Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71181
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor林恭如(Gong-Ru Lin)
dc.contributor.authorCheng-Yi Huangen
dc.contributor.author黃丞顗zh_TW
dc.date.accessioned2021-06-17T04:57:16Z-
dc.date.available2023-08-01
dc.date.copyright2018-08-01
dc.date.issued2018
dc.date.submitted2018-07-27
dc.identifier.citation[1] IEEE P802.3bs 400 Gb/s Ethernet Task Force. (2016). [Online].Available: http://www.ieee802.org/3/bs/
[2] T.-T. Shih, Y.-C. Chi, R.-N. Wang, C.-H. Wu, J.-J. Huang, J.-J. Jou, T.-C. Lee, H.-C. Kuo, G.-R. Lin and W.-H. Cheng, “Efficient Heat Dissipation of Uncooled 400-Gbps (16×25-Gbps) Optical Transceiver Employing Multimode VCSEL and PD Arrays,” Sci. Rep. 7, 46608. 2017.
[3] B. Weigl, M. Grabherr, C. Jung, R. J¨ager, G. Reiner, R. Michalzik, D. Sowada, and K. J. Ebeling 'High-performance oxide-confined GaAs VCSELs,' IEEE J. Sel. Top. Quantum Electron. 3, 409-415,1997.
[4] Fumio Koyama, 'Recent Advances of VCSEL Photonics,' J. Lightwave Technol. 24, 4502-4513, 2006.
[5] R. Jager, M. Grabherr, C. Jung, R. Michalzik, G. Reiner, B. Weigl and K.J. Ebeling “57 % wallplug efficiency oxide-confined 850nm wavelength GaAs VCSELs” Electron Lett. 33, 330-331, 1997.
[6] S.Weisser, E. C. Larkins, K. Czotscher, W. Benz, J. Daleiden, I. Esquivias & A. Schonfelder, “Damping-limited modulation bandwidths up to 40 GHz in undoped short-cavity In/sub 0.35/Ga/sub 0.65/As-GaAs multiple-quantum-well lasers.“ IEEE Photonics Technol. Lett., 8(5), 608-610, 1996.
[7] B. J. Thibeault, K. Bertilsson, E. R. Hegblom, E. Strzelecka, P. D. Floyd, R. Naone & L. A. Coldren, “High-speed characteristics of low-optical loss oxide-apertured vertical-cavity lasers.” IEEE Photonics Technol. Lett., 9(1), 11-13, 1997.
[8] D. Kuchta, A. V. Rylyakov, C. L. Schow, J. Proesel, C. Baks, P. Westbergh, J. S. Gustavsson, and A. Larsson, '64Gb/s Transmission over 57m MMF using an NRZ Modulated 850nm VCSEL,' in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2014), paper Th3C.2, 2014.
[9] C.-T. Tsai, C.-Y. Pong, Y.-C. Wu, S.-F. Leong, Y.-C. Chi, C.-H. Wu, T.-T. Shih, J.-J. Huang , H.-C. Kuo , W.-H. Cheng, and G.-R. Lin , 'Pre-leveled 16-QAM OFDM modulation of an 850-nm VCSEL for 56-Gbit/s transmission,' in OptoElectronics and Communications Conference, Niigata , pp. 1-3. 2016.
[10] G. Yabre, 'Comprehensive Theory of Dispersion in Graded-Index Optical Fibers,' J. Lightwave Technol. 18, 166- ,2000.
[11] B. Wu, X. Zhou, Y. Ma, J. Luo, K. Zhong, S. Qiu, Z. Feng, Y. Luo, M. Agustin, N. Ledentsov, J. Kropp, N. N. Ledentsov, L. Eddie & L. Chao. “Close to 100 Gbps discrete multitone transmission over 100m of multimode fiber using a single transverse mode 850nm VCSEL”. In Vertical-Cavity Surface-Emitting Lasers XX (Vol. 9766, p. 97660K). International Society for Optics and Photonics. 2016.
[12] H.-Y. Kao, C.-T. Tsai, S.-F. Leong, C.-Y. Peng, Y.-C. Chi, J.-J. Huang, H.-C. Kuo, and G.-R. Lin, “Comparison of single-/few-/multi-mode 850 nm VCSELs for optical OFDM transmission,” Opt. Express 25,16347–16363. 2017.
[13] J. W. Shi, C. C. Chen, Y. S. Wu, S. H. Guol, C. Kuo, and Y. J. Yang, “High power and high speed Zn-diffusion single fundamental mode vertical cavity surface emitting lasers at 850 nm wavelength,” IEEE Photon. Technol. Lett., vol. 20, no. 13, pp. 1121–1123, Jul. 2008.
[14] D. Wiedenmann et al., “Design and analysis of single-mode oxidized VCSELs for high-speed optical interconnects,” IEEE J. Sel. Topics Quantum Electron., vol. 5, no. 3, pp. 503–511, May. 1999
[15] C. Carlsson, H. Martinsson, R. Schatz, J. Halonen, and A. Larsson, 'Analog Modulation Properties of Oxide Confined VCSELs at Microwave Frequencies,' J. Lightwave Technol. 20, 1740-. 2002.
[16] Song, D. S., Kim, S. H., Park, H. G., Kim, C. K., & Lee, Y. H. “Single-fundamental-mode photonic-crystal vertical-cavity surface-emitting lasers.” Applied Physics Letters, 80(21), 3901-3903, 2002.
[17] E. Haglund, Å. Haglund, J. S. Gustavsson, B. Kögel, P. Westbergh and A. Larsson, 'Reducing the spectra width of high speed oxide confined VCSELs using an integrated mode filter,' Proc. SPIE 8276, Vertical-Cavity Surface-Emitting Lasers XVI, 82760L,2012.
[18] P. Westbergh, J. S. Gustavsson, B. Kogel, A. Haglund, A. Larsson, A. Mutig, A. Nadtochiy, D. Bimberg & A. Joel. “40 Gbit/s error-free operation of oxide-confined 850 nm VCSEL.” Electron. Lett., 46(14), 1014-1016. 2010.
[19] P. Westbergh, R. Safaisini, E. Haglund, B. Kogel, J. S. Gustavsson, A. Larsson, M. Geen, R. Lawrence & A. Joel. “High-speed 850 nm VCSELs with 28 GHz modulation bandwidth operating error-free up to 44 Gbit/s.” Electron. Lett., 48(18), 1145-1147. 2012.
[20] E. Haglund, P. Westbergh, J. S. Gustavsson, E. P. Haglund, A. Larsson, M. Geen, & A. Joel. “30 GHz bandwidth 850 nm VCSEL with sub-100 fJ/bit energy dissipation at 25–50 Gbit/s.” Electron. Lett., 51(14), 1096-1098. 2015.
[21] D. M. Kuchta, A. V. Rylyakov, F. E. Doany, C. L. Schow, J. E. Proesel, C. W. Baks, P. Westbergh, J. S. Gustavsson, and A. Larsson, “A 71-Gb/s NRZ Modulated 850-nm VCSEL-Based Optical Link,” IEEE Phot. Techn. Lett., vol. 27, no. 6, pp. 557-580, Mar. 2015.
[22] C.-T. Tsai, S. Chang, C.-Y. Pong, S.-F. Liang, Y.-C. Chi, C.-H. Wu, T.-T. Shih, J. J. Huang, H.-C. Kuo, W.-H. Cheng, and G.-R. Lin, “RIN suppressed multimode 850-nm VCSEL for 56-Gbps 16-QAM OFDM and 22-Gbps PAM-4 transmission,” in Conference on Optical Fiber Communication (Anaheim, CA, USA), paper, Th4D.2. 2016.
[23] M. I. Olmedo, T. Zuo, J. B. Jensen, Q. Zhong, X. Xu, S. Popov, and I. T. Monroy, “Multiband Carrierless Amplitude Phase Modulation for High Capacity Optical Data Links,” IEEE Lightwave Technology, Journalism 32(4), 798–804 ,2014.
[24] K. Zhong, X. Zhou, T. Gui, L. Tao, Y. Gao, W. Chen, J.-w. Man, L. Zeng, A.-P.-T. Lau, and C. Lu, 'Experimental study of PAM-4, CAP-16, and DMT for 100 Gb/s Short Reach Optical Transmission Systems,' Opt. Express 23, 1176-1189. 2015.
[25] H.-Y. Kao, C.-T. Tsai, S.-F. Leong, C.-Y. Peng, Y.-C. Chi, H.-Y. Wang, H.-C. Kuo, C.-H. Wu, W.-H. Cheng, and G.-R. Lin, 'Single-mode VCSEL for pre-emphasis PAM-4 transmission up to 64 Gbit/s over 100–300 m in OM4 MMF,' Photon. Res. 6, 666-673. 2018.
[26] K. Szczerba, P. Westbergh, M. Karlsson, P. A. Andrekson, and A. Larsson, '70 Gbps 4-PAM and 56 Gbps 8-PAM Using an 850 nm VCSEL,' J. Lightwave Technol. 33, 1395-1401. 2015.
[27] P. Winzer, “Beyond 100G ETHERNET. ” IEEE Communications Magazine, 48(7). 2010.
[28] H.-Y. Kao, Y.-C. Chi, C.-T. Tsai, S.-F. Leong, C.-Y. Peng, H.-Y. Wang, J. J. Huang, J.-J. Jou, T.-T. Shih, H.-C. Kuo, W.-H. Cheng, C.-H. Wu, and G.-R. Lin, “Few-mode VCSEL chip for 100-Gb/s transmission over 100 m multimode fiber,” Photon. Res. 5, 507-515, 2017.
[29] B. Wu, X. Zhou, Y. Ma, J. Luo, K. Zhong, S. Qiu, Z. Feng, Y. Luo, M. Agustin, N. Ledentsov, J. Kropp, N. N. Ledentsov, L. Eddie & L. Chao. “Close to 100 Gbps discrete multitone transmission over 100m of multimode fiber using a single transverse mode 850nm VCSEL”. In Vertical-Cavity Surface-Emitting Lasers XX (Vol. 9766, p. 97660K). International Society for Optics and Photonics. 2016.
[30] R. Puerta, M. Agustin, L. Chorchos, J. Toήski, J. R. Kropp, N. Ledentsov, V.A. Shchukin, N.N. Ledentsov, R. Henker, I. Tafur Monroy, J.J. Vegas Olmos & J.P. Turkiewicz. “107.5 Gb/s 850 nm multi-and single-mode VCSEL transmission over 10 and 100 m of multi-mode fiber.” In Optical Fiber Communications Conference and Exhibition (OFC), pp. 1-3. IEEE.2016.
[31] J. A. Tatum, D. Gazula, L. A. Graham, J. K. Guenter, R. H. Johnson, J. King, C. Kocot, G. D. Landry, I. Lyubomirsky, A. N. MacInnes, E. M. Shaw, K. Balemarthy, R. Shubochkin, D. Vaidya, M. Yan, and F. Tang, 'VCSEL-Based Interconnects for Current and Future Data Centers,' J. Lightwave Technol. 33, 727-732. 2015.
[32] J. M. Castro, R. Pimpinella, B. Kose, Y. Huang, B. Lane, A. Amezcua, M. Bigot, D. Molin, and P. Sillard, '200m 2×50 Gb/s PAM-4 SWDM Transmission Over Wideband Multimode Fiber using VCSELs and Pre-distortion Signaling,' in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2016), paper Tu2G.2.
[33] http://www.ieee802.org/3/cd/public/July16/kolesar_3cd_01_0716.pdf
[34] R. Shubochkin, Y. Sun, D. Braganza, K. Balemarthy, & J. Kim, “Next Generation wideband multimode fiber for shortwave wavelength division multiplexing in datacom links.” In IWCS pp. 10-3. 2015.
[35] H.-Y. Kao, Y.-C. Chi, C.-Y. Peng, S.-F. Leong, C.-K. Chang, Y.-C. Wu, T.-T. Shih, J. J. Huang, H.-C. Kuo, W.-H. Cheng, C.-H. Wu, and G.-R. Lin, “Modal linewidth dependent transmission performance of 850-nm VCSELs with encoding PAM-4 over 100-m MMF,” IEEE J. Quantum Electron. 53, 8000408. 2017.
[36] Z. K. Weng, Y. C. Chi, H. Y. Kao, C. T. Tsai, H. Y. Wang & G. R. Lin, 'Quasi-Color-Free LD based Long-Reach 28-GHz MMWoF with 512-QAM OFDM.' J. Light. Technol., 2018.
[37] M. Chagnon, S. Lessard, and D. V. Plant, “336 Gb/s in direct detection below KP4 FEC threshold for intra data center applications,” IEEE Photon. Technol. Lett., vol. 28, no. 20, pp. 2233–2236, Oct. 15, 2016.
[38] H.-Y. Kao, Z.-X. Su, H.-S. Shih, Y.-C. Chi, C.-T. Tsai, H.-C. Kuo, C.-H. Wu, J.-J. Jou, T.-T. Shih, and G.-R. Lin, 'CWDM DFBLD Transmitter Module for 10-km Interdata Center With Single-Channel 50-Gbit/s PAM-4 and 62-Gbit/s QAM-OFDM,' J. Lightwave Technol. 36, 703-711, 2018.
[39] C.-T. Tsai, C.-Y. Peng, C.-Y. Wu, S.-F. Leong, H.-Y. Kao, H.-Y. Wang, Y.-W. Chen, Z.-K. Weng, Y.-C. Chi, H.-C. Kuo, J.-J. Huang, T.-C. Lee, T.-T. Shih, J.-J. Jou, W.-H. Cheng, C.-H. Wu, and G.-R. Lin, “Multi-mode VCSEL chip with high-indium-density InGaAs/AlGaAs quantum-well pairs for QAM-OFDM in multi-mode fiber,” IEEE J. Quantum Electron. 53, 2400608. 2017.
[40] K. Szczerba, P. Westbergh, J. Karout, J. Gustavsson, Å. Haglund, M. Karlsson, P. Andrekson, E. Agrell, and A. Larsson, '30 Gbps 4-PAM transmission over 200 m of MMF using an 850 nm VCSEL,' Opt. Express 19, B203-B208, 2011.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71181-
dc.description.abstract隨著雲端運算及大數據應用快速的發展,人們對於高資料速率串流的需求以驚人的速度在增長。為了滿足這樣嚴苛的要求,單通道50 Gbit/s的200GBASE-SR4及 單通道25 Gbit/s的400GBASE-SR16的乙太網規格分別被電機電子工程師學會(IEEE) P802.3cd 及 IEEE P802.3bs專案小組所制定。在未來,高達1.6 Tbit/s的需求可以被預期。因此,研發單通道100 Gbit/s的光發送器是必須的。在本論文中展示了以垂直共振腔面射型雷射(VCSEL)高資料速率調變四階脈衝強度調變(PAM-4)及正交幅度調制(QAM)正交分頻多工(OFDM)通過新一代多模光纖應用於短距離資料中心。
在此實驗中,透過調變單模及少模VCSELs傳輸PAM-4及16-QAM OFDM資料格式比較了OM5及OM4多模光纖的傳輸性能。而此雙層氧化孔徑為3微米的單模VCSEL展現了0.04奈米的半高全寬(FWHM)及0的均方根譜線寬度(RMS)的單橫模譜線。當操作電流在十倍偏壓電流時,其3-dB類比頻寬為21.4 GHz及相對強度雜訊(RIN)為-138 dBc/Hz的特性可以支持高速率的訊號調變。在更換一百公尺的OM4至OM5多模光纖後,在KP4前向錯誤更正(KP4-FEC)的標準下且預失真過後可以達成接收功率罰損為0.12 dB且眼圖對稱的64-Gbit/s PAM-4資料傳輸。相較於OM4多模光纖,OM5多模光纖因為其較高的有效模態頻寬及較低的色度色散可以明顯的提升傳輸表現。不僅如此,在偏壓電流優化後及預補償後,接收功率罰損為0.1 dB的96-Gbit/s 16-QAM OFDM 資料傳輸通過一百公尺OM5多模光纖在FEC的標準下可以被實現。
而氧化孔徑為5微米的少模VCSEL展現了臨界電流為0.25毫安培及光功率為1.2毫瓦的特性。且當操作在8毫安培時,其阻抗為60歐姆及3-dB頻寬為24 GHz。而少模VCSEL傳輸32 GBaud的PAM-4訊號在通過一百公OM5多模光纖相較於OM4多模光纖展現了更清楚的眼圖及更寬的抖動容忍度。更甚者,64 Gbit/s的資料傳輸功率罰損也從3.41 dB減少至0.86 dB。其主因是因為OM5多模光纖相較於OM4多模光纖擁有較低的模態色散及較高的有效模態頻寬。此外,調變16-QAM OFDM於少模VCSEL經過背對背在高溫操作下從25度到85度時也被討論。在經過偏壓電流為8毫安培(32倍偏壓電流)及預補償斜率為0.5 dB/GHz的優化後,120-Gbit/s 的16-QAM OFDM背對背傳輸在FEC下透過少模VCSEL可以被實現。而接收功率罰損為3.78 dB的104 Gbit/s 16-QAM OFDM資料傳輸通過一百公尺OM5多模光纖後也被成功實現。
最後,不同的氧化孔徑為5.5及7.5微米VCSEL的基本特性及傳輸表現被進行比較。7.5微米孔徑的VCSEL展現了較高的光功率及量子效率,但其3-dB頻寬較窄且相對強度雜訊也較高。而擁有較高3-dB頻寬為25.2 GHz及較低的相對強度雜訊為-135 dBc/Hz的5.5微米孔徑VCSEL透過調變PAM-4和16-QAM OFDM可以支持最高的資料速率達到84和140 Gbit/s的背對背資料傳輸。在通過一百公尺OM5多模光纖後,80和120 Gbit/s的PAM-4和16-QAM OFDM資料傳輸可以被成功的達成且其接收功率罰損分別為3.24及3.1 dB。
zh_TW
dc.description.abstractWith the rapid development of the cloud computing and the big data application, the demanding of the high-speed data stream has risen at an incredible rate in recent year. To fulfill such rigorous requirement, the latest standards of Ethernet have been established as 200GBASE-SR4 with 50 Gbit/s per channel by IEEE P802.3cd task force and 400GBASE-SR16 with 25 Gbit/s per channel by IEEE P802.3bs task force. In the near future, it can be expected that the requirement will be rising up to 1.6 Tbit/s. Therefore, it is necessary to develop the 100 Gbit/s per channel for optical transmitters. The high-speed data modulation for the short-reach data center application with the four-level pulse amplitude modulation (PAM-4)/16-level quadrature amplitude modulation orthogonal frequency-division multiplexing (16-QAM OFDM) carried by vertical cavity surface emitting laser (VCSEL) through new generation of multi-mode fiber (MMF) are demonstrated in this thesis.
The comparison on transmission performance of the OM5-MMF and OM4-MMF for the PAM-4/16-QAM OFDM data format carried by single-transverse-mode (SM) and few-transverse-mode (FM) vertical cavity surface emitting laser (VCSEL) are discussed in this experiment. The SM-VCSEL with the double oxide-confinement aperture size of 3 um exhibit the only one transverse mode lasing with full width at half maximum (FWHM) of 0.04 nm and root-mean-square (RMS) spectra width of 0. When biasing at 10 Ith, the 3-dB analog bandwidth of 21.4 GHz and the relative intensity noise (RIN) of -138 dBc/Hz can support the high-speed signal modulation. After the replacement for the MMFs from 100-m OM4 to OM5, the transmission performance of pre-emphasized 64-Gbit/s PAM-4 data transmission can be achieved with the symmetric eye diagram under the KP4-forward error correction (KP4-FEC), which reveals the receiving power penalty of 0.12 dB. It is mainly due to lower chromatic dispersion and higher effective modal bandwidth (EMB) for OM5-MMF as compared to OM4-MMF for the data carried by SM-VCSEL. Nevertheless, the 96-Gbit/s data transmission for 16-QAM OFDM can also be achieved by passing through 100-m OM5-MMF after the bias current optimization and pre-leveling with the receiving power penalty of 0.1 dB under the FEC criterion.
For the bare FM-VCSEL chip, the low threshold current of 0.25 mA and the high optical power of 1.2 mW with the oxide-confined aperture of 5 μm are declared. The impedance of 60 ohm and the 3-dB bandwidth of 24 GHz are displayed at the DC bias of the 8 mA. With the pre-emphasis technique, the FM-VCSEL transmitting the 32 GBaud PAM-4 data shows the clear eye diagram and wider jitter tolerance by passing through 100-m OM5-MMF as compared to 100-m OM4-MMF. Furthermore, the receiving power penalty of at least 3.41 dB reduce to 0.86 dB for the 64 Gbit/s PAM-4 data stream. The lower modal dispersion and higher EMB of the OM5-MMF exhibit the better transmission performance as compared to OM4-MMF for the data transmitted by the FM-VCSEL. In addition, the high temperature operations from 25oC to 85oC at the condition of back-to-back (BtB) were also discussed with the FM-VCSEL chip carrying the 16-QAM-OFDM data. With the bias current optimization at 8 mA and pre-leveling slope of 0.5 dB/GHz, the 120 Gbit/s 16-QAM OFDM BtB data transmission can be achieved with the criterion of FEC for the FM-VCSEL. After propagating through 100-m-long OM5-MMF, the FM-VCSEL successfully exhibit the 104 Gbit/s transmission with a receiving power penalty of 3.78 dB.
Finally, the MM-VCSELs with different oxide-confined aperture size of 5.5-m and 7.5-m is compared through the basic characteristic and transmission performance. The 7.5-um-aperture VCSEL performs the higher power and greater quantum efficiency, but provide the narrower 3-dB bandwidth and higher RIN level. The 5.5-um-aperture VCSEL with the higher 3-dB bandwidth of 25.2 GHz and RIN of -135 dBc/Hz can support the highest data rate up to 84 and 140 Gbit/s for PAM-4 and 16-QAM OFDM data under FEC criterion at BtB. After transmitting through 100-m OM5-MMF, the 80 and 120 Gbit/s data transmission can be successfully achieved for PAM-4 and 16-QAM OFDM carried by the 5.5-um-aperture VCSEL with the receiving power penalty of 3.24 and 3.1 dB.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T04:57:16Z (GMT). No. of bitstreams: 1
ntu-107-R05941099-1.pdf: 24898118 bytes, checksum: 6a920b8b24f53ab9c72b4188648af3f0 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents誌謝 i
中文摘要 ii
ABSTRACT iv
CONTENTS vii
LIST OF FIGURES ix
Chapter 1 Introduction 1
1.1 Historical review of VCSEL and intra-data-center application 1
1.2 Motivation 2
1.3 Thesis architecture 4
Chapter 2 Comparison on 100-m OM5/OM4-MMF based PAM-4/16-QAM OFDM data link with 850-nm SM/FM-VCSEL chip 5
2.1 Fabrication and characteristics of the SM/FM-VCSEL 5
2.2 Experimental Setup of the PAM-4 and 16-QAM OFDM modulation 10
2.3 High-speed data transmission on the SM-VCSEL through BtB/100-m OM5-MMF/100-m OM4-MMF 12
2.3.1 Comparison of PAM-4 data through BtB/100-m OM4- and OM5-MMF 12
2.3.2 Comparison of 16-QAM OFDM data through BtB/100-m OM4- and OM5-MMF 15
2.4 High-speed data transmission on the FM-VCSEL through BtB/100-m OM5-MMF/100-m OM4-MMF 20
2.4.1 Comparison of PAM-4 data through BtB/100-m OM4- and OM5-MMF 20
2.4.2 Thermal stability for 100-Gbit/s 16-QAM OFDM data transmission. 24
2.4.3 Comparison of 16-QAM OFDM data through BtB/100-m OM4- and OM5-MMF 28
2.4.4 120-Gbit/s based 16-QAM OFDM data transmission 33
2.5 Summary 35
2.5.1 The optimization for the transmission on SM-VCSEL 35
2.5.2 The optimization for the transmission on FM-VCSEL 37
Chapter 3 Ultra-high speed data transmission on 850-nm MM-VCSEL chip based PAM-4/16-QAM OFDM data link 100-m OM5-MMF 41
3.1 Fabrication and characteristics of the MM-VCSELs 41
3.2 Experimental setup of the ultra-high speed modulation on MM-VCSEL 46
3.3 High-speed data transmission on the MM-VCSEL through BtB/100-m OM5-MMF 48
3.3.1 84- and 80-Gbit/s data transmission for the PAM-4 data through BtB and 100-m OM5-MMF 48
3.3.2 140- and 120-Gbit/s data transmission for the 16-QAM OFDM data through BtB and 100-m OM5-MMF 52
3.4 Summary 58
Chapter 4 Conclusion 61
REFERENCE 64
dc.language.isoen
dc.subject四階脈衝振幅調變zh_TW
dc.subject多進制正交振幅調變正交分頻多工zh_TW
dc.subject垂直共振腔面射型雷射zh_TW
dc.subjectPAM-4en
dc.subject16-QAM OFDMen
dc.subjectVCSELen
dc.title高速850-nm垂直共振腔面射型雷射與多模光纖短程通信網路zh_TW
dc.titleHigh-speed 850-nm VCSEL and multi-mode fiber based short-reach data linken
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee吳肇欣(Chao-Hsin Wu),郭浩中(Hao-Chung Hao),鄭木海(Wood-Hi Cheng)
dc.subject.keyword垂直共振腔面射型雷射,四階脈衝振幅調變,多進制正交振幅調變正交分頻多工,zh_TW
dc.subject.keywordVCSEL,PAM-4,16-QAM OFDM,en
dc.relation.page72
dc.identifier.doi10.6342/NTU201801914
dc.rights.note有償授權
dc.date.accepted2018-07-27
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
Appears in Collections:光電工程學研究所

Files in This Item:
File SizeFormat 
ntu-107-1.pdf
  Restricted Access
24.31 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved