請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71209
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 蔡明哲(Ming-Jer Tsai) | |
dc.contributor.author | Jen-Han Tuan | en |
dc.contributor.author | 段人涵 | zh_TW |
dc.date.accessioned | 2021-06-17T04:58:45Z | - |
dc.date.available | 2019-08-01 | |
dc.date.copyright | 2018-08-01 | |
dc.date.issued | 2018 | |
dc.date.submitted | 2018-07-26 | |
dc.identifier.citation | 1. 王松永(1983)。商用木材林產工業叢書,中華民國林產事業協會,377。
2. 五郎布施 (1965)。木材の腐朽に伴う材質の変化。材料,14(143),648–653。 3. 何振隆、王益真、蘇裕昌 (2009)。芳樟(Cinnamomum camphora Sieb. var. linaloolifera Fujuta) 各部位精油組成分及生物活性之探討。林業研究季刊,31(2) ,77–95。 4. 吳季玲 (2005)。臺灣杉心材抗真菌成分之分析、鑑定及其抑菌機制。 5. 李佳如、林振榮、曾家琳、蔡明哲 (2008)。樟樹及臺灣櫸的年輪特徵值對動彈性模數及抗壓強度之影響。臺灣大學生物資源暨農學院實驗林研究報告,22(3),197–209。 6. 林振榮,黃裕星,黃國雄,張東柱,吳孟玲(2012)。都市樹木風險性評估及管理手冊。行政院農委會林業試驗所。 7. 林振榮、鍾智昕、邱志明、林謙佑 (2012)。主要平地造林闊葉樹種的樹輪特徵研究。中華林學季刊,45(1),31–42。 8. 金平亮三 (1936)。台灣樹木誌 Formosan Trees : indigenous to the island (revised) - Plants of TAIWAN。 9. 郭丹、曾解放、范國榮、王鵬、陳尚鈃 (2015). 樟树精油的化学成分及生物活性研究进展. 生物质化学工程,49(1) ,53–57. 10. 陳品方 (2000)。台灣杉與土肉桂精油及其成分之生物活性。 11. 馮豐隆、李宣德 (2009)。台灣之樟樹資源現狀與展望。生物科學,51(2),37–51。 12. 詹明勳、王亞男、王松永 (2004)。Soft X-ray影像分析法應用於天然林台灣櫸、樟樹及烏心石樹輪寬度及密度分析之研究。中華林學季刊,37(4) ,379–392。 13. 劉業經、呂福原、歐辰雄 (1994)。台灣樹木誌。國立中興大學農學院叢書。 14. 謝瑞忠 (2003)。芳樟樹葉與木材精油含量及其化學成分之研究臺灣林業科學,18卷(4),329–338。 15. Albert, L., Hofmann, T., I. Németh, Z., Rétfalvi, T., Koloszár, J., Varga, S., & Csepregi, I. (2003). Radial variation of total phenol content in beech (Fagus sylvatica L.) wood with and without red heartwood, 61. 16. Alvarez-Castellanos, P. P., Bishop, C. D., & Pascual-Villalobos, M. J. (2001). Antifungal activity of the essential oil of flowerheads of garland chrysanthemum (Chrysanthemum coronarium) against agricultural pathogens. Phytochemistry, 57(1), 99–102. 17. Angioni, A., Barra, A., Coroneo, V., Dessi, S., & Cabras, P. (2006). Chemical Composition, Seasonal Variability, and Antifungal Activity of Lavandula stoechas L. ssp. stoechas Essential Oils from Stem/Leaves and Flowers. Journal of Agricultural and Food Chemistry, 54(12), 4364–4370. 18. Armstrong, J. E., Shigo, A. L., Funk, D. T., McGinnes, E. A., & Smith, D. E. (2007). A Macroscopic and Microscopic Study of Compartmentalization and Wound Closure after Mechanical Wounding of Black Walnut Trees. Wood and Fiber Science, 13(4), 275–291. 19. Barry, K. M., Davies, N. W., & Mohammed, C. L. (2001). Identification of hydrolysable tannins in the reaction zone of Eucalyptus nitens wood by high performance liquid chromatography–electrospray ionisation mass spectrometry. Phytochemical Analysis, 12(2), 120–127. 20. Basham, J. T. (1958). Decay of Trembling Aspen. Canadian Journal of Botany, 36(4), 491–505. 21. Baum S., Schwarze F. W. M. R., & Fink S. (2000). Persistence of the gelatinous layer within altered tension‐wood fibres of beech degraded by Ustulina deusta. New Phytologist, 147(2), 347–355. 22. Baum S., & Schwarze F. W. M. R. (2002). Large‐leaved lime (Tilia platyphyllos) has a low ability to compartmentalize decay fungi via reaction zone formation. New Phytologist, 154(2), 481–490. 23. Bergsson, G., Arnfinnsson, J., Steingrı́msson, Ó., & Thormar, H. (2001). In Vitro Killing of Candida albicans by Fatty Acids and Monoglycerides. Antimicrobial Agents and Chemotherapy, 45(11), 3209–3212. 24. Bhatia, S. P., Letizia, C. S., & Api, A. M. (2008). Fragrance material review on alpha-terpineol. Food and Chemical Toxicology, 46(11, Supplement), S280–S285. 25. Biggs, A. R. (1985). Suberized Boundary Zones and the Chronology of Wound Response in Tree Bark. Phytopathology, 75(11), 1191. 26. Biggs, A. R. (1987). Occurrence and Location of Suberin in Wound Reaction Zones in Xylem of 17 Tree Species. Phytopathology, 77(5), 718. 27. Biggs, A. R., Davis, D. D., & Merrill, W. (1983). Histopathology of cankers on Populus caused by Cytospora chrysosperma. Canadian Journal of Botany, 61(2), 563–574. 28. Biggs, A. R., Merrill, W., & Davis, D. D. (1984). Discussion: Response of bark tissues to injury and infection. Canadian Journal of Forest Research, 14(3), 351–356. 29. Blanchette, R. A., & Biggs, A. R. (1992). Defense Mechanisms of Woody Plants Against Fungi. Springer-Verlag Berlin Heidelberg. 30. Bloch, R. (1941). Wound healing in higher plants. The Botanical Review, 7(2), 110. 31. Boddy, L. (1983). Carbon dioxide release from decomposing wood: Effect of water content and temperature. Soil Biology and Biochemistry, 15(5), 501–510. 32. Boddy, L. (2001). Fungal Community Ecology and Wood Decomposition Processes in Angiosperms: From Standing Tree to Complete Decay of Coarse Woody Debris. Ecological Bulletins, (49), 43–56. 33. Boddy, L., & Rayner, A. D. M. (1983a). Ecological Roles of Basidiomycetes Forming Decay Communities in Attached Oak Branches. New Phytologist, 93(1), 77–88. 34. Boddy, L., & Rayner, A. D. M. (1983b). Origins of Decay in Living Deciduous Trees: The Role of Moisture Content and a Re-Appraisal of the Expanded Concept of Tree Decay. New Phytologist, 94(4), 623–641. 35. Chang, S. T., Wang, S. Y., & Kuo, Y. H. (2003). Resources and bioactive substances from Taiwania (Taiwania cryptomerioides). Journal of Wood Science, 49(1), 0001–0004. 36. Cheng, S. S., Chung, M. J., Lin, C. Y., Wang, Y. N., & Chang, S. T. (2012). Phytochemicals from Cunninghamia konishii Hayata Act as Antifungal Agents. Journal of Agricultural and Food Chemistry, 60(1), 124–128. 37. Cheng, S. S., Liu, J. Y., Hsui, Y. R., & Chang, S. T. (2006). Chemical polymorphism and antifungal activity of essential oils from leaves of different provenances of indigenous cinnamon (Cinnamomum osmophloeum). Bioresource Technology, 97(2), 306–312. 38. Cook, M. T., & Wilson, G. W. (1915). The Influence of the Tannin Content of the Host Plant on Endothia Parasitica and Related Species. Botanical Gazette, 60(5), 346–361. 39. Costa, E. V., Teixeira, S. D., Marques, F. A., Duarte, M. C. T., Delarmelina, C., Pinheiro, M. L. B., Trigo, J. R., & Sales Maia, B. H. L. N. (2008). Chemical composition and antimicrobial activity of the essential oils of the Amazon Guatteriopsis species. Phytochemistry, 69(9), 1895–1899. 40. Demirci, F., Guven, K., Demirci, B., Dadandi, M. Y., & Baser, K. H. C. (2008). Antibacterial activity of two Phlomis essential oils against food pathogens. Food Control, 19(12), 1159–1164. 41. Doster, M. A. (1988). Quantification of Lignin Formation in Almond Bark in Response to Wounding and Infection by Phytophthora Species. Phytopathology, 78(4), 473. 42. Dujesiefken, D., & Liese, W. (2015). The CODIT Principle. Implications for Best Practices. International Society of Arboriculture. 43. Dujesiefken, D., Liese, W., Shortle, W., & Minocha, R. (2005). Response of beech and oaks to wounds made at different times of the year. European Journal of Forest Research, 124(2), 113–117. 44. Dujesiefken, D., Rhaesa, A., Eckstein, D., & Stobbe, H. (1999). Tree wound reactions of differently treated boreholes. Journal of Arboriculture, 25(3), 113. 45. Dujesiefken, V. D., Peyl, A., & Liese, W. (1991). Verschiedener Laubbäume und der Fichte. 46. Duñg, N. X., Khiên, P. V., Chiên, H. T., & Leclercq, P. A. (1993). The Essential Oil of Cinnamomum camphora (L.) Sieb. var. linaloolifera from Vietnam. Journal of Essential Oil Research, 5(4), 451–453. 47. Eckstein, D., Liese, W., & Shigo, A. L. (1979). Relationship of wood structure to compartmentalization of discoloured wood in hybrid poplar. Canadian Journal of Forest Research, 9(2), 205–210. 48. Eisner, N. J., Gilman, E., & Grabosky, J. (2002). Branch morphology impacts compartmentalization of pruning wounds, 28. 49. Elmendorf, W., W. Todd Watson, & Sharon Lilly . (2005). Arboriculture and urban forestry education in the United States: Results of an educators survey. ResearchGate. 50. Fraedrich, B. R. (1982). Compartmentalization of decay in trees. Bartlett Tree Research. 51. Franceschi, V., Krekling, T., Berryman, A., & Christiansen, E. (1998). Specialized phloem parenchyma cells in Norway spruce (Pinaceae) bark are an important site of defense reactions. American Journal of Botany, 85(5), 601. 52. Gahan, P. B. (1984). Plant Histochemistry and Cytochemistry. 53. Grünwald, C., Stobbe, H., & Schmitt, U. (2002). Entwicklungsstufen der seitlichen Wundüberwallung von Laubgehölzen. Forstwissenschaftliches Centralblatt vereinigt mit Tharandter forstliches Jahrbuch, 121(2), 50–58. 54. Guleria, S., & Kumar, A. (2006). Antifungal activity of some Himalayan medicinal plants using direct bioautography. Journal of Cell and Molecular Biology, 5, 95–98. 55. Hammerschmidt, F. J., Clark, A. M., Soliman, F. M., El Kashoury, E. S. A., El Kawy, M. M. A., & El Fishawy, A. M. (1993). Chemical Composition and Antimicrobial Activity of Essential Oils of Jasonia candicans and J. montana. Planta Medica, 59(1), 68–70. 56. Harris, J. M. (1953). Heartwood Formation in Pinus radiata (D. Don). Nature, 172(4377), 552. 57. Ho, C. L., Wang, E. I. C., Yu, H. T., Yu, H. M., & Su, Y. C. (2010). Compositions and antioxidant activities of essential oils of different tissues from Cryptomeria japonica D. Don, 14. 58. Hsieh, C. F., Huang, T. C., Keng, H., Shieh, W. C., & Tsai, J. L. (1996). Flora of Taiwan, 2. 59. Lewinsohn, E., Gijzen, M., Muzika, R. M., Barton, K., & Croteau, R. (1993). Oleoresinosis in Grand Fir (Abies grandis) saplings and mature trees (modulation of this wound response by light and water stresses). Plant Physiology, 101(3), 1021–1028. 60. Li, Q., Lin, J. G., & Liu, J. (2013). Decay Resistance of Wood Treated with Extracts of Cinnamomum camphora Xylem. BioResources, 8(3), 4208–4217. 61. Li, Q., Wang, X. X., Lin, J. G., Liu, J., Jiang, M. S., & Chu, L. X. (2014). Chemical composition and antifungal activity of extracts from the xylem of Cinnamomum camphora. BioResources, 9(2), 2560–2571. 62. Liu, C. H., Mishra, A. K., He, B., & Tan, R. X. (2001). Composition and antifungal activity of essential oils from Artemisia princeps and Cinnamomum camphora. International Pest Control, 43(2), 72–74. 63. Liu, S., Ruan, W., Li, J., Xu, H., Wang, J., Gao, Y., & Wang, J. (2008). Biological Control of Phytopathogenic Fungi by Fatty Acids. Mycopathologia, 166(2), 93–102. 64. McGinnes, E. A. J., Phelps, J. E., Szopa, P. S., & Shigo, A. L. (1977). Wood anatomy after tree injury--a pictorial study. Research Bulletin - Missouri Agricultural Experiment Station (USA). 65. Micco, V., Balzano, A., Wheeler, E., & Baas, P. (2016). Tyloses and gums: A review of structure, function and occurrence of vessel occlusions, 37. 66. Mishra, A. K., Dwivedi, S. K., Kishore, N., & Dubey, N. K. (1991). Fungistatic properties of Essential Oil of Cinnamomum camphora. International Journal of Pharmacognosy, 29(4), 259–262. 67. Moore, K. E. (1978). Barrier zone formation in wounded stems of sweetgum. Canadian Journal of Forest Research, 8(4), 389–397. 68. Mulhern, J., Shortle, W., & Shigo, A. (1979). Notes: Barrier Zones in Red Maple: an Optical and Scanning Microscope Examination. Forest Science, 25(2), 311–316. 69. Nagy Nina E., Franceschi Vincent R., Solheim Halvor, Krekling Trygve, & Christiansen Erik. (2000). Wound‐induced traumatic resin duct development in stems of Norway spruce (Pinaceae): anatomy and cytochemical traits. American Journal of Botany, 87(3), 302–313. 70. Netherer, S., Ehn, M., Blackwell, E., & Kirisits, T. (2016). Defence reactions of mature Norway spruce (Picea abies) before and after inoculation of the blue stain fungus Endoconidiophora polonica in a drought stress experiment. Forestry Journal, 62(4). 71. Nilsson, T., & Daniel, G. (2009). Chemistry and Microscopy of Wood Decay by Some Higher Ascomycetes. Holzforschung International Journal of the Biology, Chemistry, Physics and Technology of Wood, 43(1), 11–18. 72. Pattnaik, S., Subramanyam, V. R., Bapaji, M., & Kole, C. R. (1997). Antibacterial and antifungal activity of aromatic constituents of essential oils. Microbios, 89(358), 39–46. 73. Pearce, R. B. (1990). Occurrence of decay associated xylem suberization in a range of woody species. European Journal of Forest Pathology, 20(5), 275–289. 74. Pearce, R. B. (1991). Reaction zone relics and the dynamics of fungal spread in the xylem of woody angiosperms. Physiological and Molecular Plant Pathology, 39(1), 41–55. 75. Pearce, R. B. (1996). Antimicrobial defences in the wood of living trees. New Phytologist, 132(2), 203–233. 76. Pearce, R. B. (2000). Decay development and its restriction in trees. Journal of Arboriculture, 26(1), 1–10. 77. Pearce, R. B., Fisher, B. J., Carpenter, T. A., & Hall, L. D. (1997). Water distribution in fungal lesions in the wood of sycamore, Acer pseudoplatanus, determined gravimetrically and using nuclear magnetic resonance imaging. New Phytologist, 135(4), 675–688. 