請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71215
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林達德(Ta-Te Lin) | |
dc.contributor.author | Fang Wu | en |
dc.contributor.author | 吳芳 | zh_TW |
dc.date.accessioned | 2021-06-17T04:59:04Z | - |
dc.date.available | 2021-02-20 | |
dc.date.copyright | 2021-02-20 | |
dc.date.issued | 2021 | |
dc.date.submitted | 2021-02-17 | |
dc.identifier.citation | 方文富、陳鎮平、黃其忠。2005。濕度對意蜂受精卵孵化率和發育歷期的影響。中國養蜂。 56 (7), pp.4-5. 吳匡晉。2018。有限狀態機模型應用於蜂箱內蜜蜂運動行為分析。碩士論文。台北:臺灣大學生物產業機電工程學研究所。 陳 秋。2010。蜜蜂覓食行為監測與分析影像系統之研究。碩士論文。台北:臺灣大學生物產業機電工程學研究所。 陳大宇。2014。應用影像系統於蜂箱內蜜蜂運動行為之追蹤。碩士論文。碩士論文。台北:臺灣大學生物產業機電工程學研究所。 蔡靜偉。2016。監測蜂巢內蜜蜂運動行為之影像分析方法與系統。碩士論文。台北:臺灣大學生物產業機電工程學研究所。 Al Toufailia, H., Scandian, L. and Ratnieks, F.L., 2015. Towards integrated control of varroa: 2) comparing application methods and doses of oxalic acid on the mortality of phoretic Varroa destructor mites and their honey bee hosts. Journal of Apicultural Research, 54(2), pp.108-120. Benhamou, S., 2004. How to reliably estimate the tortuosity of an animal's path:: straightness, sinuosity, or fractal dimension?. Journal of theoretical biology, 229(2), pp.209-220. Bewley, A., Ge, Z., Ott, L., Ramos, F. and Upcroft, B., 2016, September. Simple online and realtime tracking. In 2016 IEEE International Conference on Image Processing (ICIP) (pp. 3464-3468). IEEE. Bjerge, K., Frigaard, C.E., Mikkelsen, P.H., Nielsen, T.H., Misbih, M. and Kryger, P., 2019. A computer vision system to monitor the infestation level of Varroa destructor in a honeybee colony. Computers and Electronics in Agriculture, 164, p.104898. Blut, C., Crespi, A., Mersch, D., Keller, L., Zhao, L., Kollmann, M., Schellscheidt, B., Fülber, C. and Beye, M., 2017. Automated computer-based detection of encounter behaviours in groups of honeybees. Scientific reports, 7(1), pp.1-9. Bochkovskiy, A., Wang, C.Y. and Liao, H.Y.M., 2020. YOLOv4: Optimal Speed and Accuracy of Object Detection. arXiv preprint arXiv:2004.10934. Branson, K., Robie, A.A., Bender, J., Perona, P. and Dickinson, M.H., 2009. High-throughput ethomics in large groups of Drosophila. Nature methods, 6(6), pp.451-457. Campbell, J.M., Dahn, D.C. and Ryan, D.A., 2005. Capacitance-based sensor for monitoring bees passing through a tunnel. Measurement Science and Technology, 16(12), p.2503. Campbell, J., Mummert, L. and Sukthankar, R., 2008. Video monitoring of honey bee colonies at the hive entrance. Visual observation analysis of animal insect behavior, ICPR, 8, pp.1-4. Chen, Y., Zhao, Y., Hammond, J., Hsu, H.T., Evans, J. and Feldlaufer, M., 2004. Multiple virus infections in the honey bee and genome divergence of honey bee viruses. Journal of invertebrate pathology, 87(2-3), pp.84-93. Clarke, D. and Robert, D., 2018. Predictive modelling of honey bee foraging activity using local weather conditions. Apidologie, 49(3), pp.386-396. Decourtye, A., Devillers, J., Aupinel, P., Brun, F., Bagnis, C., Fourrier, J. and Gauthier, M., 2011. Honeybee tracking with microchips: a new methodology to measure the effects of