrystal charge confinement. Sci. Adv. 2, e1501101 (2016). 5 Kim, D.-H. et al. Epidermal electronics. science 333, 838-843 (2011). 6 Chortos, A., Liu, J. & Bao, Z. Pursuing prosthetic electronic skin. Nat. Mater. 15, 937-950, doi:10.1038/nmat4671 (2016). 7 Hammock, M. L., Chortos, A., Tee, B. C. K., Tok, J. B. H. & Bao, Z. 25th anniversary article: the evolution of electronic skin (e‐skin): a brief history, design considerations, and recent progress. Adv. Mater. 25, 5997-6038 (2013). 8 Jang, H. et al. Graphene‐Based Flexible and Stretchable Electronics. Adv. Mater. 28, 4184-4202 (2016). 9 Zhang, F., Zang, Y., Huang, D., Di, C.-a. & Zhu, D. Flexible and self-powered temperature–pressure dual-parameter sensors using microstructure-frame-supported organic thermoelectric materials. Nat. Commun. 6, 8356 (2015). 10 Yao, S. & Zhu, Y. Nanomaterial‐enabled stretchable conductors: strategies, materials and devices. Adv. Mater. 27, 1480-1511 (2015). 11 Norton, J. J. et al. Soft, curved electrode systems capable of integration on the auricle as a persistent brain–computer interface. P. Natl. Acad. Sci. 112, 3920-3925 (2015). 12 Yang, J. et al. Eardrum‐Inspired Active Sensors for Self‐Powered Cardiovascular System Characterization and Throat‐Attached Anti‐Interference Voice Recognition. Adv. Mater. 27, 1316-1326 (2015). 13 Pang, C., Lee, C. & Suh, K. Y. Recent advances in flexible sensors for wearable and implantable devices. J. Appl. Polym. Sci. 130, 1429-1441 (2013). 14 Zang, Y., Zhang, F., Di, C.-a. & Zhu, D. Advances of flexible pressure sensors toward artificial intelligence and health care applications. Mater. Horiz. 2, 140-156 (2015). 15 Choi, S., Lee, H., Ghaffari, R., Hyeon, T. & Kim, D. H. Recent Advances in Flexible and Stretchable Bio‐Electronic Devices Integrated with Nanomaterials. Adv. Mater. 28, 4203-4218 (2016). 16 Kim, S. J., We, J. H. & Cho, B. J. A wearable thermoelectric generator fabricated on a glass fabric. Energ. Environ. Sci. 7, 1959-1965 (2014). 17 Melzer, M. et al. Imperceptible magnetoelectronics. Nat. Commun. 6, 6080, doi:10.1038/ncomms7080 (2015). 18 Makarov, D., Melzer, M., Karnaushenko, D. & Schmidt, O. G. Shapeable magnetoelectronics. Appl. Phys. Rev. 3, 011101 (2016). 19 Melzer, M., Lin, G., Makarov, D. & Schmidt, O. G. Stretchable spin valves on elastomer membranes by predetermined periodic fracture and random wrinkling. Adv. Mater. 24, 6468-6472 (2012). 20 Yang, Y. et al. Self-powered magnetic sensor based on a triboelectric nanogenerator. ACS Nano 6, 10378-10383 (2012). 21 Zang, Y., Zhang, F., Huang, D., Di, C. a. & Zhu, D. Sensitive Flexible Magnetic Sensors using Organic Transistors with Magnetic‐Functionalized Suspended Gate Electrodes. Adv. Mater. 27, 7979-7985 (2015). 22 Huang, L. B. et al. Magnetic‐Assisted Noncontact Triboelectric Nanogenerator Converting Mechanical Energy into Electricity and Light Emissions. Adv. Mater. 28, 2744-2751 (2016). 23 Zhao, J. et al. Flexible Organic Tribotronic Transistor for Pressure and Magnetic Sensing. ACS Nano 11, 11566-11573 (2017). 24 Heidari, H., Bonizzoni, E., Gatti, U., Maloberti, F. & Dahiya, R. CMOS vertical Hall magnetic sensors on flexible substrate. IEEE Sens. J. 16, 8736-8743 (2016). 25 Ball, D. et al. Out-of-plane magnetized cone-shaped magnetic nanoshells. J. Phys. D: Appl. Phys. 50, 115004 (2017). 26 Münzenrieder, N. et al. Entirely Flexible On‐Site Conditioned Magnetic Sensorics. Adv. Electron. Mater. 2, 1600188 (2016). 27 Wang, Z., Shaygan, M., Otto, M., Schall, D. & Neumaier, D. Flexible Hall sensors based on graphene. Nanoscale 8, 7683-7687 (2016). 28 Cubells-Beltrán, M.-D. et al. Integration of GMR sensors with different technologies. Sensors 16, 939 (2016). 29 Melzer, M. et al. Wearable magnetic field sensors for flexible electronics. Adv. Mater. 27, 1274-1280 (2015). 30 Zakaria, Z. et al. Advancements in transmitters and sensors for biological tissue imaging in magnetic induction tomography. Sensors 12, 7126-7156 (2012). 31 Solovev, A. A., Sanchez, S., Pumera, M., Mei, Y. F. & Schmidt, O. G. Magnetic Control of Tubular Catalytic Microbots for the Transport, Assembly, and Delivery of Micro‐objects. Adv. Funct. Mater. 20, 2430-2435 (2010). 32 Mannsfeld, S. C. et al. Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers. Nat. Mater. 9, 859-864 (2010). 33 Choong, C. L. et al. Highly stretchable resistive pressure sensors using a conductive elastomeric composite on a micropyramid array. Adv. Mater. 26, 3451-3458 (2014). 34 Zubel, I. & Kramkowska, M. The effect of isopropyl alcohol on etching rate and roughness of (1 0 0) Si surface etched in KOH and TMAH solutions. Sensor Actuat. A-Phys. 93, 138-147 (2001). 35 Shikida, M., Sato, K., Tokoro, K. & Uchikawa, D. Differences in anisotropic etching properties of KOH and TMAH solutions. Sensor Actuat. A-Phys. 80, 179-188 (2000). 36 Tee, B. C. K. et al. Tunable flexible pressure sensors using microstructured elastomer geometries for intuitive electronics. Adv. Funct. Mater. 24, 5427-5434 (2014). 37 Schenck, J. F. Safety of strong, static magnetic fields. J. Magn. Reson. Imaging 12, 2-19 (2000). 38 Chen, C. Graphene NanoElectroMechanical Resonators and Oscillators. (Columbia University, 2013). 39 Gossweiler, G. R. et al. Mechanochemically active soft robots. ACS Appl. Mater. Inter. 7, 22431-22435 (2015). 40 Rus, D. & Tolley, M. T. Design, fabrication and control of soft robots. Nature 521, 467 (2015). 41 Lum, G. Z. et al. Shape-programmable magnetic soft matter. Proc. Natl. Acad. Sci. U. S. A. 113, E6007-E6015, 1608193113 (2016). 42 Shintake, J., Rosset, S., Schubert, B., Floreano, D. & Shea, H. Versatile soft grippers with intrinsic electroadhesion based on multifunctional polymer actuators. Adv. Mater. 28, 231-238 (2016). 43 Ceylan, H., Giltinan, J., Kozielski, K. & Sitti, M. Mobile microrobots for bioengineering applications. Lab Chip. 17, 1705-1724 (2017). 44 Park, S.-J. et al. Phototactic guidance of a tissue-engineered soft-robotic ray. science 353, 158-162 (2016). 45 Xu, S. et al. Stretchable batteries with self-similar serpentine interconnects and integrated wireless recharging systems. Nat. Commun. 4, 1543 (2013). 46 Shi, M. et al. Self-powered analogue smart skin. ACS Nano 10, 4083-4091 (2016). 47 Kaltenbrunner, M. et al. Flexible high power-per-weight perovskite solar cells with chromium oxide-metal contacts for improved stability in air. Nat. Mater. 14, 1032-1039 (2015). 48 Park, M.-S. et al. Porous nanoarchitectures of spinel-type transition metal oxides for electrochemical energy storage systems. Phys. Chem. Chem. Phys. 17, 30963-30977 (2015). 49 Kim, J. et al. Research Update: Hybrid energy devices combining nanogenerators and energy storage systems for self-charging capability. Apl. Mater. 5, 073804 (2017). 50 Kim, J. et al. Conductive polymers for next-generation energy storage systems: recent progress and new functions. Mater. Horiz. 3, 517-535 (2016). 51 Larson, C. et al. Highly stretchable electroluminescent skin for optical signaling and tactile sensing. science 351, 1071-1074 (2016). 52 Wang, Q., Gossweiler, G. R., Craig, S. L. & Zhao, X. Cephalopod-inspired design of electro-mechano-chemically responsive elastomers for on-demand fluorescent patterning. Nat. Commun. 5, 4899, doi:10.1038/ncomms5899 (2014). 53 Chou, H.-H. et al. A chameleon-inspired stretchable electronic skin with interactive colour changing controlled by tactile sensing. Nat. Commun. 6, 8011 (2015). Reference 1 Khan, L. U. Visible light communication: Applications, architecture, standardization and research challenges. Digit. Commun. Netw. 3, 78-88 (2017). 2 Bock, M. et al. High-fidelity entanglement between a trapped ion and a telecom photon via quantum frequency conversion. Nat. Commun. 9, 1998 (2018). 3 Seneviratne, S. et al. A survey of wearable devices and challenges. IEEE Commun. Surv. Tut. 19, 2573-2620 (2017). 4 Heikenfeld, J. et al. Wearable sensors: modalities, challenges, and prospects. Lab Chip. 18, 217-248 (2018). 5 Kumar, A., Mihovska, A., Kyriazakos, S. & Prasad, R. Visible light communications (VLC) for ambient assisted living. Wireless Pers. Commun. 78, 1699-1717 (2014). 6 Rajbhandari, S. et al. High-speed integrated visible light communication system: Device constraints and design considerations. IEEE J. Sel. Area. A. Comm. 33, 1750-1757 (2015). 7 Grobe, L. et al. High-speed visible light communication systems. IEEE Commun. Mag. 51, 60-66 (2013). 8 Fong, E. G. et al. Integrated energy-harvesting photodiodes with diffractive storage capacitance. IEEE T. VLSI. Syst. 21, 486-497 (2013). 9 Lin, W.-Y. et al. 10m/500Mbps WDM visible light communication systems. Opt. Express 20, 9919-9924 (2012). 10 Nau, S., Wolf, C., Sax, S. & List‐Kratochvil, E. J. Organic Non‐Volatile Resistive Photo‐Switches for Flexible Image Detector Arrays. Adv. Mater. 27, 1048-1052 (2015). 11 Pérez‐Tomás, A. et al. A Solar Transistor and Photoferroelectric Memory. Adv. Funct. Mater. 28, 1707099 (2018). 12 Waser, R., Dittmann, R., Staikov, G. & Szot, K. Redox‐based resistive switching memories–nanoionic mechanisms, prospects, and challenges. Adv. Mater. 21, 2632-2663 (2009). 13 Waser, R. & Aono, M. Nanoionics-based resistive switching memories. Nat. Mater. 6, 833 (2007). 14 Wong, H.-S. P. et al. Metal–oxide RRAM. P. IEEE 100, 1951-1970 (2012). 15 Lin, W. P., Liu, S. J., Gong, T., Zhao, Q. & Huang, W. Polymer‐Based Resistive Memory Materials and Devices. Adv. Mater. 26, 570-606 (2014). 16 Kim, S.-J. & Lee, J.-S. Flexible organic transistor memory devices. Nano Lett. 10, 2884-2890 (2010). 17 Bao, Z. & Chen, X. Flexible and stretchable devices. Adv. Mater. 28, 4177-4179 (2016). 18 Rim, Y. S., Bae, S. H., Chen, H., De Marco, N. & Yang, Y. Recent progress in materials and devices toward printable and flexible sensors. Adv. Mater. 28, 4415-4440 (2016). 19 Zang, Y., Zhang, F., Di, C.-a. & Zhu, D. Advances of flexible pressure sensors toward artificial intelligence and health care applications. Mater. Horiz. 2, 140-156 (2015). 20 Wang, X. et al. Flexible Energy‐Storage Devices: Design Consideration and Recent Progress. Adv. Mater. 26, 4763-4782 (2014). 21 Liu, W., Song, M. S., Kong, B. & Cui, Y. Flexible and stretchable energy storage: recent advances and future perspectives. Adv. Mater. 29, 1603436 (2017). 22 Leung, S. F. et al. A Self‐Powered and Flexible Organometallic Halide Perovskite Photodetector with Very High Detectivity. Adv. Mater. 30, 1704611 (2018). 23 Norton, J. J. et al. Soft, curved electrode systems capable of integration on the auricle as a persistent brain–computer interface. P. Natl. Acad. Sci. 112, 3920-3925 (2015). 24 Hanna, A. N., Kutbee, A. T., Subedi, R. C., Ooi, B. & Hussain, M. M. Wavy Architecture Thin‐Film Transistor for Ultrahigh Resolution Flexible Displays. Small 14, 1703200 (2018). 25 Li, G. et al. High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nat. Mater. 4, 864 (2005). 26 Dennler, G., Scharber, M. C. & Brabec, C. J. Polymer‐fullerene bulk‐heterojunction solar cells. Adv. Mater. 21, 1323-1338 (2009). 27 Fan, F. R., Tang, W. & Wang, Z. L. Flexible nanogenerators for energy harvesting and self‐powered electronics. Adv. Mater. 28, 4283-4305 (2016). 28 Shen, D. et al. Self‐Powered Wearable Electronics Based on Moisture Enabled Electricity Generation. Adv. Mater. 30, 1705925 (2018). 29 Zhang, F., Zang, Y., Huang, D., Di, C.-a. & Zhu, D. Flexible and self-powered temperature–pressure dual-parameter sensors using microstructure-frame-supported organic thermoelectric materials. Nat. Commun. 6, 8356 (2015). 30 Tress, W. et al. Predicting the Open‐Circuit Voltage of CH3NH3PbI3 Perovskite Solar Cells Using Electroluminescence and Photovoltaic Quantum Efficiency Spectra: the Role of Radiative and Non‐Radiative Recombination. Adv. Energy Mater. 5, 1400812 (2015). 31 Wu, C., Kim, T. W., Choi, H. Y., Strukov, D. B. & Yang, J. J. Flexible three-dimensional artificial synapse networks with correlated learning and trainable memory capability. Nat. Commun. 8, 752 (2017). 32 Lee, J. & Lu, W. D. On‐Demand Reconfiguration of Nanomaterials: When Electronics Meets Ionics. Adv. Mater. 30, 1702770 (2018). 33 Zidan, M. A., Strachan, J. P. & Lu, W. D. The future of electronics based on memristive systems. Nature. Elect. 1, 22 (2018). 34 Yu, S. Neuro-inspired computing with emerging nonvolatile memorys. P. IEEE 106, 260-285 (2018). 35 Borghetti, J. et al. ‘Memristive’switches enable ‘stateful’logic operations via material implication. Nature 464, 873 (2010). 36 Menzel, S., Böttger, U., Wimmer, M. & Salinga, M. Physics of the switching kinetics in resistive memories. Adv. Funct. Mater. 25, 6306-6325 (2015). | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71229 | - |
dc.description.abstract | 在未來的智慧型生活的藍圖裡,充滿行動的跟穿戴式裝置和物聯網結合在一起,使實現有即時的輕鬆的效率的生活。而行動的跟穿戴式裝置的研究是現今主流的發展。使其成為自動化的、輕量的、無感的、多功能的、高速傳輸的、可信賴的。邁向光通訊跟物聯網應用基於優越的穿戴式電子元件,因此這論文我設計、製造及演示了磁性皮膚與光電類神經記憶體。
1. 邁進人工智慧感知能力:超高靈敏可撓式磁電元件基於混合磁性材料 近年來可撓磁電元件備受極大關注,因其吸引人的功能性跟俱潛力應用,例如醫療用途、記憶體、軟性機器人、導航及非觸控式的人機互動介面。在此,我們展示全新的磁-壓電元件,其對磁場俱超高靈敏度在磁場100毫特斯拉區間電阻變化數次方。這元件是由鐵-鎳合金粉末鑲入表面有微金字塔結構的矽膠裡,再用銀奈米線塗布矽膠表面。這元件對於磁場強度具有超高靈敏度不僅可作為開關元件也可以做為感測器,這樣的特性非常適用於類比訊號通訊。更值得注意的是這元件具備多項優勢大面積製成、製程簡單、反應速度快、低操作電壓、低能量損耗、高度可撓性可以服貼再任意曲面,以上的特點十分利於發展未來的人機互動系統。在此我們演示了非觸控式鋼琴鍵盤、即時的磁場視覺化跟自我供電系統之整合。藉由這新穎的元件讓原本陌生無法感知的磁場也可以運用在日常生活中。對於穿戴式元件跟智能系統的發展我們的研究成果提供了絕佳的平台。 2. 應用於光通訊與邏輯編譯之光電共譯類神經網路記憶體 以光作為資訊傳輸的方式,可以提傳輸速度、安全性,縮小元件體積,如此一來有機會解決目前電子元件太過複雜的問題。在此,我們呈現一種整合型奈米電子元件,這元件整合了處理跟儲存光電資訊功能。這元件為可撓垂直多層結構並具有記憶體的效果。在內文顯示以獨特多元的操作方式。首先此元件藉由照光情況下產生的光電流可用來閱讀元件的組態,以達自我供電之操作。更值得注意的,可以用不同的光強度去調適開關切換所需的電壓,這樣的行為類似為類神經網路記憶元可以利用光或電訊號學習跟檢視當下的組態。多層組態、學習能力、可光控制邏輯操作如此的優越特性提了供未來物聯網普及便宜的光通訊偵測器。 | zh_TW |
dc.description.abstract | The blueprint for the future smart life, mobile devices and wearable electronics are combined with Internet of Things, which enable instant, easy and efficient life. The research of the wearable electronics is the current mainstream development, with autonomous, lightweight, imperceptive multi-functional, high-speed transmission, and reliable characteristics. Superior wearable electronic components permit convenient applications in optical communication and Internet of Things. Therefore, in this thesis we designed, manufactured and demonstrated a magnetoelectronic skin and an optoelectronic neuron memory.
1. Ultrahigh Sensitive and Flexible Magnetoelectronics with Magnetic Nanocomposites: Toward an Additional Perception of Artificial Intelligence In recent years, flexible magnetoelectronics has attracted a great attention for its intriguing functionalities and potential applications, such as healthcare, memory, soft robots, navigation, and touchless human−machine interaction systems. Here, we provide the first attempt to demonstrate a new type of magneto-piezoresistance device, which possesses an ultrahigh sensitivity with several orders of resistance change under an external magnetic field (100 mT). In our device, Fe−Ni alloy powders are embedded in the silver nanowire-coated micropyramid polydimethylsiloxane films. Our devices can not only serve as an on/off switch but also act as a sensor that can detect different magnetic fields because of its ultrahigh sensitivity, which is very useful for the application in analog signal communication. Moreover, our devices contain several key features, including large-area and easy fabrication processes, fast response time, low working voltage, low power consumption, excellent flexibility, and admirable compatibility onto a freeform surface, which are the critical criteria for the future development of touchless human−machine interaction systems. On the basis of all of these unique characteristics, we have demonstrated a nontouch piano keyboard, instantaneous magnetic field visualization, and autonomous power system, making our new devices be integrable with magnetic field and enable to be implemented into our daily life applications with unfamiliar human senses. Our approach therefore paves a useful route for the development of wearable electronics and intelligent systems. 2. A hybrid optical/electric neuron for light-based logic and communication Light-based information processing has the potential to increase speed, security and scalability of electronics if issues in the device complexity could be resolved. We here demonstrate an integrated nano-electronic device that can combine, store, and manipulate optical and electronic information. Employing a mechanically flexible and multilayered structure, a device is realized that shows memristive behavior. Illumination is shown to control the device operation in several unique ways. First, the device produces photocurrent that allows us to read out the device state in a self-powered manner. More importantly, a varying light intensity is shown to modulate the switching transition in a proportional manner that is akin to a neuron with variable plasticity that can be taught and queries using either light or electrical inputs. This behavior enables a multi-level light-controlled logic and teaching schemes that can be applied to light-based communication devices and provides a route towards ubiquitous and low-cost sensors for future internet of things applications. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T04:59:48Z (GMT). No. of bitstreams: 1 ntu-107-D02222012-1.pdf: 2592181 bytes, checksum: 7c415c1aaa62972af85a15df56ecac6f (MD5) Previous issue date: 2018 | en |
dc.description.tableofcontents | CONTENTS
口試委員會審定書 # 誌謝 i 中文摘要 ii ABSTRACT iv LIST OF PUBLICATION viii CONTENTS x LIST OF FIGURES xiii Chapter 1 Introduction 1 1.1 Flexible electronics 1 1.2 Flexible magnetic sensors 2 1.3 Optoelectronic memory 3 1.4 Overview of the dissertation 4 Reference 6 Chapter 2 Theoretical Background and Experiment at Details 8 2.1 Polydimethylsiloxane (PDMS) 8 2.2 Silver nanowires (AgNWs) 8 2.3 Silicon etching process 9 2.4 The measurement of magnetic sensor 13 2.5 Resistance random access memory (RRAM) 14 2.5.1 Resistive switching behaviors 14 2.5.2 Resistive switching mechanisms 16 2.6 Photovoltaic cell 18 2.7 The measurement of the hybrid neuron 22 Reference 23 Chapter 3 Ultrahigh Sensitive and Flexible Magnetoelectronics with Magnetic Nanocomposites: Toward an Additional Perception of Artificial Intelligence 26 3.1 Introduction 26 3.2 Results 29 3.3 Summary 39 3.4 Experimental section 41 Reference 52 Chapter 4 A hybrid optical/electric neuron for light-based logic and communication 57 4.1 Introduction 57 4.2 Results 59 4.3 Summary 63 4.4 Experimental section 63 Reference 70 Chapter 5 Conclusion 73 LIST OF FIGURES Fig. 2 1 SEM images of (a) 700 nm inverted nanopyramids (b) cross sectional view of inverted nanopyramids. the 700 nm base size inverted nanopyramids with 100 nm separation.10 10 Fig. 2 2 the manufacturing process of the pyramid-structured silicon mold. 12 Fig. 2 3 The measurement schematic of the magnetic sensor. 13 Fig. 2 4 (a) Schematic of MIM structure for metal–oxide RRAM, and schematic of metal–oxide memory’s I–V curves, showing two modes of operation: (b) unipolar and (c) bipolar.16 15 Fig. 2 5 Typical current-voltage characteristic of a Ag/Ag-Ge-Se/Pt electrochemical metallization cell using a triangular voltage sweep.21 The ON conductance is limited by a compliance current of 25mA. The insets A to D show the different stages of the switching procedure.15 17 Fig. 2 6 Chemical structure of poly(3-hexyl thiophene), P3HT, and [6,6]-phenylC61-butyric acid methyl ester, PCBM. 19 Fig. 2 7 Structure of the polymer photovoltaic devices. 19 Fig. 2 8 The measurement schematic of the optical/electric hybrid neuron. 22 Fig. 3 1 Schematic illustration of the device fabrication process. 43 Fig. 3 2 (a) SEM images of the AgNWs/PDMS film with pyramid microstructures. (b) Structure of device and working process. 44 Fig. 3 3 (a) I-V characteristics of the device under different magnetic field. (b) Real time current responses under different magnetic field at 0.1 V. (c) (d) The current responses under different magnetic fields at 0.1 V. 45 Fig. 3 4 The current-magnetic field responses under increasing and decreasing magentic field at 0.1 V. 46 Fig. 3 5 (a) The current-magnetic field responses with different heights of the air gap operating at 0.1 V. (b) The current-magnetic field responses under different width of the air gap operating at 0.1 V. 47 Fig. 3 6 Real-time response to the load/unload magnetic field at 150 mT (a) and 0.1 V (b). 48 Fig. 3 7 (a) The bending test of the magnetic sensor under different degree of bending at 150 mT and 0.1 V. (b) The bending cycles measurement of magnetic sensor over 5000 times with bending radius 5 mm. 49 Fig. 3 8 (a) I-V characteristics of the integrated magnetic sensor and solar cell under 1.083 and 0.144 mW cm-2 illumination at the magnetic field of 150 mT. (b) I-t characteristics of the integrated magnetic sensor and solar cell at the magnetic field of 150 mT. The inserted photo shows the combination of our device and a silicon based solar cell. 50 Fig. 3 9 (a)-(c) and (d) The magnetic sensor was directly integrated with RGB LEDs. The spectra and CIE coordinate were individually measured under different magnetic field of 100, 150, and 300 mT. (e) The circuit diagram of the magnetic sensor integrated with RGB LEDs. 51 Fig. 4 1 (a) Schematic illustration of the vertically stacked architecture and the energy-level diagram (Au/PMMA/Ag/MoO3/P3HT:PCBM/ZnO/ITO). (b) Optical images of the device. (c) The cross-sectional SEM images of the vertically stacked cell. 65 Fig. 4 2 (a) I-V characteristic of Ag/PMMA/Au memory. (b) ON/OFF switch for 100 cycles, read by 0.2 V. (c) The ON and OFF currents were read by 0.2 V under different degree of bending. (d) The ON and OFF currents were read by 0.2 V over 1000 times bending with bending radius 5 mm. 66 Fig. 4 3 Bipolar resistive switching property, I-V characteristic of Ag/PMMA/Au memory. 67 Fig. 4 4 (a) I-T characteristic of a hybrid cell under constant voltage 1 V. (b) I-V characteristics of a hybrid cell under different light intensities with white light LED. (c) SET voltage-light intensity of a hybrid cell with the fitted curve. (d) Electric pulse programming of Ag/PMMA/Au memory. (e) Light pulse programming of a hybrid cell. (f) Light and electric pulse programming of a hybrid cell. The inset figure is the concept of logic. 68 Fig. 4 5 (a) I-T characteristics of the hybrid cell, when the light pulses (0.172 mW/mm2) coincides with electrical pulses (1 V). (b) I-T characteristics of the hybrid cell, when the light pulses (0.172 mW/mm2) do not coincide with the electrical pulses (1 V). (c) The switching behavior of the hybrid cell under the electric and light pulse input cycles. (d) The concept of light-based communication. 69 | |
dc.language.iso | en | |
dc.title | 可撓可穿戴磁電、光電元件 | zh_TW |
dc.title | A Flexible, Wearable and Multifnctional Magnetoelectronic Device and an Optoelectronic Neuron Memory | en |
dc.type | Thesis | |
dc.date.schoolyear | 106-2 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 謝馬利歐(Mario Hofmann),謝雅萍,林泰源(Tai-Yuan Lin),許芳琪 | |
dc.subject.keyword | 磁電元件,非觸式元件,超靈敏度,電子皮膚,全自主性,人工類神經網路,光通訊,光電混和元件,光照上網技術 (Li-Fi),記憶體, | zh_TW |
dc.subject.keyword | magnetoelectronic,touchless,ultra-sensitive,e-skin,full autonomy,artificial neuron network,light-based communication,hybrid optoelectronics,light fidelity,memory, | en |
dc.relation.page | 75 | |
dc.identifier.doi | 10.6342/NTU201801961 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2018-07-26 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 物理學研究所 | zh_TW |
顯示於系所單位: | 物理學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-107-1.pdf 目前未授權公開取用 | 2.53 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。