請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71223完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林曉青(Hsiao-Ching Lin) | |
| dc.contributor.author | Chi-Fang Lee | en |
| dc.contributor.author | 李奇芳 | zh_TW |
| dc.date.accessioned | 2021-06-17T04:59:29Z | - |
| dc.date.available | 2028-12-31 | |
| dc.date.copyright | 2018-08-01 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-07-26 | |
| dc.identifier.citation | 1. Demain, A., & Fang, A. (2000). The Natural Functions of Secondary Metabolites. History of Modern Biotechnology I, 1-39. doi: 10.1007/3-540-44964-7_1
2. Wang, G., Tang, W., & Bidigare, R. Terpenoids As Therapeutic Drugs and Pharmaceutical Agents. Natural Products, 197-227. doi: 10.1007/978-1-59259-976-9_9 3. Dictionary of Natural Products 26.2. (2018). Retrieved from http://dnp.chemnetbase.com 4. Chang, W., Song, H., Liu, H., & Liu, P. (2013). Current development in isoprenoid precursor biosynthesis and regulation. Current Opinion in Chemical Biology, 17(4), 571-579. doi: 10.1016/j.cbpa.2013.06.020 5. Medicinal natural products: A biosynthetic approach. (2001). European Journal of Medicinal Chemistry, 36(11-12), 966-967. doi: 10.1016/s0223-5234(01)01302-2 6. Schmidt-Dannert, C. (2014). Biosynthesis of Terpenoid Natural Products in Fungi. Biotechnology of Isoprenoids, 19-61. doi: 10.1007/10_2014_283 7. Gao, Y., Honzatko, R., & Peters, R. (2012). Terpenoid synthase structures: a so far incomplete view of complex catalysis. Natural Product Reports, 29(10), 1153. doi: 10.1039/c2np20059g 8. Nielsen, K., Mogensen, J., Johansen, M., Larsen, T., & Frisvad, J. (2009). Review of secondary metabolites and mycotoxins from the Aspergillus niger group. Analytical and Bioanalytical Chemistry, 395(5), 1225-1242. doi: 10.1007/s00216-009-3081-5 9. Bhat, M. (2000). Cellulases and related enzymes in biotechnology. Biotechnology Advances, 18(5), 355-383. doi: 10.1016/s0734-9750(00)00041-0 10. Polizeli, M., Rizzatti, A., Monti, R., Terenzi, H., Jorge, J., & Amorim, D. (2005). Xylanases from fungi: properties and industrial applications. Applied Microbiology and Biotechnology, 67(5), 577-591. doi: 10.1007/s00253-005-1904-7 11. Mizuno, K., Yagi, A., Satoi, S., Takada, M., Hayashi, M., Asano, K., & Matsuda, T. (1977). Studies on aculeacin. I. Isolation and characterization of aculeacin A. The Journal of Antibiotics, 30(4), 297-302. doi: 10.7164/antibiotics.30.297 12. Satoi, S., Yagi, A., Asano, K., Mizuno, K., & Watanabe, T. (1977). Studies on aculeacin. II. Isolation and characterization of aculeacins B, C, D, E, F and G. The Journal of Antibiotics,30(4), 303-307. doi: 10.7164/antibiotics.30.303 13. Ingavat, N., Dobereiner, J., Wiyakrutta, S., Mahidol, C., Ruchirawat, S. and Kittakoop, P. (2009). Aspergillusol A, an α-Glucosidase Inhibitor from the Marine-Derived FungusAspergillus aculeatus. Journal of Natural Products, 72(11), pp.2049-2052. doi: 10.1021/np9003883 14. Watanabe, S., Hirai, H., Ishiguro, M., Kambara, T., Kojima, Y., & Matsunaga, T. et al. (2001). CJ-15,183, a New Inhibitor of Squalene Synthase Produced by a Fungus, Aspergillus aculeatus. The Journal of Antibiotics, 54(11), 904-910. doi: 10.7164/antibiotics.54.904 15. Andersen, R., Buechi, G., Kobbe, B., & Demain, A. (1977). Secalonic acids D and F are toxic metabolites of Aspergillus aculeatus. The Journal of Organic Chemistry, 42(2), 352-353. doi: 10.1021/jo00422a042 16. Ingavat, N., Mahidol, C., Ruchirawat, S., & Kittakoop, P. (2011). Asperaculin A, a Sesquiterpenoid from a Marine-Derived Fungus,Aspergillus aculeatus. Journal of Natural Products, 74(7), 1650-1652. doi: 10.1021/np200221w 17. Hayashi, H., Furutsuka, K., & Shiono, Y. (1999). Okaramines H and I, New Okaramine Congeners, fromAspergillus aculeatus. Journal of Natural Products, 62(2), 315-317. doi: 10.1021/np9802623 18. Xie, Y., Luo, H., Du, Z., Hu, L., & Fu, J. (2014). Identification of cadmiumresistant fungi related to Cd transportation in bermudagrass [ Cynodon dactylon (L.) Pers.]. Chemosphere, 117, 786-792. doi: 10.1016/j.chemosphere.2014.10.037 19. Li, X., Han, S., Wang, G., Liu, X., Amombo, E., Xie, Y., & Fu, J. (2017). The Fungus Aspergillus aculeatus Enhances Salt-Stress Tolerance, Metabolite Accumulation, and Improves Forage Quality in Perennial Ryegrass. Frontiers in Microbiology, 8. doi: 10.3389/fmicb.2017.01664 20. Petersen, L., Hoeck, C., Frisvad, J., Gotfredsen, C., & Larsen, T. (2014). Dereplication Guided Discovery of Secondary Metabolites of Mixed Biosynthetic Origin from Aspergillus aculeatus. Molecules, 19(8), 10898-10921. doi: 10.3390/molecules190810898 21. Gao, Y., Guo, C., Zhang, Q., Zhou, W., Wang, C., & Gao, J. (2014). Asperaculanes A and B, Two Sesquiterpenoids from the Fungus Aspergillus aculeatus. Molecules, 20(1), 325-334. doi: 10.3390/molecules20010325 22. Medrano, F. (1998). Structure of proline iminopeptidase from Xanthomonas campestris pv. citri: a prototype for the prolyl oligopeptidase family. The EMBO Journal, 17(1), 1-9. doi: 10.1093/emboj/17.1.1 23. Yoshimoto, T., Kabashima, T., Uchikawa, K., Inoue, T., Tanaka, N., & Nakamura, R. et al. (1999). Crystal Structure of Prolyl Aminopeptidase from Serratia marcescens. Journal of Biochemistry, 126(3), 559-565. doi: 10.1093/oxfordjournals.jbchem.a022486 24. Ito, K., Nakajima, Y., & Yoshimoto, T. (2013). Prolyl Aminopeptidase. Handbook of Proteolytic Enzymes, 3438-3443. doi: 10.1016/b978-0-12-382219-2.00760-2 25. Walter, R., Simmons, W., & Yoshimoto, T. (1980). Proline specific endo- and exopeptidases. Molecular and Cellular Biochemistry, 30(2). doi: 10.1007/bf00227927 26. Zhang, L., Jia, Y., Wang, L., & Fang, R. (2007). A proline iminopeptidase gene upregulatedin plantaby a LuxR homologue is essential for pathogenicity of Xanthomonas campestris pv. campestris. Molecular Microbiology, 65(1), 121136. doi: 10.1111/j.1365-2958.2007.05775.x 27. Savijoki, K., Ingmer, H., & Varmanen, P. (2006). Proteolytic systems of lactic acid bacteria. Applied Microbiology and Biotechnology, 71(4), 394-406. doi: 10.1007/s00253-006-0427-1 28. Szawłowska, U., Grabowska, A., Zdunek-Zastocka, E., & Bielawski, W. (2012). TsPAP1 encodes a novel plant prolyl aminopeptidase whose expression is induced in response to suboptimal growth conditions. Biochemical And Biophysical Research Communications, 419(1), 104-109. doi: 10.1016/j.bbrc.2012.01.140 29. FitzGerald, R., & O'Cuinn, G. (2006). Enzymatic debittering of food protein hydrolysates. Biotechnology Advances, 24(2), 234-237. doi: 10.1016/j.biotechadv.2005.11.002 30. Keller, N. (2015). Translating biosynthetic gene clusters into fungal armor and weaponry. Nature Chemical Biology, 11(9), 671-677. doi: 10.1038/nchembio.1897 31. Yan, Y., Liu, Q., Zang, X., Yuan, S., Bat-Erdene, U., & Nguyen, C. et al. (2018). Resistance-gene-directed discovery of a natural-product herbicide with a new mode of action. Nature, 559(7714), 415-418. doi: 10.1038/s41586-018-0319-4 32. Alberts, A., Chen, J., Kuron, G., Hunt, V., Huff, J., & Hoffman, C. et al. (1980). Mevinolin: a highly potent competitive inhibitor of hydroxymethylglutarylcoenzyme A reductase and a cholesterol-lowering agent. Proceedings of The National Academy of Sciences, 77(7), 3957-3961. doi: 10.1073/pnas.77.7.3957 33. Hutchinson, C., Kennedy, J., Park, C., Kendrew, S., Auclair, K., & Vederas, J. (2000). Aspects of the biosynthesis of non-aromatic fungal polyketides by iterative polyketide synthases. Antonie Van Leeuwenhoek, 78(3/4), 287-295. doi: 10.1023/a:1010294330190 34. Bok, J., & Keller, N. (2012). Fast and Easy Method for Construction of Plasmid Vectors Using Modified Quick-Change Mutagenesis. Fungal Secondary Metabolism, 163-174. doi: 10.1007/978-1-62703-122-6_11 35. Lin, S., Staahl, B., Alla, R., & Doudna, J. (2014). Enhanced homology-directed human genome engineering by controlled timing of CRISPR/Cas9 delivery. Elife, 3. doi: 10.7554/elife.04766 36. Lai, C., Lo, I., Hewage, R., Chen, Y., Chen, C., & Lee, C. et al. (2017). Biosynthesis of Complex Indole Alkaloids: Elucidation of the Concise Pathway of Okaramines. Angewandte Chemie International Edition, 56(32), 9478-9482. doi: 10.1002/anie.201705501 37. Basten, D., Moers, A., Ooyen, A., & Schaap, P. (2005). Characterisation of Aspergillus niger prolyl aminopeptidase. Molecular Genetics and Genomics, 272(6), 673-679. doi: 10.1007/s00438-004-1094-5 38. Mahon, C., O'Donoghue, A., Goetz, D., Murray, P., Craik, C., & Tuohy, M. (2009). Characterization of a multimeric, eukaryotic prolyl aminopeptidase: an inducible and highly specific intracellular peptidase from the non-pathogenic fungus Talaromyces emersonii. Microbiology, 155(11), 3673-3682. doi: 10.1099/mic.0.030940-0 39. Matsushita-Morita, M., Furukawa, I., Suzuki, S., Yamagata, Y., Koide, Y., & Ishida, H. et al. (2009). Characterization of recombinant prolyl aminopeptidase from Aspergillus oryzae. Journal of Applied Microbiology, 109(1), 156-165. doi: 10.1111/j.1365-2672.2009.04641.x 40. Kitazono, A., Kitano, A., Tsuru, D., & Yoshimoto, T. (1994). Isolation and Characterization of the Prolyl Aminopeptidase Gene (pap) from Aeromonas sobria: Comparison with the Bacillus coagulans Enzyme. The Journal of Biochemistry, 116(4), 818-825. doi: 10.1093/oxfordjournals.jbchem.a124601 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71223 | - |
| dc.description.abstract | Aculenes are sesquiterpenes produced by Aspergillus aculeatus, a black filamentous fungus. Among the identified aculenes, aculenes A-D and asperaculene B contain an unprecedented norsesquiterpene scaffold that may derive from ent-daucane-type skeleton. As a cumulative number of aculenes that has been identified with chemical investigation, the genetic and enzymatic basis involved aculenes biosynthesis remains unknown. In this study, we have identified the biosynthetic gene cluster of aculenes and proposed the biosynthetic pathway based on gene inactivation, heterologous reconstitution, and biochemical characterization.
From knockout strains and heterologous co-expression transformants of saccharomyces cerevisiae, we isolated thirteen aculene derivatives including seven new compounds. Based on the results, we discovered three P450 monooxygenases involving in multiple oxidative steps, one dioxygenase that introducing a double bond, and one non-ribosomal peptide synthase (NRPS) that transferring a proline moiety to the sesquiterpene skeleton. Furthermore, we characterized a terpene synthase that forms the ent-daucane-type skeleton of aculenes with heterologous expression. Biochemical characterization of the NRPS and hydrolase were also investigated. Interestingly, the deletion of a gene coding proline iminopeptidase on the aculene biosynthetic gene cluster did not influence the production of aculene A. The bioinformatic analysis on the A. aculeatus genome indicated that there are two proline iminopeptidase homologs within the genome, while most fungi only have one proline iminopeptidase. We hypothesized that the aculene-type metabolites may play a certain role in the interaction with the two proline iminopeptidase homologs. Further molecule-enzyme interaction will be investigated by enzymatic assay methods. We will continue to characterize the function of three P450s and to identify the key enzymes involved in the generation of norsesquiterpene skeleton. Furthermore, biological implication may be obtained based on the investigation of the interaction between aculene derivatives and proline iminopeptidase homologs. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T04:59:29Z (GMT). No. of bitstreams: 1 ntu-107-R05b46011-1.pdf: 14677016 bytes, checksum: c32cea5554705e9b9a0dd546e3588411 (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 中文摘要 i
Abstract ii Table of Contents I List of Figures III List of Tables VI List of Schemes VII Abbreviations VIII 1 Introduction 1 1.1 Terpenoid 1 1.2 Aspergillus aculeatus and aculenes 4 1.3 Proline iminopeptidase 7 1.4 Duplicated target 8 1.5 Aim of this study 9 2 Materials and Method 10 2.1 Strains, media and growth conditions 10 2.2 Molecular biology experiments 10 2.3 Chemical analysis 11 2.4 Cloning and plasmid construction 12 2.4.1 Knockout cassettes 16 2.4.2 Cloning of pXW55-AneC, pXW02-AneD, pXW06-AneF, pXW55-AneG and pXW55-AneC-AneG for heterologous expression in Saccharomyces cerevisiae 16 2.4.3 Cloning of pET28-AneC, pET28-AaPIP, pET28-AneG, pXW55-AneB and pXW06-AneE for protein purification 17 2.5 A. aculeatus protoplasting, transformation and gene deletion 17 2.5.1 Protoplasting 17 2.5.2 sgRNA and Cas9:guide RNA ribonucleoprotein (Cas9 RNP) preparation 18 2.5.3 Fungal transformation 19 2.6 Heterologous reconstitution of biosynthesis in Saccharomyces cerevisiae 19 2.7 Metabolites isolation 20 2.7.1 Purification of aculene A (1), B (2), C (3), D (3) from wild type A. aculeatus 20 2.7.2 Purification of aculene B (2) and compound 13 fromΔaneA mutant 21 2.7.3 Purification of compound 8 and compound 9 fromΔaneD mutant 22 2.7.4 Purification of compound 6 fromΔaneE mutant 23 2.7.5 Purification of compound 7 fromΔaneF mutant 23 2.7.6 Purification of compound 5 and 9 fromΔaneG mutant 24 2.7.7 Purification of compound 10 from AneC and AneF co-expression transformant 25 2.7.8 Purification of compound 11 from AneC, AneD and AneF co-expression transformant 25 2.7.9 Purification of compound 12 from AneC, AneF and AneG co-expression transformant 26 2.8 Expression and purification of His6-tagged protein 40 2.8.1 Expression of AneC, AaPIP, AneH in E. coli 40 2.8.2 Expression of AneB, AneE in S. cerevisiae 40 2.9 Purification of His6-tagged protein 41 2.10 In vitro assay 42 2.10.1 AneC-terpene synthase 42 2.10.2 NRPS and hyhrolase 42 2.11 Enzymatic assay of proline iminopeptidase 42 3 Results and Discussion 43 3.1 Biosynthetic gene cluster and gene inactivation 43 3.2 Aculene-type compounds with C14-OH are shunt product 48 3.3 Heterologous reconstitution of biosynthesis in yeast 49 3.4 Structure elucidation 51 3.4.1 Compound 1-6 51 3.4.2 Compound 7 59 3.4.3 Compound 8 61 3.4.4 Compound 9 63 3.4.5 Compound 10 66 3.4.6 Compounds 11 and 12 68 3.4.7 Compound 13 72 3.5 AneD and AneG may be involved in multiple oxidation and decarboxylation steps 74 3.6 Biochemical characterization of AneB, AneC and AneE 76 3.6.1 In vitro assay of AneC 76 3.6.2 In vitro assay of AneB and AneE 78 3.7 Enzymatic assay of AneH and AaPIP with aculene A 80 3.8 Conclusion 84 4 Reference 87 5 Appendix 91 | |
| dc.language.iso | en | |
| dc.subject | Norsesquiterpenoid | zh_TW |
| dc.subject | aculene | zh_TW |
| dc.subject | 脯氨酸胺?? | zh_TW |
| dc.subject | 生合成 | zh_TW |
| dc.subject | biosynthesis | en |
| dc.subject | Norsesquiterpenoid | en |
| dc.subject | proline iminopeptidase | en |
| dc.subject | aculene | en |
| dc.title | 解析棘孢麴黴之倍半萜類-Aculenes的生合成途徑 | zh_TW |
| dc.title | Elucidation and Characterization of Aculenes Norsesquiterpenes Biosynthesis from Aspergillus aculeatus | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 吳世雄(Shih-Hsiung Wu),梁博煌(Po-Huang Liang),陳榮傑(Rong-Jie Chein) | |
| dc.subject.keyword | Norsesquiterpenoid,aculene,脯氨酸胺??,生合成, | zh_TW |
| dc.subject.keyword | Norsesquiterpenoid,aculene,proline iminopeptidase,biosynthesis, | en |
| dc.relation.page | 185 | |
| dc.identifier.doi | 10.6342/NTU201801916 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2018-07-26 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 生化科學研究所 | zh_TW |
| 顯示於系所單位: | 生化科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf 未授權公開取用 | 14.33 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
