Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 園藝暨景觀學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71187
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor葉德銘
dc.contributor.authorYu-Tang Tsaien
dc.contributor.author蔡有堂zh_TW
dc.date.accessioned2021-06-17T04:57:33Z-
dc.date.available2021-08-08
dc.date.copyright2018-08-08
dc.date.issued2018
dc.date.submitted2018-07-26
dc.identifier.citation元生朝、张自国、许传桢. 1988. 光照誘導湖北光敏感核不育水稻育性轉變的敏感期及其發育階段的探討. 作物學報14:7-12.
李美娟、陳盛義、蕭吉雄. 2004. 核質互作雄不稔性狀於番椒雜交種子採種之研究. 植物種苗 6:31-42.
呂學義. 2010. 日日春花器構造、花粉活力與微體繁殖再生系統之建立. 國立嘉義大學農學研究所碩士論文. 嘉義.
呂學義、周慶原、沈榮壽. 2011. 日日春花器構造與強迫性自花授粉模式. 嘉大農林學報 8:18-33.
林煥耿. 2016. 重瓣懸垂日日春之育種. 國立臺灣大學園藝暨景觀學系碩士論文. 臺北.
张自国、元生朝、许传桢. 1987. 光周期條件對湖北光敏感核不育水稻育性轉變的影響. 中國水稻科學1:137-144.
洪瑛穗、黃俊杉、郭宏遠. 2016. 番椒之雄不稔性介紹及應用. 種苗科技專訊94:2-4.
洪嘉樺、葉德銘. 2015. 介質體積含水量對夏秋季花壇植物生長與光合作用之影響. 臺灣園藝 61:263-280.
高典林. 2006. 現代作物育種學. 藝軒圖書出版社. 臺灣.
徐孟亮、周广洽、陈良碧. 1999. 培矮64S育性對溫度與光周期的反應. 作物學報25:772-776.
張龍生. 1998. 數量遺傳在蔬菜育種上之應用. 蔬菜育種技術研習會專刊73:107-114.
梁紅. 2003. 植物遺傳與育種. 九州出版社. 臺灣.
陳俊位、林俊義、許振川. 1997. 台灣日日春病害之發生. 臺中區農業改良場研究彙報54:47-57.
陳家全、李家維、楊瑞森. 1991. 生物電子顯微鏡學. 行政院國家科學委員會精密儀器發展中心. 臺北.
陳錦木. 2013. 重瓣日日春之花芽形態、花形遺傳及育種. 國立臺灣大學園藝暨景觀學系博士論文.
陳錦木、李窓明、葉德銘. 2011.臺灣的花壇植物產業現況與展望. 綠色城市與花卉產業國際研討會論文集. 國立臺灣大學園藝暨景觀學系編印. p. 154-167.
歐陽瑋、吳文希. 1998. 臺灣長春花病害之調查. 植物病理學會刊 7:147-149.
蔡淑華. 2003. 植物組織切片技術綱要. 茂昌圖書有限公司. 臺北.
鶴島 久男. 2005. 花壇學講座(17)-10.主な花壇用花きの育種と品種の發達の譜系(IV)-サルビアとビンか(カサランサス). 農業あよび園藝 80:602-607.
Ai, Y., Y. He, Y. Hu, Q. Zhang, C. Pan, and M. Bao. 2014. Characterization of a novel male sterile mutant of Tagetes patula induced by heat shock. Euphytica 200: 159-173.
All America Selections. 2018. Vinca. 16 June 2018. <https://all-americaselections.org/ product-category/annuals/vinca/>
Anjani, K. 2005. Development of cytoplasmic-genic male sterility in safflower. Plant Breeding 124:310-312.
Ariizumi T. and K. Toriyama. 2011. Genetic regulation of sporopollenin synthesis and pollen exine development. Annu. Rev. Plant Biol. 62:437-460.
Ball, V. 1998. Ball Redbook.16th ed. Ball Publ, Batavia, III.
Boke, N.H. 1947. Development of the adult shoot apex and floral initiation in Vinca rosea L. Amer. J. Bot. 34:433-439.
Boke, N.H. 1948. Development of the perianth in Vinca rosea L. Amer. J. Bot. 35:413-423.
Bowman, R.N. 2000. Method of producing hybrid Catharanthus using male sterility. U.S. Patent and Trademark Office, Washington, DC. 28 May 2018. <https://www. google.com/patents/US6166306>.
Cabarrubias, E.M.N., P.M. Magdalita, A.G. Lalusin, and N.G. Medina. 2017. Morphological characterization, evaluation and selection of hibiscus (Hibiscus rosa-sinensis L.) hybrids. Sci. Diliman 29:51-81.
Carew, D.P. and R.J. Krueger. 1976. Anthocyanidins of Catharanthus roseus callus cultures. Phytochemistry 15:442.
Chen, C.M., T.Y. Wei, and D.M. Yeh. 2012. Morphology and inheritance of double floweredness in Catharanthus roseus. HortScience 47:1679-1681.
Chen, W., X.H. Yu, K. Zhang, J. Shi, S. de Oliveira, L. Schreiber, J. Shanklin, and D. Zhang. 2011. Male sterile 2 encodes a plastid-localized fatty acyl carrier protein reductase required for pollen exine development in Arabidopsis. Plant Physiol. 157:842-853.
Comstock, R.E. and H.F. Robinson. 1948. The components of genetic variance in populations of biparental progenies and their use in estimating the average degree of dominance. Biometrics 4:254-266.
Cousin, M.T. 1979. Tapetum and pollen grains of Vinca rosea (Apocynaceae). Grana 18:115-128.
Curry, H.A. 2012. Naturalising the exotic and exoticising the naturalised: Hortuculture, natural history and the rosy periwinkle. Environ. History 18:243-365.
de Vetten, N., J. ter Horst, H.P. van Schaik, A. de Boer, J. Mol, and R. Koes. 1999. A cytochrome b5 is required for full activity of flavonoid 3’, 5’-hydroxylase, a cytochrome P450 involved in the formation of blue flower colors. Proc. Natl. Acad. Sci. 96:778-783.
de Vlaming, P., A.W. Schram, and H. Wiering. Genes affecting flower colour and pH of flower limb homogenates in Petunia hybrida. Theor. Appl. Genet. 66:271-278.
Ebel, J. and K. Hahlbrock. 1982. Biosynthesis. p. 641-680. In: J.B. Harborne (ed.). The flavonoids: Advances in research. Chapman and Hall, London.
Ewart, L. 1984. Petunia, p. 180-202. In: K.C. Sink (ed.). Plant breeding. Springer-Verlag Berlin Heidelberg, New York.
Flory, W.S. 1944. Inheritance studies of flower color in periwinkle. Proc. Amer. Soc. Hort. Sci. 44:525-526.
Forsyth, W.G.C. and N.W. Simmonds. 1957. Anthocyanidins of Lochnera rosea. Nature 180:247.
Harborne, J.B. 1967. The anthocyanin pigments. p. 1-36. In: J.B. Harborne (ed.). Comparative biochemistry of flavonoids. Chapman and Hall, London.
Harborne, J.B. and H. Baxter. 1999. The handbook of natural flavonoids. Volume 2. John Wiley and Sons, New York.
Harborne, J.B. and R.J. Grayer. 1988. The anthocyanins. p. 1-20. In: J.B. Harborne (ed.). The flavonoids. Chapman and Hall, London.
Hauser, E.J.P. and J.H. Morrison. 1964. The cytochemical reduction of nitro blue tetrazolium as an index of pollen viability. Amer. J. Bot. 51:748-752.
Holton, T.A. and E.C. Cornish. 1995. Genetics and biochemistry of anthocyanidin biosynthesis. Plant Cell 7: 1071-1083.
Holton, T.A., F. Brugliera, D.R. Lester, Y. Tanaka, C.D. Hyland, J.G. Menting, C.Y. Lu, E. Farcy, T.W. Stevenson and E.C. Cornlsh. 1993. Cloning and expression of cytochrome P450 genes controlling flower colour. Nature 366:276-279.
Izhar, S. 1975. The timing of temperature effect on microsporogenesis in cytoplasmic male-sterile petunia. J. Hered. 66:313-314.
Izhar, S. and R. Frankel. 1971. Mechanism of male sterility in Petunia: The relationship between pH, callase activity in the anthers, and the breakdown of the microsporogenesis. ‎Theor. Appl. Genet. 41:104-108.
Jensen, W.A. 1962. Botanical Histochemistry - principles and practice. San Francisco and London.
Kerns, C.A. and D.W. Inouye. 1993. Pollen, p. 77-151. In: C.A. Kerns and D.W. Inouye. (eds.). Techniques for pollination biologist. Univ. Press of Colorado, Niwot, Colo.,USA.
Kulkarni, R.N. and K. Baskaran. 2008a. Inheritance of pollen-less anthers and ‘thrum’ and ‘pin’ flowers in periwinkle corolla. J. Hered. 99:426-431.
Kulkarni, R.N., K. Baskaran, and Y. Sreevalli. 2008b. Genetics of corolla colour in periwinkle: Relationship between genes determining violet, orange-red and magenta corolla. J. Appl. Hort. 10:20-23.
Kulkarni, R.N., K. Baskaran, and Y. Sreevalli. 2005. Genetics of novel corolla colours in periwinkle. Euphytica 144:101-107.
Leopold, A.C. and F.S. Guernsey. 1953. Flower initiation in Alaska pea. I. Evidence as to the role of auxin. Amer. J. Bot. 40:46-50.
Lin, H.K., T.Y. Wei, C.M. Chen, and D.M. Yeh. 2018. Relationship between phloem fiber and trailing habit, and independent inheritance of growth habit and flower form in periwinkle. J. Amer. Soc. Hort. Sci. 143:67-71.
Maneval, W.E. 1936. Lacto-phenol preparations. Stain Technol. 11:9-11.
Milo, J., A. Levy, N. Akavia, A. Ashri, and D. Palevitch. 1985. Inheritance of corolla colour and anthocyanin pigments in periwinkle [Catharanthus roseus (L.) G. Don ]. ZPflanzenzuchtg 95:352-360.
Miyajima, D. 2004. Pollination and seed set in vinca [Catharanthus roseus (L.) G. Don]. J. Hort. Sci. Biotechnol. 79:771-775.
National Garden Bureau Inc. 2002. 2002: Year of the Vinca. 14th Jan. 2017. <http://www.ngb.org/year_of/index.cfm?YOID=7>.
Nilsson, S. and M. van Campo. 1979. Pollen morphological studies in the Apocynaceae with special reference to fine structure. Proc. Fourth Intl. Palynol. Conf. Lucknow, I: 250-254.
Peterson, P.A. 1958. Cytoplasmically inherited male sterility in Capsicum. Amer. Nat. 92:111-119.
Pietsch, G.M., W.H. Carlson, R.D. Heins, and J.E. Faust. 1995. The effect of day and night temperature and irradiance on development of Catharanthus roseus ‘Grape Cooler’. J. Amer. Soc. Hort. Sci. 120:877-881.
Piovan, A., R. Filippini, and D. Favretto. 1998. Characterization of the anthocyanins of Catharanthus roseus (L.) G. Don in vivo and in vitro by electrospray ionisation ion trap mass spectrometry. Rapid Commun. Mass Spectrom. 12:361-367.
Pressman, E., M.M. Peet, and D.M. Pharr. 2002. The effect of heat stress on tomato pollen characteristics is associated with changes in carbohydrate concentration in the developing anthers. Ann. Bot. 90:631-636.
Sanders, P.M., A.Q. Bui, K. Weterings, K.N. McIntire, Y.C. Hsu, P.Y. Lee, M.T. Truong, T.P. Beals, and R.B. Goldberg. 1999. Anther developmental defects in Arabidopsis thaliana male-sterile mutants. Sex. Plant Reprod. 11:297-322.
Sheoran, I.S. and H.S. Saini. 1996. Drought-induced male sterility in rice: changes in carbohydrate levels and enzyme activities associated with the inhibition of starch accumulation in pollen. Sex Plant Reprod. 9:161-169.
Shifriss, C. 1997. Male sterility in Pepper (Capsicum annuum L.). Euphytica 93:83-88.
Si, H.M., W.Z. Liu, Y.P. Fu, Z.X. Sun, and G.C. Hu. 2011. Current situation and suggestions for development of two-line hybrid rice in China. Chinese J. Rice Sci. 25:544-552.
Simmonds, N.W. 1960. Flower colour in Lochnera rosea. Heredity 14:253-261.
Sreevalli, Y., R.N. Kulkarni, and K. Baskaran. 2002. Inheritance of flower colour in periwinkle: orange-red corolla and white eye. J. Hered. 93:55-58.
Sun, M. 1987. Genetics of gynodioecy in Hawaiian Bidens (Asteraceae). Hered. 59:327-336.
Tatsuzawa, F. 2013. 7-O-methylpelargonidin glycosides from the pale red flowers of Catharanthus roseus. Nat. Prod. Commun. 8:1095-1097.
Tatsuzawa, F., H. Yamamoto, A. Tsuda, H. Shono, and K. Kato. 2015. Flower colors and pigments in the cultivars of Catharanthus roseus. Hort. Res. (Japan) 14:221-230.
Toki, K., N. Saito, Y. Irie, F. Tatsuzawa, A. Shigihara, and T. Honda. 2008. 7-O-Methylated anthocyanidin glycosides from Catharanthus roseus. Phytochemistry 69:1215-1219.
Toki, K., N. Saito, M. Kitaura, F. Tatsuzawa, A. Shigihara and T. Honda. 2011. 7-O-Methylated anthocyanin glycosides from the reddish purple flowers of Catharanthus roseus ‘Equator Lavender’. Heterocycles 83:2803-2810.
Tornielli, G., R. Koes, and F. Quattrocchio. 2008. Petunia: evolutionary, developmental and physiological genetics. p. 276. In: T. Gerats and J. Strommer (eds.). The genetics of flower color. Springer Science & Business Media, New York.
Tsuchiya, T., K. Toriyama, M. Yoshikawa, S.I. Ejiri, and K. Hinata. 1995. Tapetum-specific expression of the gene for an endo-β-1, 3-glucanase causes male sterility in transgenic tobacco. Plant Cell Physiol. 36:487-494.
van Bergen, M. and Snoeijer. 1996. Catharanthus G. Don. The Madagascar periwinkle and related species. Wagening Agr. Univ. Papers 96:1-120.
van der Hulst, R.G.M., P. Meirmans, P.H. van Tienderen, and J.M.M. van Damme. 2004. Nuclear-cytoplasmic male-sterility in diploid dandelions. Hered. 93:43-50.
Ye, Y.M., Q.S. Hu, T.H. Chen, and M.Z. Bao. 2008. Male sterile lines of Zinnia elegans and their cytological observations. Agr. Sci. China 7:423-431.
Zhang, Z.B., J. Zhu, J.F. Gao, C. Wang, H. Li, H. Li, H.Q. Zhang, S. Zhang, D.M. Wang, Q.X. Wang, H. Huang, H.J. Xia, and Z.N. Yang. 2007. Transcription factor AtMYB103 is required for anther development by regulating tapetum development, callose dissolution and exine formation in Arabidopsis. Plant J. 52:528-538.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71187-
dc.description.abstract日日春[Catharanthus roseus (L.) G. Don]盆花品種透過雜交育種育成,利用雄不稔植株進行雜交可省略去雄步驟,而了解花色遺傳模式有助於育種。本研究探討日日春雄不稔之成因與穩定性、研究花冠與眼圈顏色之遺傳,並選育大花、深紫色或大型白色眼圈、植株低矮及分枝性良好之新品種。
觀察日日春‘Cora Cascade’系列自交一代雄可稔及雄不稔植株縱徑1.0-3.0 mm花苞之花藥塑膠切片,結果顯示雄不稔之花藥囊腔中小孢子母細胞能夠正常減數分裂形成四分體。於穿透式電子顯微鏡觀察雄不稔日日春縱徑2.0-2.9 mm花苞之花藥,其絨氈層細胞之分泌腺體流出。以掃描式電子顯微鏡觀察雄不稔植株開花當天之花粉,其形態皺縮,推測花粉敗育的原因可能是絨氈層發育不正常。觀察雄可稔及雄不稔植株縱徑3.0 mm花苞及發育前一、二、三天之花藥石蠟切片,並螢光染色觀察,結果顯示雄不稔花藥囊腔中胼胝質分解不完全。
日日春‘Cora Cascade’系列自交一代中有部分雄不稔植株,其花粉可於低溫20/17℃萌發。將雄不稔株扦插繁殖,放置人工氣候室日夜溫20/15℃、25/20℃及30/25℃之自然光照室,並分別進行花粉未敗育及萌發檢測、人工自交及雜交授粉,以花粉正常之品種為花粉親進行雜交。結果顯示雄不稔株於30/25℃及25/20℃處理之花粉未敗育率及花粉萌發率皆低於1%,於20/15℃處理之花粉未敗育率及花粉萌發率提升至13.7%及4.0%,自交後雖會著果但未產生種子,於25/20℃處理雜交著果率最高及種子數最多。
萃取日日春深紫色、櫻桃紅色、粉紅色、橘紅色、杏色花冠,以及紅色和橘紅色眼圈之花青素,以液相層析串聯質譜儀分析,結果顯示杏色花冠有矢車菊素衍生物,其餘具有飛燕草素衍生物。將深紫色花冠、櫻桃紅色花冠及粉紅色花冠品種進行自交及雜交授粉,結果顯示杏色花冠對深紫、櫻桃紅、粉紅、及橘紅色花冠為隱性,由一基因座hf控制,hf基因座使花冠不具有飛燕草素衍生物。將紅色及深紫色眼圈品種進行自交及雜交授粉,結果顯示深紫色眼圈對紅色眼圈為隱性,對橘紅色眼圈為顯性,由兩個基因座Re及Pe控制。
將11種不同眼圈大小之日日春品種置於日夜溫30/25℃,結果小型、中型及大型眼圈日日春眼圈直徑分別小於1 cm、1-2 cm及大於2 cm。大型及中型白色眼圈視為白色擴大眼圈,小型眼圈為白色狹窄眼圈,將白色擴大或白色狹窄眼圈品種進行自交及雜交授粉,結果顯示白色擴大眼圈對於白色狹窄眼圈為顯性,由一基因座W控制。
從日日春‘Cora Cascade Strawberry’ × ‘Jams `N Jellies Blackberry’、‘Cora Cascade Cherry’ × ‘Jams `N Jellies Blackberry’、‘Ray’ × ‘Nirvana Cascade Pink Splash’及‘Cora Cascade Strawberry’ × ‘Summer Mikan’雜交二代中,挑選植株低矮、早花、大花、具深紫色眼圈之單株,自交至第四或五代並雜交,得到3個純系與3個雜交種,品系比較試驗結果選出1個純系與1個雜交種,具有盆花商業生產之潛力。
zh_TW
dc.description.abstractCurrently, most commercial cultivars of potted periwinkle [Catharanthus roseus (L). G. Don] are released through hybridization. Emasculation can be omitted when using male sterile plants as seed parents for cross-pollination. Understanding of inheritance of flower color facilitates breeding. The aims of this study were to explore the causes and the stability of male sterile periwinkle, determine the inheritance of corolla and eye color, and breed and select new cultivars with deep purple or large white eye, dwarf, well-branched, and large flowers.
The anthers in 1.0-3.0 mm floral buds were sampled and sectioned from male fertile and male sterile progenies of selfed periwinkle ‘Cora Cascade’ series. Tetrads in male sterile anther locules were observed after meiosis of microspore mother cells. Anthers in 2.0-2.9 mm floral buds of male sterile plants were observed with a transmission electron microscope. Results revealed that the secretion globules flowed out of the tapetal cells. Fresh pollen from male sterile plants all collapsed, as observed with a scanning electron microscope. Thus, defective pollen might result from abnormal tapetal development. Paraffin sections of the anthers from 3.0 mm floral buds and 1, 2, 3 days before 3.0 mm floral buds. Results showed that callose dissolution was imcomplete in male sterile anther locules, as observed by fluorescence staining.
Pollen of some male sterile progenies from self-pollinated periwinkle ‘Cora Cascade’ series could germinate at 20/17℃. Male sterile plants were propagated by cutting and placed at 20/15℃, 25/20℃, and 30/25℃ under natural phytotron conditions to measure pollen nonabortion and pollen germination percentages. Fruit set percentage and seed number were recorded from selfing male sterile plants and crossing between male sterile and fertile plants at each temperature. Pollen nonabortive and pollen germination percentages in male sterile plants were lower than 1% when grown at 30/25℃ and 25/20℃, as compared with 13.7% and 4.0% in plants at 20/15℃, respectively. Selfed male sterile plants had fruit set at 20/15℃ but did not produce any seeds. Highest fruit set and most hybrid seeds were recorded when cross-pollinated at 25/20℃.
Anthocyanidin extracts from corolla with deep purple, cherry, pink, or apricot, and eye zones with red or orange red were analyzed using a liquid chromatograph tandem mass spectrometer. Anthocyanidins of apricot corolla were cyanidin derivatives, whereas other corollas or eye zones were delphinidin derivatives. Deep purple, cherry, and pink corolla periwinkle cultivars were self- and cross-pollinated, and the segregation of corolla colors in the progenies showed that apricot corolla was recessive to cherry, pink, orange red, and deep purple corolla. Apricot corolla was controlled by a single nuclear locus hf, which delphinidin derivatives are not produced in corolla. Red and deep purple eye periwinkle cultivars were self- and cross-pollinated. Results showed that deep purple eye was recessive to red eye, and dominant to orange red eye. Red, deep purple, and orange red eye were controlled by two nuclear loci Re and Pe.
Eleven periwinkle cultivars were placed at 30/25℃ under natural phytotron conditions. Small, medium, and large eye were defined as <1 cm, 1-2 cm, and >2 cm diameters, respectively. Large and medium white eye cultivars had white broad eye, whereas small white eye cultivars had white narrow eye. White broad eye and white narrow eye cultivars were self- and cross-pollinated. Results showed that white broad eye was dominant to white narrow eye. White broad eye was controlled by a single nuclear locus W.
Dwarf, early flowering, and large flowers with deep purple eye periwinkle were selected from F2 progenies of ‘Cora Cascade Strawberry’ × ‘Jams `N Jellies Blackberry’, ‘Cora Cascade Cherry’ × ‘Jams `N Jellies Blackberry’, ‘Ray’ × ‘Nirvana Cascade Pink Splash’, and‘Cora Cascade Strawberry’ × ‘Summer Mikan’. These were self-pollinated thereafter until F4 or F5, and cross-pollinated. Three pure lines and three hybrids were obtained. After examination of plant performance, one pure line and one hybrid with commercial potential were selected in this study.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T04:57:33Z (GMT). No. of bitstreams: 1
ntu-107-R05628105-1.pdf: 11549080 bytes, checksum: 96fe7aacc040930396fe68907c4a026f (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents摘要 i
Abstract iii
目錄 vi
表目錄 viii
圖目錄 x
第一章 前言 (Introduction) 1
第二章 前人研究 (Literature Review) 3
一、日日春的分類與命名 3
二、日日春品種演進 3
三、日日春之育種目標 4
四、日日春花器與果實之構造及形態 5
五、日日春花粉培養及授粉模式 6
六、日日春雄不稔性狀遺傳模式 6
七、雄不稔的成因 7
八、雄不稔的類型與應用 8
九、日日春花色遺傳模式 10
十、花青素構造及生合成途徑 12
十一、日日春花青素種類之研究 13
第三章 雄不稔日日春之花藥解剖觀察 16
摘要(Abstract) 16
前言(Introduction) 17
材料與方法(Materials and Methods) 17
結果(Results) 20
討論(Discussion) 22
第四章 溫度對日日春雄不稔性之影響 29
摘要(Abstract) 29
前言(Introduction) 30
材料與方法(Materials and Methods) 31
結果(Results) 33
討論(Discussion) 35
第五章 日日春花冠與眼圈花青素分析與遺傳 44
摘要(Abstract) 44
前言(Introduction) 45
材料與方法(Materials and Methods) 46
結果(Results) 49
討論(Discussion) 56
第六章 日日春盆花之選育 96
摘要(Abstract) 96
前言(Introduction) 97
材料與方法(Materials and Methods) 98
結果(Results) 101
討論(Discussion) 105
參考文獻 (References) 125
dc.language.isozh-TW
dc.title日日春之雄不稔性、花色遺傳與盆花選育zh_TW
dc.titleMale Sterility, Inheritance of Flower Color, and Selection of Potted Plants in Periwinkleen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee黃光亮,沈榮壽,許富鈞
dc.subject.keyword花青素,缺陷花粉,眼圈,絨氈層,zh_TW
dc.subject.keywordanthocyanidin,defective pollen,eye zone,tapetum,en
dc.relation.page132
dc.identifier.doi10.6342/NTU201802023
dc.rights.note有償授權
dc.date.accepted2018-07-27
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept園藝暨景觀學系zh_TW
顯示於系所單位:園藝暨景觀學系

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  目前未授權公開取用
11.28 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved