請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71176完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 江皓森(Hao-Sen Chiang) | |
| dc.contributor.author | Chieh Lin | en |
| dc.contributor.author | 林婕 | zh_TW |
| dc.date.accessioned | 2021-06-17T04:56:59Z | - |
| dc.date.available | 2023-08-01 | |
| dc.date.copyright | 2018-08-01 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-07-27 | |
| dc.identifier.citation | 1. Summers, C., et al., Neutrophil kinetics in health and disease. Trends Immunol, 2010. 31(8): p. 318-24.
2. Semerad, C.L., et al., G-CSF is an essential regulator of neutrophil trafficking from the bone marrow to the blood. Immunity, 2002. 17(4): p. 413-23. 3. Netea, M.G., et al., Immune defence against Candida fungal infections. Nat Rev Immunol, 2015. 15(10): p. 630-42. 4. Nathan, C., Neutrophils and immunity: challenges and opportunities. Nature Reviews Immunology, 2006. 6: p. 173. 5. Borregaard, N., O.E. Sorensen, and K. Theilgaard-Monch, Neutrophil granules: a library of innate immunity proteins. Trends Immunol, 2007. 28(8): p. 340-5. 6. Brinkmann, V., et al., Neutrophil extracellular traps kill bacteria. Science, 2004. 303(5663): p. 1532-5. 7. Fuchs, T.A., et al., Novel cell death program leads to neutrophil extracellular traps. J Cell Biol, 2007. 176(2): p. 231-41. 8. Saitoh, T., et al., Neutrophil extracellular traps mediate a host defense response to human immunodeficiency virus-1. Cell Host Microbe, 2012. 12(1): p. 109-16. 9. Urban, C.F., et al., Neutrophil extracellular traps capture and kill Candida albicans yeast and hyphal forms. Cell Microbiol, 2006. 8(4): p. 668-76. 10. Abi Abdallah, D.S., et al., Toxoplasma gondii Triggers Release of Human and Mouse Neutrophil Extracellular Traps. Infection and Immunity, 2012. 80(2): p. 768-777. 11. Kaplan, M.J. and M. Radic, Neutrophil extracellular traps: double-edged swords of innate immunity. J Immunol, 2012. 189(6): p. 2689-95. 12. Papayannopoulos, V., et al., Neutrophil elastase and myeloperoxidase regulate the formation of neutrophil extracellular traps. J Cell Biol, 2010. 191(3): p. 677-91. 13. Hemmers, S., et al., PAD4-mediated neutrophil extracellular trap formation is not required for immunity against influenza infection. PLoS One, 2011. 6(7): p. e22043. 14. Li, P., et al., PAD4 is essential for antibacterial innate immunity mediated by neutrophil extracellular traps. J Exp Med, 2010. 207(9): p. 1853-62. 15. Kenny, E.F., et al., Diverse stimuli engage different neutrophil extracellular trap pathways. eLife, 2017. 6: p. e24437. 16. Amulic, B., et al., Cell-Cycle Proteins Control Production of Neutrophil Extracellular Traps. Developmental Cell, 2017. 43(4): p. 449-462.e5. 17. Yipp, B.G., et al., Dynamic NETosis is Carried Out by Live Neutrophils in Human and Mouse Bacterial Abscesses and During Severe Gram-Positive Infection. Nature medicine, 2012. 18(9): p. 1386-1393. 18. Pilsczek, F.H., et al., A Novel Mechanism of Rapid Nuclear Neutrophil Extracellular Trap Formation in Response to <em>Staphylococcus aureus</em>. The Journal of Immunology, 2010. 185(12): p. 7413. 19. Rochael, N.C., et al., Classical ROS-dependent and early/rapid ROS-independent release of Neutrophil Extracellular Traps triggered by Leishmania parasites. Scientific Reports, 2015. 5: p. 18302. 20. Dwivedi, N., et al., Felty's syndrome autoantibodies bind to deiminated histones and neutrophil extracellular chromatin traps. Arthritis Rheum, 2012. 64(4): p. 982-92. 21. Mahajan, A., M. Herrmann, and L.E. Munoz, Clearance Deficiency and Cell Death Pathways: A Model for the Pathogenesis of SLE. Front Immunol, 2016. 7: p. 35. 22. Khandpur, R., et al., NETs are a source of citrullinated autoantigens and stimulate inflammatory responses in rheumatoid arthritis. Science translational medicine, 2013. 5(178): p. 178ra40-178ra40. 23. Garcia-Romo, G.S., et al., Netting Neutrophils Are Major Inducers of Type I IFN Production in Pediatric Systemic Lupus Erythematosus. Science translational medicine, 2011. 3(73): p. 73ra20-73ra20. 24. Leffler, J., et al., Neutrophil Extracellular Traps That Are Not Degraded in Systemic Lupus Erythematosus Activate Complement Exacerbating the Disease. The Journal of Immunology, 2012. 188(7): p. 3522. 25. Neeli, I., et al., Regulation of extracellular chromatin release from neutrophils. J Innate Immun, 2009. 1(3): p. 194-201. 26. Birkenfeld, J., et al., Cellular functions of GEF-H1, a microtubule-regulated Rho-GEF: is altered GEF-H1 activity a crucial determinant of disease pathogenesis? Trends Cell Biol, 2008. 18(5): p. 210-9. 27. Krendel, M., F.T. Zenke, and G.M. Bokoch, Nucleotide exchange factor GEF-H1 mediates cross-talk between microtubules and the actin cytoskeleton. Nature Cell Biology, 2002. 4: p. 294. 28. Samarin, S.N., et al., Rho/Rho-associated Kinase-II Signaling Mediates Disassembly of Epithelial Apical Junctions. Molecular Biology of the Cell, 2007. 18(9): p. 3429-3439. 29. Brajenovic, M., et al., Comprehensive Proteomic Analysis of Human Par Protein Complexes Reveals an Interconnected Protein Network. Journal of Biological Chemistry, 2004. 279(13): p. 12804-12811. 30. Chang, Y.-C., et al., GEF-H1 Couples Nocodazole-induced Microtubule Disassembly to Cell Contractility via RhoA. Molecular Biology of the Cell, 2008. 19(5): p. 2147-2153. 31. Birukova, A.A., et al., GEF-H1 is involved in agonist-induced human pulmonary endothelial barrier dysfunction. American Journal of Physiology-Lung Cellular and Molecular Physiology, 2006. 290(3): p. L540-L548. 32. Bakal, C.J., et al., The Rho GTP exchange factor Lfc promotes spindle assembly in early mitosis. Proceedings of the National Academy of Sciences of the United States of America, 2005. 102(27): p. 9529-9534. 33. Birkenfeld, J., et al., GEF-H1 modulates localized RhoA activation during cytokinesis under the control of mitotic kinases. Developmental cell, 2007. 12(5): p. 699-712. 34. Westwick, J.K., et al., Transforming Potential of Dbl Family Proteins Correlates with Transcription from the Cyclin D1 Promoter but Not with Activation of Jun NH2-terminal Kinase, p38/Mpk2, Serum Response Factor, or c-Jun. Journal of Biological Chemistry, 1998. 273(27): p. 16739-16747. 35. Olson, M.F., A. Ashworth, and A. Hall, An essential role for Rho, Rac, and Cdc42 GTPases in cell cycle progression through G1. Science, 1995. 269(5228): p. 1270. 36. Liberto, M., D. Cobrinik, and A. Minden, Rho regulates p21CIP1, cyclin D1, and checkpoint control in mammary epithelial cells. Oncogene, 2002. 21: p. 1590. 37. Chiang, H.-S., et al., GEF-H1 controls microtubule-dependent sensing of nucleic acids for antiviral host defenses. Nature Immunology, 2013. 15: p. 63. 38. Fine, N., et al., GEF-H1 is necessary for neutrophil shear stress–induced migration during inflammation. The Journal of Cell Biology, 2016. 215(1): p. 107-119. 39. Papayannopoulos, V., Neutrophil extracellular traps in immunity and disease. Nature Reviews Immunology, 2017. 18: p. 134. 40. Kakiashvili, E., et al., GEF-H1 Mediates Tumor Necrosis Factor-α-induced Rho Activation and Myosin Phosphorylation: ROLE IN THE REGULATION OF TUBULAR PARACELLULAR PERMEABILITY. The Journal of Biological Chemistry, 2009. 284(17): p. 11454-11466. 41. Hakkim, A., et al., Activation of the Raf-MEK-ERK pathway is required for neutrophil extracellular trap formation. Nat Chem Biol, 2011. 7(2): p. 75-7. 42. Branzk, N., et al., Neutrophils sense microbe size and selectively release neutrophil extracellular traps in response to large pathogens. Nat Immunol, 2014. 15(11): p. 1017-25. 43. Urban, C.F., et al., Neutrophil Extracellular Traps Contain Calprotectin, a Cytosolic Protein Complex Involved in Host Defense against Candida albicans. PLoS Pathogens, 2009. 5(10): p. e1000639. 44. Kanaho, Y., et al., Molecular mechanisms of fMLP-induced superoxide generation and degranulation in mouse neutrophils. Advances in Biological Regulation, 2013. 53(1): p. 128-134. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71176 | - |
| dc.description.abstract | 嗜中性球在免疫系統扮演非常重要的角色,近年來有研究發現發現嗜中性白血球有個特殊的機制,會將細胞核的染色體結構解旋,將上面帶有抗微生物蛋白的DNA釋放到胞外,稱為嗜中性胞外網狀結構(neutrophil extracellular traps, NETs),這種網狀結構會纏繞病原,阻止其擴散並促進清除和分解。由於過去已知細胞骨架會調控NETs的形成,而guanine nucleotide exchange factor H1 (GEF-H1)可以藉由調節RhoA GTPases的活性來影響下游微小管(microtubule)和肌動蛋白(actin)的動態平衡,因此本論文欲探討GEF-H1在NETs形成時所扮演的角色。我們從缺乏GEF-H1的基因改造小鼠分離出嗜中性球,經實驗確認GEF-H1缺陷並不會影響嗜中性球的分化以及穩定狀態下的細胞骨架型態。我們以phorbol 12-myristate 13-acetate (PMA)刺激嗜中性球,發現GEF-H1缺陷的嗜中性球有較低的胞外DNA訊號,雖然顆粒球(granules)中的蛋白能夠遷移到細胞核內,缺少GEF-H1的嗜中性球卻無法將其釋放到細胞外。且經由定量分析,得知GEF-H1缺陷嗜中性球所生成之NETs大多為擴散型(diffused)而非散佈型(spread)。實驗結果顯示GEF-H1並非藉由調控活性氧化物(reactive oxygen species, ROS)影響NETs的產生。進一步的研究發現GEF-H1會與散佈型NETs結合,並一起被釋放到胞外。綜合以上結果,可推論GEF-H1會調控NETs的釋放。 | zh_TW |
| dc.description.abstract | Neutrophils play an important role in the first line of immune defense. Apart from conventional pathways, neutrophil extracellular trap (NET), a newly discovered mechanism that neutrophil releases chromosomal DNA and specific anti-microbial proteins to the extracellular space and captures pathogens was demonstrated. The formation of NET, a process called NETosis, is accepted as a special form of cell death. However, the detailed mechanism of NETosis has not been fully understood.
Previous studies suggest that actin and microtubule networks are important for NETosis. Given that the guanine nucleotide exchange factor GEF-H1 is crucial in coupling microtubule dynamics to RhoA GTPase activation and actin polymerization, we hypothesized GEF-H1 plays a role in NETosis by regulating cytoskeleton dynamics. Here we found that the area of extracellular DNA was significantly reduced in GEF-H1-deficient mouse neutrophils after phorbol 12-myristate 13-acetate (PMA) incubation. While neutrophil elastase (NE), myeloperoxidase (MPO) and citrullinated histone H3 (citH3) were detected in the nucleus of PMA-incubated GEF-H1-deficient neutrophils, those neutrophils failed to release granule proteins and chromatins extracellularly. Quantification analysis further indicated they had a significantly decreased percentage of spread form NET when compared to wild-type (WT) neutrophils in the presence of PMA. Moreover, we found that GEF-H1 was released and bound to NET components in response to PMA stimulation. Interestingly, the amount of ROS production was comparable between PMA-incubated WT and GEF-H1-deficient neutrophils further indicated that there were profound defects in the late stage of spread NET formation in GEF-H1-deficient neutrophils. Overall, our data suggest that GEF-H1 is the critical regulator of NET release. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T04:56:59Z (GMT). No. of bitstreams: 1 ntu-107-R05b21002-1.pdf: 7372552 bytes, checksum: 7297ad927b11bd4de5e98742289309ac (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | Contents vi
List of figures ix Chapter 1 Introduction 1 1.1. Neutrophils 1 1.1.1. Neutrophils in innate immune response 1 1.1.2. Neutrophil extracellular traps 2 1.2. GEF-H1 6 1.2.1. The functions of GEF-H1 6 1.2.2. The role of GEF-H1 in immune cells 7 1.3. Specific aim 8 Chapter 2 Materials and Methods 9 2.1. Mice 9 2.2. Isolation of mouse genomic DNA 9 2.3. Genotyping of the Arhgef2+/+, Arhgef2+/−, and Arhgef2−/− mice 10 2.4. Isolation of neutrophils from mouse bone marrow 10 2.5. Fungal culture 11 2.6. Quantification of extracellular DNA release 12 2.7. Flow cytometry 12 2.8. Immunofluorescence staining 13 2.9. Quantification of different NET forms 15 2.10. Phagocytosis Assay 16 Chapter 3 Results 17 3.1. GEF-H1 is dispensable in the generation of neutrophils in mouse bone marrow 17 3.2. GEF-H1 deficiency has no impact on the cytoskeleton pattern in neutrophils in naïve state 17 3.3. GEF-H1-deficient neutrophils show impaired extracellular DNA release upon PMA stimulation 18 3.4. GEF-H1-deficient neutrophils exhibit MPO and citH3 colocolization but are impaired to form spread NETs in response to PMA stimulation 19 3.5. Arhgef2-/- neutrophils show a decreased amount of spread form NETs after PMA stimulation 20 3.6. ROS production in response to PMA stimulation remains intact in GEF-H1-deficient neutrophils 22 3.7. GEF-H1 is released with NET in response to PMA stimulation 23 3.8. GEF-H1 deficiency has no impact in the phagocytosis ability in neutrophils when infected with yeast-locked efg1∆ C. albicans 24 3.9. GEF-H1-deficient mice are more susceptible to Candida albicans infection compared to WT mice 25 Chapter 4 Discussion 27 Chapter 5 Conclusion 31 References 32 Figures 39 Tables 58 Appendix 60 | |
| dc.language.iso | en | |
| dc.subject | 活性氧化物 | zh_TW |
| dc.subject | 嗜中性白血球 | zh_TW |
| dc.subject | 嗜中性球胞外網狀結構 | zh_TW |
| dc.subject | GEF-H1 | zh_TW |
| dc.subject | Reactive oxygen species | en |
| dc.subject | Neutrophils | en |
| dc.subject | Neutrophil extracellular traps | en |
| dc.subject | GEF-H1 | en |
| dc.title | 探討GEF-H1調控嗜中性球胞外網狀結構之釋放 | zh_TW |
| dc.title | Determining the impact of GEF-H1 on the release of neutrophil extracellular traps | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 伍安怡(Betty An-Ye Wu-Hsieh),陳斯婷(Szu-Ting Chen) | |
| dc.subject.keyword | 嗜中性白血球,嗜中性球胞外網狀結構,GEF-H1,活性氧化物, | zh_TW |
| dc.subject.keyword | Neutrophils,Neutrophil extracellular traps,GEF-H1,Reactive oxygen species, | en |
| dc.relation.page | 66 | |
| dc.identifier.doi | 10.6342/NTU201802048 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2018-07-27 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 生命科學系 | zh_TW |
| 顯示於系所單位: | 生命科學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf 未授權公開取用 | 7.2 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