78. Pearce, R. B., & Holloway, P. J. (1984). Suberin in the sapwood of oak (Quercus robur L.): its composition from a compartmentalization barrier and its occurrence in tyloses in undecayed wood. Physiological Plant Pathology, 24(1), 71–81. 79. Pearce, R. B., & Rutherford, J. (1981). A wound associated suberized barrier to the spread of decay in the sapwood of oak (Quercus robur L.). Physiological Plant Pathology, 19(3), 359 IN31. 80. Pearce, R. B., & Woodward, S. (1986). Compartmentalization and reaction zone barriers at the margin of decayed sapwood in Acer saccharinum L. Physiological and Molecular Plant Pathology, 29(2), 197–216. 81. Pélissier, Y., Marion, C., Prunac, S., & Bessière, J. M. (1995). Volatile Components of Leaves, Stems and Bark of Cinnamonum camphora Nees et Ebermaier. Journal of Essential Oil Research, 7(3), 313–315. 82. Pérez, C., Agnese, A. M., & Cabrera, J. L. (1999). The essential oil of Senecio graveolens (Compositae): chemical composition and antimicrobial activity tests. Journal of Ethnopharmacology, 66(1), 91–96. 83. Pichersky, E., & Gershenzon, J. (2002). The formation and function of plant volatiles: perfumes for pollinator attraction and defense. Current Opinion in Plant Biology, 5(3), 237–243. 84. Pragadheesh, V. S., Saroj, A., Yadav, A., Chanotiya, C. S., Alam, M., & Samad, A. (2013). Chemical characterization and antifungal activity of Cinnamomum camphora essential oil. Industrial Crops and Products, 49, 628–633. 85. Rabiul, H., Subhasish, M., & Parag, G. (2011). Investigation of in Vitro Anthelmintic activity of Cinnamomum Camphor Leaves. International Journal of Drug Development and Research, 3(1). 86. Rademacher, P., Bauch, J., & Shigo, A. L. (1984). Characteristics of xylem formed after wounding in Acer, Betula, and fagus. 87. Rasmann, S., Köllner, T. G., Degenhardt, J., Hiltpold, I., Toepfer, S., Kuhlmann, U., Gershenzon, J., & Turlings, T. C. (2005). Recruitment of entomopathogenic nematodes by insect damaged maize roots. Nature, 434(7034), 732. 88. Raut, J. S., & Karuppayil, S. M. (2014). A status review on the medicinal properties of essential oils. Industrial Crops and Products, 62, 250–264. 89. Rayner, A. D. M., & Boddy, L. (1988). Fungal decomposition of wood. Its biology and ecology. Fungal Decomposition of Wood. Its Biology and Ecology. 90. Reeve, R. M. (1951). Histochemical Tests for Polyphenols in Plant Tissues. Stain Technology, 26(2), 91–96. 91. Schmidt, E. L. (1985). Aliphatic acids as spore germination inhibitors of wood decay fungi in vitro. Canadian Journal of Botany, 63(2), 337–339. 92. Schuck H.J. (1982). The chemical composition of the monoterpene fraction in wounded wood of Picea abies and its significance for the resistance against wound infecting fungi. European Journal of Forest Pathology, 12(3), 175–181. 93. Schwarze, F. W. M. R., & Baum, S. (2000). Mechanisms of reaction zone penetration by decay fungi in wood of beech (Fagus sylvatica). New Phytologist, 146(1), 129–140. 94. Schwarze, Francis W.M.R, Engels, J., & Mattheck, C. (1999). Fungal Strategies of Wood Decay in Trees. 95. Shain, L. (1971). The response of sapwood of Norway spruce to infection by Fomes annosus. Phytopathology. 96. Shain, Louis . (1966). Resistance of Sapwood in Stems of Loblolly Pine to Infection by Fomes Annosus. 97. Shain, Louis . (1979). Dynamic Responses of Differentiated Sapwood to Injury and Infection. Phytopathology, 69(10), 1143. 98. Shigo, A. L. (1984). Compartmentalization: A Conceptual Framework for Understanding How Trees Grow and Defend Themselves. Annual Review of Phytopathology, 22(1), 189–214. 99. Shigo, Alex L. (1965). Organism interactions in decay and discoloration in beech, birch, and maple. Res. Pap. NE 43. Upper Darby, PA: U. S. Department of Agriculture, Forest Service, Northeastern Forest Experiment Station. 23 P., 043. 100. Shigo, Alex L. (1970). Mapping Columns of Discolored and Decayed Tissues in Sugar Maple, Acer saccharum. Phytopathology, 60(2), 232. 101. Shigo, Alex L. (1979). Tree decay an expanded concept. Agric. Inf. Bull. 419. Washington, D.C.: U.S. Department of Agriculture, Forest Service. 73 P., 419. 102. Shigo, Alex L., & Marx, H. G. (1977). Compartmentalization of Decay in Trees. Agric. Inf. Bull. 405. Washington, DC: U.S. Department of Agriculture, Forest Service. 73 P., 405, 1–73. 103. Shigo, Alex L., Shortle, W., & Garrett, P. (1977). Compartmentalization of discolored and decayed wood associated with injection type wounds in hybrid poplar. Journal of Arboriculture, 3(6), 114–118. 104. Shigo, A. L., Shortle, W. C., & Garrett, P. W. (1977). Genetic control suggested in compartmentalization of discolored wood associated with tree wounds. Forest Science, 23(2), 179–182. 105. Shortle, W. C. (1979). Compartmentalization of Decay in Red Maple and Hybrid Poplar Trees. Phytopathology, 69(4), 410. 106. Simić A., Soković M. D., Ristić M., Grujić‐Jovanović S., Vukojević J., & Marin P. D. (2004). The chemical composition of some Lauraceae essential oils and their antifungal activities. Phytotherapy Research, 18(9), 713–717. 107. Soković, M., Tzakou, O., Pitarokili, D., & Couladis, M. (2002). Antifungal activities of selected aromatic plants growing wild in Greece. Nahrung, 46(5), 317–320. 108. TAPPI Official Standard T204 OS 76.(1976). Alcohol benzene and dichloromethane solubles in wood and pulp. 109. TAPPI Test Method T264 om 88.(1988). 'Preparation of Wood For Chemical Analysis.' In Tappi Test Methods. Atlanta, GA: Technical Association of the Pulp and Paper Industry. 110. TAPPI Test Method T222 om 88.(1999). 'Acid Insoluble Lignin in Wood and Pulp.' In Tappi Test Methods. Atlanta, GA: Technical Association of the Pulp and Paper Industry 111. TAPPI Test Methods T221 om 93. Drainage lime of pulp, and T205 sp 9S Forming hand sheets for physical tests of pulp. 112. Tyree, M. T., & Zimmermann, M. H. (2002). Xylem Structure and the Ascent of Sap. Berlin Heidelberg: Springer Verlag. 113. Waikedre, J., Vitturo, C. I., Molina, A., Theodoro, P. N. E. T., do Rosário Rodrigues Silva, M., Espindola, L. S., Maciuk, A., & Fournet, A. (2012). Antifungal Activity of the Essential Oils of Callitris neocaledonica and C. sulcata Heartwood (Cupressaceae). Chemistry & Biodiversity, 9(3), 644–653. 114. Walters, D. R., Walker, R. L., & Walker, K. C. (2003). Lauric Acid Exhibits Antifungal Activity Against Plant Pathogenic Fungi. Journal of Phytopathology, 151(4), 228–230. 115. Wise, L. E.; Murphy, M., D'Addieco, A. A. (1946). Chlorite holocellulose, its fractionation and bearing on summative wood analysis and on studies on the hemicelluloses. Paper Trade J. 122:11 19 116. William A, J. (1962). Botanical Histochemistry. 117. Wilson, C. L., Solar, J. M., El Ghaouth, A., & Wisniewski, M. E. (1997). Rapid Evaluation of Plant Extracts and Essential Oils for Antifungal Activity Against Botrytis cinerea. Plant Disease, 81(2), 204–210. 118. Wilson, J. W., & Grange, R. I. (1984). Regeneration of Tissues in Wounded Stems: A Quantitative Study. Annals of Botany, 53(4), 515–525. 119. Yadeta, K., & Thomma, B. (2013). The xylem as battleground for plant hosts and vascular wilt pathogens. Frontiers in Plant Science, 4. 120. Yamada, T. (2001). Defense mechanisms in the sapwood of living trees against microbial infection. Journal of Forest Research, 6(3), 127–137. 121. Zhu, S., Yang, Y., Yu, H., Yue, Y., & Zou, G. (2005). Chemical composition and antimicrobial activity of the essential oils of Chrysanthemum indicum. Journal of Ethnopharmacology, 96(1), 151–158. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71209 | - |
dc.description.abstract | 樹木本身有 CODIT 防禦機制,當樹木受傷或腐朽之後,是否採用外科手術來治療處置,首先應該瞭解樹木防禦反應的作用,再決定樹木照護處理的方式。本研究以三株樟樹受到腐朽後的反應作為個案調查,探討正常木材與防禦反應區域的組織構造、物理性質、化學成分之差異,由歸納觀察及科學數據的結果作為範例,首先,色差試驗結果表示樟樹木材反應區內 L*(明度)值低於正常材,顯示腐朽區域外圍的反應區,其木材顏色有變深的情形,而 a*、b*及 C*值皆無明顯差異。Soft x-ray 的樹輪密度圖譜結果,則顯示出反應區的密度較高,其中深色區域最高密度可達1000 kg/m3。在樟樹正常木材及反應區組織切片的觀察中,木材反應區內的薄壁細胞及木質線內有明顯的沉澱物出現,經過染色後的結果,反應區沉澱物為多酚類物質,同時針對木質素染色後的結果,也顯示出木材反應區內木質素含量相對有較高的趨勢。除此之外,反應區部分位置的組織結構明顯與正常木材不同,可觀察到較少的導管,而存在較多的薄壁細胞與木質線的現象。
針對木材反應區化學組成分進行分析,首先,反應區內的灰分含量有較高於正常邊材的趨勢,且以腐朽位置的含量最高。其次,反應區內木質素的含量皆明顯高於正常邊材,而正常木材中,其邊心材之間的木質素含量沒有顯著的差異。腐朽樟樹的反應區及正常木材的全纖維素含量皆有顯著差異,但是趨勢並不一致,需要再進一步探究原因,而沒有腐朽樟樹邊心材之間沒有顯著差異。腐朽樟樹內反應區與正常木材的醇苯抽出物含量,顯示沒有顯著差異;同時,沒有腐朽樟樹邊心材的醇苯抽出物含量,也沒有顯著差異。腐朽樟樹的醇苯抽出物分析結果顯示反應區內的萜類化合物含量都較高,其中 Camphor、 t-Cadinol 及 α-Eudesmol 三項具抗菌效果的化合物,在反應區內所占的面積都較高;而脂肪酸及碳水化合物的含量,則隨著腐朽程度的嚴重或是與腐朽部位的距離愈接近時,其含量有增加的趨勢。綜合上述試驗結果可以瞭解樟樹在受到腐朽後樹木生長反應的防禦機制作用,觀察及判斷防禦反應的現象或自然防禦化學物質,可以作為未來樹木治療照護方法的應用依據。 | zh_TW |
dc.description.abstract | The tree itself has a CODIT defense mechanism. When the tree is injured or decayed, we should first understand the tree defense response, and then determine whether to use surgical treatment or not. In this study, three decayed Cinnamomum camphora trees’ reaction as a case study to investigate the differences in the structure, physical properties and chemical composition of normal wood and defense reaction areas. First, in the reaction zone wood color got darker as it got closer to the decayed area, and the tree density in the reaction area was obviously higher, moreover, some of the dark area’s density was up to 1000 kg/m3. The results of wood tissue section observations indicated that there were deposits in parenchyma cells and rays within the reaction zone in C. camphora. Further, the section staining results also indicated that the deposits may be polyphenols, at the same time the lignin staining results also showed the relatively high lignin content in the reaction zone. In addition, some structure of the reaction zone is obviously different from that of normal wood, there was fewer vessel can be observed, but a large number of parenchyma cells and rays.
According to the composition of the reaction zone, most results showed that the content of ash in the reaction zone was higher than that in healthy sapwood, and the content of decayed sites was the highest. Next, the content of lignin in the sample reaction zone was also obviously higher than that in sapwood while the content between the sapwood and heartwood in the healthy material was not significant. The reaction zone of decaying C. camphora and the total cellulose content of undecayed wood were significantly different, but the trends were inconsistent, so there are further reasons need to be explored, also there was no significant difference between the heartwood and the sapwood of undecayed C. camphora. Last, there was no significant difference in the content of alcohol benzene extracts between the reaction zone and normal wood of decayed C. camphora. At the same time, there was no significant difference in the content of alcohol benzene extracts between the heartwood and the sapwood of undecayed C. camphora. The composition analysis of alcohol-benzene extracts from decayed C. camphora showed that the content of terpenoids in the reaction zone was higher. Among them, Camphor, t-Cadinol and α-Eudesmol that were three antibacterial compounds had a larger area in the reaction zone. However, the fatty acid and carbohydrate content tended to increase while getting closer to the decayed site. Based on the above test results, we can understand the defense mechanism of decayed C. camphora. Observing and determining the phenomenon of defense reaction or natural defense chemicals which can be used as the basis for future treatment methods of tree care. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T04:58:45Z (GMT). No. of bitstreams: 1 ntu-107-R03625034-1.pdf: 7227423 bytes, checksum: 85415a785f7254395782e5ca4d97874c (MD5) Previous issue date: 2018 | en |
dc.description.tableofcontents | 誌謝 I
摘要 II Abstract IV 目錄 VI 圖目錄 VIII 表目錄 X 第1章 前言 1 第2章 文獻回顧 3 2.1 樹木對腐朽或受損的反應機制 3 2.1.1 反應區理論(Reaction zone Theory) 4 2.1.2 CODIT理論(Theory of Compartmentalization of decay/damage in trees)7 2.2 樟樹(Cinnamomum camphora (L.) Presl.)抽出成分抗菌效果 13 第3章 材料與方法 18 3.1 實驗材料 18 3.2 木材組織觀察 18 3.2.1 木材組織切片 18 3.2.2 木材組織染色(Staining) 19 3.3 物理試驗 20 3.3.1 Soft x-ray試驗 20 3.3.2 色差試驗 22 3.4 化學成分分析 22 3.4.1 木材化學組成分定量 24 3.4.2 醇苯抽出物成分分析 26 第4章 結果與討論 27 4.1 樟樹反應區及正常材物理試驗 27 4.1.1 樟樹反應區之材色變化 27 4.1.2 樟樹反應區之密度變化 33 4.2 樟樹反應區及正常材之組織差異 37 4.3 樟樹反應區及正常材化學成分差異 44 4.3.1 樟樹反應區化學組成分變化 44 4.3.2 反應區與正常材醇苯抽出物之差異 47 第5章 結論 54 第6章 參考文獻 56 | |
dc.language.iso | zh-TW | |
dc.title | 樟樹腐朽現象的案例研究 | zh_TW |
dc.title | A case study of Cinnamomum camphora to microorganism decay | en |
dc.type | Thesis | |
dc.date.schoolyear | 106-2 | |
dc.description.degree | 碩士 | |
dc.contributor.coadvisor | 林振榮(Cheng-Jung Lin) | |
dc.contributor.oralexamcommittee | 柯淳涵(Chun-Han Ko),林蘭東(Lang-Dong Lin),楊德新(Te-Hsin Yang) | |
dc.subject.keyword | 樟樹,木材腐朽,區隔化理論,反應區,木材組成分, | zh_TW |
dc.subject.keyword | Cinnamomum camphora,wood decayed microorganism,CODIT,reaction zone,wood chemical composition, | en |
dc.relation.page | 68 | |
dc.identifier.doi | 10.6342/NTU201801886 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2018-07-26 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 森林環境暨資源學研究所 | zh_TW |
顯示於系所單位: | 森林環境暨資源學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-107-1.pdf 目前未授權公開取用 | 7.06 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。