pesticides. Ecotoxicology, 20(2), pp.429-437. Delaplane, K.S., Van Der Steen, J. and Guzman-Novoa, E., 2013. Standard methods for estimating strength parameters of Apis mellifera colonies. Journal of Apicultural Research, 52(1), pp.1-12. Di Prisco, G., Annoscia, D., Margiotta, M., Ferrara, R., Varricchio, P., Zanni, V., Caprio, E., Nazzi, F. and Pennacchio, F., 2016. A mutualistic symbiosis between a parasitic mite and a pathogenic virus undermines honey bee immunity and health. Proceedings of the National Academy of Sciences, 113(12), pp.3203-3208. Duan, J.J., Marvier, M., Huesing, J., Dively, G. and Huang, Z.Y., 2008. A meta-analysis of effects of Bt crops on honey bees (Hymenoptera: Apidae). PloS one, 3(1), p.e1415. Edelhoff, H., Signer, J. and Balkenhol, N., 2016. Path segmentation for beginners: an overview of current methods for detecting changes in animal movement patterns. Movement ecology, 4(1), pp.1-21. Evans, J.D., Saegerman, C., Mullin, C., Haubruge, E., Nguyen, B.K., Frazier, M., Frazier, J., Cox-Foster, D., Chen, Y., Underwood, R. and Tarpy, D.R., 2009. Colony collapse disorder: a descriptive study. PloS one, 4(8), p.e6481. Faberge, A.C., 1943. Apparatus for recording the number of bees leaving and entering a hive. Journal of Scientific Instruments, 20(2), p.28. Fard, G.G., Bradley, E. and Peleg, O., 2020. Data-Driven Modeling of Resource Distribution in Honeybee Swarms. BioRxiv. Feldman, A. and Balch, T., 2004. Representing honey bee behavior for recognition using human trainable models. Adaptive behavior, 12(3-4), pp.241-250. Garriga, J., Palmer, J.R., Oltra, A. and Bartumeus, F., 2016. Expectation-maximization binary clustering for behavioural annotation. PloS one, 11(3), p.e0151984. Gary, N., 1971. A new tagging and recapture method for evaluating honeybee pollination activity. California Agriculture, 25(6), pp.4-6. Gatien, P., and R. W. Currie. 'Timing of acaracide treatments for control of low-level populations of Varroa destructor (Acari: Varroidae) and implications for colony performance of honey bees.' Canadian entomologist 135, no. 5 (2003): 749. Geyer, C.J., 1992. Practical markov chain monte carlo. Statistical science, pp.473-483. Giacomelli, A., Pietropaoli, M., Carvelli, A., Iacoponi, F. and Formato, G., 2016. Combination of thymol treatment (Apiguard®) and caging the queen technique to fight Varroa destructor. Apidologie, 47(4), pp.606-616. Gurarie, E., Andrews, R.D. and Laidre, K.L., 2009. A novel method for identifying behavioural changes in animal movement data. Ecology letters, 12(5), pp.395-408. Henry, M., Beguin, M., Requier, F., Rollin, O., Odoux, J.F., Aupinel, P., Aptel, J., Tchamitchian, S. and Decourtye, A., 2012. A common pesticide decreases foraging success and survival in honey bees. Science, 336(6079), pp.348-350. Johnson, B.R., 2010. Division of labor in honeybees: form, function, and proximate mechanisms. Behavioral Ecology and Sociobiology, 64(3), pp.305-316. Johnson, B.R., 2003. Organization of work in the honeybee: a compromise between division of labour and behavioural flexibility. Proceedings of the Royal Society of London. Series B: Biological Sciences, 270(1511), pp.147-152. Khan, Z., Balch, T. and Dellaert, F., 2004, June. A rao-blackwellized particle filter for eigentracking. In Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004. (Vol. 2, pp. II-II). IEEE. Kimura, T., Ohashi, M., Okada, R. and Ikeno, H., 2011. A new approach for the simultaneous tracking of multiple honeybees for analysis of hive behavior. Apidologie, 42(5), p.607. Kimura, T., Ohashi, M., Crailsheim, K., Schmickl, T., Odaka, R. and Ikeno, H., 2012, November. Tracking of multiple honey bees on a flat surface. In 2012 Fifth International Conference on Emerging Trends in Engineering and Technology (pp. 36-39). IEEE. Kimura, T., Ohashi, M., Crailsheim, K., Schmickl, T., Okada, R., Radspieler, G. and Ikeno, H., 2014. Development of a new method to track multiple honey bees with complex behaviors on a flat laboratory arena. PloS one, 9(1), p.e84656. Klein, A.M., Vaissiere, B.E., Cane, J.H., Steffan-Dewenter, I., Cunningham, S.A., Kremen, C. and Tscharntke, T., 2007. Importance of pollinators in changing landscapes for world crops. Proceedings of the royal society B: biological sciences, 274(1608), pp.303-313. Knauer, U. and Meffert, B., 2009, December. Evaluation based combining of classifiers for monitoring honeybees. In 2009 Workshop on Applications of Computer Vision (WACV) (pp. 1-6). IEEE. Landgraf, T. and Rojas, R., 2007. Tracking honey bee dances from sparse optical flow fields. Malka, O., Shnieor, S., Katzav-Gozansky, T. and Hefetz, A., 2008. Aggressive reproductive competition among hopelessly queenless honeybee workers triggered by pheromone signaling. Naturwissenschaften, 95(6), pp.553-559. Meikle, W.G. and Holst, N., 2015. Application of continuous monitoring of honeybee colonies. Apidologie, 46(1), pp.10-22. Menzel, R. and Backhaus, W., 1991. Colour vision in insects. Vision and visual dysfunction, 6, pp.262-293. Milan, A., Leal-Taixé, L., Reid, I., Roth, S. and Schindler, K., 2016. MOT16: A benchmark for multi-object tracking. arXiv preprint arXiv:1603.00831. Morandin, L.A. and Winston, M.L., 2005. Wild bee abundance and seed production in conventional, organic, and genetically modified canola. Ecological applications, 15(3), pp.871-881. Ngo, T.N., Wu, K.C., Yang, E.C. and Lin, T.T., 2019. A real-time imaging system for multiple honey bee tracking and activity monitoring. Computers and Electronics in Agriculture, 163, p.104841. Nguyen, D.M.T., Iuzzolino, M.L., Mankel, A., Bozek, K., Stephens, G.J. and Peleg, O., 2020. Flow-Mediated Olfactory Communication in Honey Bee Swarms. bioRxiv. Page, P., Lin, Z., Buawangpong, N., Zheng, H., Hu, F., Neumann, P., Chantawannakul, P. and Dietemann, V., 2016. Social apoptosis in honey bee superorganisms. Scientific Reports, 6, p.27210. Potts, S.G., Imperatriz-Fonseca, V., Ngo, H.T., Aizen, M.A., Biesmeijer, J.C., Breeze, T.D., Dicks, L.V., Garibaldi, L.A., Hill, R., Settele, J. and Vanbergen, A.J., 2016. Safeguarding pollinators and their values to human well-being. Nature, 540(7632), pp.220-229. Ratnieks, F.L. and Carreck, N.L., 2010. Clarity on honey bee collapse?. Science, 327(5962), pp.152-153. Requier, F., Henry, M., Decourtye, A., Brun, F., Aupinel, P., Rebaudo, F. and Bretagnolle, V., 2020. Measuring ontogenetic shifts in central‐place foragers: A case study with honeybees. Journal of Animal Ecology, 89(8), pp.1860-1871. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A. and Chen, L.C., 2018. Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 4510-4520). Seeley, T.D., 1982. Adaptive significance of the age polyethism schedule in honeybee colonies. Behavioral Ecology and Sociobiology, 11(4), pp.287-293. Seeley, T.D., 1983. Division of labor between scouts and recruits in honeybee foraging. Behavioral ecology and sociobiology, 12(3), pp.253-259. Seeley, T.D., 1989. The honey bee colony as a superorganism. American Scientist, 77(6), pp.546-553. Shamoun-Baranes, J., Bom, R., van Loon, E.E., Ens, B.J., Oosterbeek, K. and Bouten, W., 2012. From sensor data to animal behaviour: an oystercatcher example. PloS one, 7(5), p.e37997. Shaw, J.A., Nugent, P.W., Johnson, J., Bromenshenk, J.J., Henderson, C.B. and Debnam, S., 2011. Long-wave infrared imaging for non-invasive beehive population assessment. Optics express, 19(1), pp.399-408. Shen, M., Yang, X., Cox-Foster, D. and Cui, L., 2005. The role of varroa mites in infections of Kashmir bee virus (KBV) and deformed wing virus (DWV) in honey bees. Virology, 342(1), pp.141-149. Streit, S., Bock, F., Pirk, C.W. and Tautz, J., 2003. Automatic life-long monitoring of individual insect behaviour now possible. Zoology, 106(3), pp.169-171. Struye, M.H., Mortier, H.J., Arnold, G., Miniggio, C. and Borneck, R., 1994. Microprocessor-controlled monitoring of honeybee flight activity at the hive entrance. Apidologie, 25(4), pp.384-395. Switanek, M., Crailsheim, K., Truhetz, H. and Brodschneider, R., 2017. Modelling seasonal effects of temperature and precipitation on honey bee winter mortality in a temperate climate. Science of the Total Environment, 579, pp.1581-1587. Wario, F., Wild, B., Couvillon, M.J., Rojas, R. and Landgraf, T., 2015. Automatic methods for long-term tracking and the detection and decoding of communication dances in honeybees. Frontiers in Ecology and Evolution, 3, p.103. Yamazaki, S.J., Ohara, K., Ito, K., Kokubun, N., Kitanishi, T., Takaichi, D., Yamada, Y., Ikejiri, Y., Hiramatsu, F., Fujita, K. and Tanimoto, Y., 2019. STEFTR: A hybrid versatile method for state estimation and feature extraction from the trajectory of animal behavior. Frontiers in neuroscience, 13, p.626. Yang, C. and Collins, J., 2015, November. A model for honey bee tracking on 2D video. In 2015 International conference on image and vision computing New Zealand (IVCNZ) (pp. 1-6). IEEE. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71215 | - |
dc.description.abstract | 蜜蜂為世界上最重要的授粉昆蟲,在農業與生態上皆扮演舉足輕重的腳色。但因其族群個體數量龐大,且為高度社會性動物,具有複雜的行為多態性,若欲對其進行觀察,往往耗時且易流於主觀。因此本研究建立巢內及巢口影像監測系統,對蜂群進行自動化觀察與數據化分析。巢內影像系統改良前人硬體設置,提高解析度並擴大43%相機視野,有效擷取巢片各功能區域的軌跡資訊;巢口系統則進行蜜蜂個體偵測與整體交通量之計數。實驗設計防水文字標籤,黏貼於蜜蜂胸背板上作為標記,以影像系統拍攝,並透過霍夫圓轉換進行標籤偵測;辨識方面選用深度學習MobileNet V2模型取代傳統影像處理方法,將文字標籤辨識準確率由77%提高至90%,再將結果串接成完整運動軌跡。本研究建構之蜜蜂行為分析方法,係將巢內軌跡切割成固定長度的小段副軌跡,計算六種特徵值,利用PCA主成分分析進行降維後,再以高斯混合模型將副軌跡分成靜止、徘徊、移動三種運動模式,結合巢片上卵及幼蟲、封蓋、儲蜜等功能分區,再搭配巢口系統紀錄的進出資訊進行分析,並設計三部分實驗驗證前述之分析方法。第一部分為內外勤蜂行為比較實驗,結果顯示內勤蜂在巢內出現頻率明顯高於外勤蜂,各項指標皆較為穩定,移動比例高且軌跡遍布巢片各功能區域,外勤蜂則較常在空巢房區靜止休息。第二部分為失王實驗,失王群比起正常群更為躁動,內外勤蜂皆有較高的移動比例與較低的靜止比例;內勤蜂造訪蜜區的比例提高,且試飛情形踴躍,外勤蜂則幾乎不在幼蟲區滯留。第三部分觀察不同日齡幼蜂的行為轉變,結果顯示幼蜂在幼蟲區停留比例明顯較高,育幼行為與其日齡分工相呼應。 | zh_TW |
dc.description.abstract | Western honey bee (Apis mellifera), one the most important pollinators in the world, plays a pivotal role in both agriculture and ecosystem. The sophisticated social behaviors and highly flexible division of labor have driven considerable amount of previous research studies. However, each colony usually contains tens of thousands of individuals, making it laborious and time-consuming to quantitatively assess and understand their behavior. This work aims to establish in-hive and in-and-out imaging monitoring system to automatically collect bee behavioral data and quantitatively analyze bee behavior. In-hive imaging system was adapted from previous works, and several improvements have been achieved. The field of view (FOV) of the cameras were enlarged by 43%, allowing them to capture a complete bee comb, which is essential for monitoring bee behaviors in different comb areas. A waterproof round-shaped paper tag with characters was designed to label individual bees by gluing them on the scutum of bees. After collecting in-hive images, Hough circle transform was applied to detect the location of the paper tag. A MobileNetV2 deep learning model was trained to classify the characters on the tags, and reached a 90% classification accuracy. The positions of the tags were further combined to trajectories with tracking algorithm. After sampling trajectories to fixed-length segments, six features of the segment were calculated. Principle components analysis (PCA) was implemented to reduce the dimensionality of the features, and the principle components were further fitted by Gaussian mixture model (GMM) with three clusters. Judging from the characteristic of the clusters, the segments were further classified into three motion patterns, namely stationary, loitering, and moving. As for in-and-out activity monitoring system, besides tag detection, unlabeled bee detection was also performed to monitor the traffic of the bee entrance using tiny-YoloV4 model and SORT tracking algorithm, which achieved an mAP of 98.83% and MOTA of 94%, respectively. Three experiments were conducted with both systems with comb area information to validate the proposed system as well as analyze honey bee behaviors. The first experiment was designed to compare the behaviors of house bees and field bees. The results indicated that house bees were more frequently captured and more vigorous in each areas of bee comb, while field bees were often idling or resting in empty areas. The objective of the second experiment was to identify the behavioral differences in queenright and queenless colonies. The results showed that the bees of queenless colony tend to have a ratio of moving pattern. House bees in queenless colony appear in honey areas more frequently, while field bees rarely stayed in brood area. Moreover, more occasions of orientation flights in queenless colony were observed. The third experiment was designed to observe the behavioral changes with respect to the aging of bees. The results showed that young bees were frequently detected in brood areas, and their behavioral changes corresponded to their ages. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T04:59:04Z (GMT). No. of bitstreams: 1 U0001-1702202109274500.pdf: 7179349 bytes, checksum: f5de5e5e207516086d6fb6706a5e0a4e (MD5) Previous issue date: 2021 | en |
dc.description.tableofcontents | 誌謝 i 摘要 ii Abstract iii 目錄 v 圖目錄 ix 表目錄 xii 第一章 前言與研究目的 1 1.1 前言 1 1.2 研究目的 2 第二章 文獻探討 4 2.1 蜜蜂簡介 4 2.1.1 超有機體 4 2.1.2 天氣與氣候的影響 5 2.1.3 巢片區域分布及蜜蜂行為多態型 6 2.2 蜜蜂崩壞症候群 7 2.2.1 疾病與寄生蟲 8 2.2.2 農藥及其他化學有害物質 8 2.2.3 基因改良作物 9 2.3 蜜蜂自動化行為監測 10 2.3.1 巢口進出觀測 10 2.3.1.1 機械與電子式系統 10 2.3.1.2 無線射頻辨識系統 11 2.3.1.3 影像系統 11 2.3.2 蜂巢內部監測 12 2.3.2.1 蜜蜂無標記之影像監測系統 13 2.3.2.2 蜜蜂帶標記之影像監測系統 13 2.4 軌跡特徵擷取與行為辨識 14 2.4.1軌跡分類 15 2.4.2動物軌跡與行為之連結 16 第三章 研究設備與方法 17 3.1 實驗材料與操作方法 17 3.1.1 蜜蜂飼養狀況 17 3.1.2 文字標籤設計與標記方法 18 3.1.3 內外勤蜂取得 20 3.1.4 人工孵化方法 21 3.2 巢內影像監測系統 22 3.2.1 硬體設備 22 3.2.1.1 相機及鏡頭 22 3.2.1.2 紅外線補光燈板 23 3.2.1.3 防水觀測箱 23 3.2.2 軟體架構 24 3.2.2.1 扭曲校正及接合 24 3.2.2.2 蜜蜂標籤偵測 24 3.2.2.3 標籤影像辨識 26 3.2.2.4 蜜蜂標籤追蹤 29 3.2.3 軌跡分析方法 30 3.2.3.1 副軌跡切割與特徵值之定義 30 3.2.3.2 蜜蜂運動模式及分類方法 32 3.3 巢口影像監測系統 35 3.3.1 硬體設備 35 3.3.2 軟體架構 36 3.4 實驗目的與配置 39 3.4.1 內外勤蜂行為比較實驗 39 3.4.2 無王與有王群之行為探討 40 3.4.3 日齡實驗 40 3.5 蜜蜂行為評估指標 41 第四章 結果與討論 43 4.1 巢內影像監測系統 44 4.1.1 硬體架構成果與討論 44 4.1.2 軟體架構成果與討論 45 4.1.2.1 扭曲校正與接合 45 4.1.2.2 文字標籤偵測及辨識 46 4.1.2.3 蜜蜂軌跡追蹤 47 4.2 巢口影像監測系統 48 4.2.1 硬體架構成果與討論 48 4.2.2 軟體架構成果與討論 50 4.2.2.1 帶標籤蜜蜂之偵測及辨識 50 4.2.2.2 進出總交通量分析方法 51 4.3 軌跡分析方法探討 53 4.3.1 副軌跡運動模式分類結果 53 4.3.2 副軌跡特徵值分析 57 4.3.3 運動模式序列轉換 59 4.4 實驗結果分析 60 4.4.1 內外勤蜂行為比較實驗 61 4.4.2 失王實驗 68 4.4.3 日齡實驗 82 4.4.4 評估指標之探討 87 第五章 結論與建議 89 5.1 結論 89 5.2 建議 91 參考文獻 93 附錄 101 | |
dc.language.iso | zh-TW | |
dc.title | 應用深度學習於蜂巢內蜜蜂軌跡追蹤與運動行為分析 | zh_TW |
dc.title | Application of Deep Learning on In-hive Trajectory Tracking and Behavior Analysis for Honey Bee | en |
dc.type | Thesis | |
dc.date.schoolyear | 109-1 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 楊恩誠(En-Cheng Yang),陳世芳(Shih-Fang Chen) | |
dc.subject.keyword | 蜜蜂標記,蜜蜂行為分析,卷積神經網路,軌跡分段,高斯混合模型, | zh_TW |
dc.subject.keyword | Honey bee labeling,Honey bee behavior analysis,Convolutional Neural Network,Trajectory segmentation,Gaussian mixture model, | en |
dc.relation.page | 105 | |
dc.identifier.doi | 10.6342/NTU202100715 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2021-02-17 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 生物機電工程學系 | zh_TW |
顯示於系所單位: | 生物機電工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-1702202109274500.pdf 目前未授權公開取用 | 7.01 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。