請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71175完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳嘉文(Kevin Chia-Wen Wu) | |
| dc.contributor.author | Zheng-Yen Wang | en |
| dc.contributor.author | 王正彥 | zh_TW |
| dc.date.accessioned | 2021-06-17T04:56:56Z | - |
| dc.date.available | 2018-08-06 | |
| dc.date.copyright | 2018-08-06 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-07-27 | |
| dc.identifier.citation | [1] A. Corma, S. Iborra and A. Velty, Chemical routes for the transformation of biomass into chemicals., Chem. Rev., 2007, 107, 2411-2502.
[2] E. M. Rubin, Genomics of cellulosic biofuels, Nature, 2008, 454, 841-845. [3] Y.-C. Lee, C.-T. Chen, Y.-T. Chiu and K. C. W. Wu, An effective cellulose-to-glucose-to-fructose conversion sequence by using enzyme immobilized Fe3O4-loaded mesoporous silica nanoparticles as recyclable biocatalysts, ChemCatChem, 2013, 5, 2153-2157. [4] B. M. Matsagar, S. A. Hossain, T. Islam, H. R. Alamri, Z. A. Alothman, Y. Yamauchi, P. L. Dhepe and K. C. Wu, Direct Production of Furfural in One-pot Fashion from Raw Biomass Using Bronsted Acidic Ionic Liquids, Sci Rep, 2017, 7, 13508. [5] W.-H. Hsu, Y.-Y. Lee, W.-H. Peng and K. C. W. Wu, Cellulosic conversion in ionic liquids (ILs): Effects of H2O/cellulose molar ratios, temperatures, times, and different ILs on the production of monosaccharides and 5-hydroxymethylfurfural (HMF), Catal. Today, 2011, 174, 65-69. [6] S. Cheng, I. D’cruz, M. Wang, M. Leitch and C. Xu, Highly efficient liquefaction of woody biomass in hot-compressed alcohol−water co-solvents, Energy Fuels, 2010, 24, 4659-4667. [7] Z. Zhang, J. Song and B. Han, Catalytic transformation of lignocellulose into chemicals and fuel products in ionic liquids, Chem. Rev., 2017, 117, 6834-6880. [8] M. P. Pandey and C. S. Kim, Lignin depolymerization and conversion: A review of thermochemical methods, Chem. Eng. Technol., 2011, 34, 29-41. [9] J. P. Lange, Lignocellulose liquefaction to biocrude: a tutorial review, ChemSusChem, 2018, 11, 997-1014. [10] Y. Park, W. O. S. Doherty and P. J. Halley, Developing lignin-based resin coatings and composites, Ind. Crops Products, 2008, 27, 163-167. [11] B.-L. Xue, J.-L. Wen and R.-C. Sun, Lignin-based rigid polyurethane foam reinforced with pulp fiber: synthesis and characterization, ACS Sustainable Chem. Eng., 2014, 2, 1474-1480. [12] W. Fang, S. Yang, X.-L. Wang, T.-Q. Yuan and R.-C. Sun, Manufacture and application of lignin-based carbon fibers (LCFs) and lignin-based carbon nanofibers (LCNFs), Green Chem., 2017, 19, 1794-1827. [13] J. C. Serrano-Ruiz, R. Luque and A. Sepulveda-Escribano, Transformations of biomass-derived platform molecules: from high added-value chemicals to fuels via aqueous-phase processing, Chem. Soc. Rev., 2011, 40, 5266-5281. [14] J. Zekzeski, P. C. A. Bruijnincx, A. L. Jongirius and B. M. Weckhuysen, The catalytic valorization of lignin for the production of renewable chemicals, Chem. Rev., 2010, 110, 3552-3599. [15] C. Li, X. Zhao, A. Wang, G. W. Huber and T. Zhang, Catalytic transformation of lignin for the production of chemicals and fuels, Chem. Rev., 2015, 115, 11559-11624. [16] J. Gierer, Chemistry of delignification, Wood Sci. Technol., 1986, 20, 1-33. [17] S. K. Singh and P. L. Dhepe, Ionic liquids catalyzed lignin liquefaction: mechanistic studies using TPO-MS, FT-IR, RAMAN and 1D, 2D-HSQC/NOSEY NMR, Green Chem., 2016, 18, 4098-4108. [18] A. Rahimi, A. Azarpira, H. Kim, J. Ralph and S. S. Stahl, Chemoselective metal-free aerobic alcohol oxidation in lignin, J. Am. Chem. Soc., 2013, 135, 6415-6418. [19] L. Das, P. Kolar and R. Sharma-Shivappa, Heterogeneous catalytic oxidation of lignin into value-added chemicals, Biofuels, 2012, 3, 155-166. [20] A. K. Deepa and P. L. Dhepe, Function of Metals and Supports on the Hydrodeoxygenation of Phenolic Compounds, ChemPlusChem, 2014, 79, 1573-1583. [21] J. A. Onwudili and P. T. Williams, Catalytic depolymerization of alkali lignin in subcritical water: influence of formic acid and Pd/C catalyst on the yields of liquid monomeric aromatic products, Green Chem., 2014, 16, 4740-4748. [22] X. Wang and R. Rinaldi, Exploiting H-transfer reactions with RANEY® Ni for upgrade of phenolic and aromatic biorefinery feeds under unusual, low-severity conditions, Energy Environ. Sci., 2012, 5, 8244. [23] J. Barbier, N. Charon, N. Dupassieux, A. Loppinet-Serani, L. Mahé, J. Ponthus, M. Courtiade, A. Ducrozet, A.-A. Quoineaud and F. Cansell, Hydrothermal conversion of lignin compounds. A detailed study of fragmentation and condensation reaction pathways, Biomass Bioenergy, 2012, 46, 479-491. [24] S. Kang, X. Li, J. Fan and J. Chang, Hydrothermal conversion of lignin: A review, Renew. Sus. Energ. Rev., 2013, 27, 546-558. [25] W. Mu, H. Ben, X. Du, X. Zhang, F. Hu, W. Liu, A. J. Ragauskas and Y. Deng, Noble metal catalyzed aqueous phase hydrogenation and hydrodeoxygenation of lignin-derived pyrolysis oil and related model compounds, Bioresour. Technol., 2014, 173, 6-10. [26] R. C. Runnebaum, T. Nimmanwudipong, D. E. Block and B. C. Gates, Catalytic conversion of compounds representative of lignin-derived bio-oils: a reaction network for guaiacol, anisole, 4-methylanisole, and cyclohexanone conversion catalysed by Pt/γ-Al2O3, Catal. Sci. Technol., 2012, 2, 113-118. [27] M. Oregui-Bengoechea, I. Gandarias, N. Miletić, S. F. Simonsen, A. Kronstad, P. L. Arias and T. Barth, Thermocatalytic conversion of lignin in an ethanol/formic acid medium with NiMo catalysts: Role of the metal and acid sites, Appl. Catal. B, 2017, 217, 353-364. [28] J. Yamazaki, E. Minami and S. Saka, Liquefaction of beech wood in various supercritical alcohols, J. Wood Sci., 2006, 52, 527-532. [29] M. J. Gilkey and B. Xu, Heterogeneous catalytic transfer hydrogenation as an effective pathway in biomass upgrading, ACS Catal, 2016, 6, 1420-1436. [30] Q. Song, F. Wang, J. Cai, Y. Wang, J. Zhang, W. Yu and J. Xu, Lignin depolymerization (LDP) in alcohol over nickel-based catalysts via a fragmentation–hydrogenolysis process, Energy Environ. Sci., 2013, 6, 994. [31] X. Huang, T. I. Koranyi, M. D. Boot and E. J. Hensen, Catalytic depolymerization of lignin in supercritical ethanol, ChemSusChem, 2014, 7, 2276-2288. [32] R. Ma, W. Hao, X. Ma, Y. Tian and Y. Li, Catalytic ethanolysis of Kraft lignin into high-value small-molecular chemicals over a nanostructured alpha-molybdenum carbide catalyst, Angew. Chem. Int. Ed., 2014, 53, 7310-7315. [33] K. J. Hakonen, J. L. González Escobedo, H. Meriö-Talvio, S. F. Hashmi, R. S. Karinen and J. Lehtonen, Ethanol organosolv lignin depolymerization with hydrogen over a Pd/C catalyst, ChemistrySelect, 2018, 3, 1761-1771. [34] M. Oregui-Bengoechea, I. Gandarias, P. L. Arias and T. Barth, Unraveling the role of formic acid and the type of solvent in the catalytic conversion of lignin: a holistic approach, ChemSusChem, 2017, 10, 754-766. [35] K. M. Torr, D. J. van de Pas, E. Cazeils and I. D. Suckling, Mild hydrogenolysis of in-situ and isolated Pinus radiata lignins, Bioresour. Technol., 2011, 102, 7608-7611. [36] K. Barta, G. R. Warner, E. S. Beach and P. T. Anastas, Depolymerization of organosolv lignin to aromatic compounds over Cu-doped porous metal oxides, Green Chem., 2014, 16, 191-196. [37] J. Yang, L. Zhao, S. Liu, Y. Wang and L. Dai, High-quality bio-oil from one-pot catalytic hydrocracking of kraft lignin over supported noble metal catalysts in isopropanol system, Bioresour. Technol., 2016, 212, 302-310. [38] W. Xu, S. J. Miller, P. K. Agrawal and C. W. Jones, Depolymerization and hydrodeoxygenation of switchgrass lignin with formic acid, ChemSusChem, 2012, 5, 667-675. [39] V. M. Roberts, V. Stein, T. Reiner, A. Lemonidou, X. Li and J. A. Lercher, Towards quantitative catalytic lignin depolymerization, Chemistry, 2011, 17, 5939-5948. [40] M. Meshgini and K. V. Sarkanen, Synthesis and Kinetics of Acid-Catalyzed Hydrolysis of some α-Aryl Ether Lignin Model Compounds, Holzforschung, 1989, 43, 239-243. [41] M. G. Papatheofanous, E. Billa, D. P. Koullas, B. Monties and E. G. Koukios, Two-stage Acid-catalyzed Fractionation of Lignocellulose Biomass in Aqueous Ethanol Systems at Low Temperatures, Bioresour. Technol., 1995, 54, 305-310. [42] S. Jia, B. J. Cox, X. Guo, Z. C. Zhang and J. G. Ekerdt, Cleaving the beta--O--4 bonds of lignin model compounds in an acidic ionic liquid, 1-H-3-methylimidazolium chloride: an optional strategy for the degradation of lignin, ChemSusChem, 2010, 3, 1078-1084. [43] J. R. Gasson, D. Forchheim, T. Sutter, U. Hornung, A. Kruse and T. Barth, Modeling the lignin degradation kinetics in an ethanol/formic Acid solvolysis approach. Part 1. Kinetic model development, Ind. Eng. Chem Res., 2012, 51, 10595-10606. [44] Y.-Y. Wang, M. Li, C. E. Wyman, C. M. Cai and A. J. Ragauskas, Fast fractionation of technical lignins by organic cosolvents, ACS Sustainable Chem. Eng., 2018, 6, 6064-6072. [45] C. M. Hansen in Hansen Solubility Paremeters: A User's Handbook, 2nd ed., Vol. CRC Press: New York, 2007. [46] C. M. Hansen and A. Björkman, The Ultrastructure of Wood from a Solubility Parameter Point of View, Holzforschung, 1998, 52, 335-344. [47] D. T. Balogh, A. A. S. Curvelo and R. A. M. C. De Groote, Solvent effects on organosolv lignin from Pinus caribaea hondurensis, Holzforschung, 1992, 46, 343-348. [48] D. Pasquini, M. T. B. Pimenta, L. H. Ferreira and A. A. d. S. Curvelo, Extraction of lignin from sugar cane bagasse and Pinus taeda wood chips using ethanol–water mixtures and carbon dioxide at high pressures, J. Supercritical Fluids, 2005, 36, 31-39. [49] R. J. Gosselink, W. Teunissen, J. E. van Dam, E. de Jong, G. Gellerstedt, E. L. Scott and J. P. Sanders, Lignin depolymerisation in supercritical carbon dioxide/acetone/water fluid for the production of aromatic chemicals, Bioresour. Technol., 2012, 106, 173-177. [50] J. C. del Rio, J. Rencoret, A. Gutierrez, L. Nieto, J. Jimenez-Barbero and A. T. Martinez, Structural characterization of guaiacyl-rich lignins in flax (Linum usitatissimum) fibers and shives, J. Agric. Food Chem., 2011, 59, 11088-11099. [51] S. Van den Bosch, W. Schutyser, R. Vanholme, T. Driessen, S. F. Koelewijn, T. Renders, B. De Meester, W. J. J. Huijgen, W. Dehaen, C. M. Courtin, B. Lagrain, W. Boerjan and B. F. Sels, Reductive lignocellulose fractionation into soluble lignin-derived phenolic monomers and dimers and processable carbohydrate pulps, Energy Environ. Sci., 2015, 8, 1748-1763. [52] S. K. Singh and P. L. Dhepe, Experimental evidences for existence of varying moieties and functional groups in assorted crop waste derived organosolv lignins, Ind. Crops Products, 2018, 119, 144-151. [53] F. Budija, C. Tavzes, L. Zupancic-Kralj and M. Petric, Self-crosslinking and film formation ability of liquefied black poplar, Bioresour. Technol., 2009, 100, 3316-3323. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71175 | - |
| dc.description.abstract | 我們開發出利用甲酸與碳搭載銠金屬觸媒 (Rh/C) 催化高效率液化木質素的系統。使用最適化後的混合溶劑溶劑環境 (乙醇/水 = 3/1, v/v),可以在溫和條件 (250 oC, 3 h) 進行分解後,經由四氫呋喃 (THF) 溶劑萃取可得到89.3 wt% 的生質油 (bio-oil);而酚類單體產率為2.89 wt%,其中烷基癒創木酚類 (alkyl guaiacols) 占單體產物的主要部分。甲酸與Rh/C在此系統中扮演的角色亦在本研究中進行詳細的討論,甲酸可以經由熱分解作為液相氫源使用,也發現同時具備酸催化的特性,可促進木質素結構中醚鍵的水解反應 (hydrolysis reaction),進行初步液化分解。使用Rh/C 觸媒可促進烯基愈創木酚類 (alkenyl guaiacol) 轉換為烷基癒創木酚類(即氫化反應, hydrogenation)。此外,藉由本研究開發出的系統,可有效降低生質油的分子量 (Mn.= 467 g mol-1),同時降低O/C比值 (0.61 to 0.26),表示本系統具有增進木質素高值化的潛力。 | zh_TW |
| dc.description.abstract | We present an efficient liquefaction of alkali lignin in an ethanol-water mixed solvent system with the presence of formic acid and carbon-supported rhodium (i.e. Rh/C) catalyst. At an optimized reaction condition of 250 oC and 3 h, the result showed the maximum yield of 89.3 wt% of bio-oil. For monomers of bio-oil, the total yield of monomeric products was as high as 2.89 wt%, in which alkyl guaiacols accounts for the main proportion. We found that formic acid was not only used as a liquid-phase hydrogen source, but also could serve as an organic acid that catalyzes hydrolysis reaction of C-O-C ether bonds presenting in lignin during lignin liquefaction. The role of Rh/C is demonstrated for improving the conversion of alkenyl to alkyl guaiacols (i.e. hydrogenation reaction) during lignin liquefaction. In addition, smaller fragments (Mn.= 467 g mol-1) as well as lower O/C ratio (0.61 to 0.26) indicate that our system has a potential for upgrading the generated bio-oil. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T04:56:56Z (GMT). No. of bitstreams: 1 ntu-107-R05524006-1.pdf: 3450072 bytes, checksum: ba7fe5a5d8ec9c9c6d53c9ba167aa3bd (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | Chapter 1. Introduction 1
1.1. Lignocellulose in Biomass 1 1.2. Lignin Valorization 3 1.3. The Structure of Lignin 5 1.4. Lignin Liquefaction 7 Chapter 2. Literature Reviews 10 2.1. Reductive Process for Lignin Liquefaction 10 2.1.1. Metal catalyst 11 2.1.2. Solvent 14 2.1.3. Hydrogen Donor 17 2.1.4. Summary 20 2.2. Hydrolysis 23 Chapter 3. Objective 25 Chapter 4. Experimental 26 4.1. Chemicals and Materials 26 4.2. Equipment 27 4.3. Characterization of Catalysts 28 4.3.1. Transmission Electron Microscope (TEM) 28 4.3.2. TEM-Energy Dispersive Spectroscopy (EDS) 28 4.3.3. X-Ray Diffractometer (XRD) 28 4.4. Lignin Composition Analysis 29 4.4.1. Ash Content 29 4.4.2. Moisture Content 29 4.4.3. Inductively Coupled Plasma-Mass Spectrometer (ICP-MS) 30 4.5. Reaction Test 30 4.6. Extraction of the Depolymerized Product 31 4.7. Analysis of Depolymerized Product 31 4.7.1. Weight Percentage of Bio-oil 31 4.7.2. Gas Chromatography-Mass Spectrometer (GC-MS) 32 4.7.3. Gas Chromatograph-Flame Ionization Detector (GC-FID) 32 4.7.4. Gel Permeation Chromatography (GPC) 34 4.7.5. Elemental Analysis 34 4.7.6. Nuclear Magnetic Resonance Spectroscopy (NMR) 35 4.7.7. Fourier-Transform Infrared Spectroscopy (FTIR) 35 Chapter 5. Results and Discussion 37 5.1. Material Characterization 37 5.1.1. Rh/C Catalyst 37 5.1.2. Composition of Lignin 38 5.2. GC-MS Analysis 40 5.3. Reaction Optimization 40 5.3.1. Effect of Solvent 41 5.3.2. Catalytic System 45 5.3.3. Ratio of Ethanol-Water Mixed Solvent 47 5.3.4. Effect of Temperature 49 5.3.5. Effect of Reaction Time 51 5.3.6. Summary in Optimizing Condition 52 5.4. The Role of Formic Acid and Rh/C Catalyst 54 5.4.1. The Role of Formic Acid 54 5.4.2. The Role of Rh/C Catalyst 57 5.4.3. Two Dimensional (HSQC) NMR Analysis 62 5.4.4. FTIR Analysis 66 5.4.5. Summary 68 Chapter 6. Conclusions 69 Chapter 7. Future Work 71 Reference 72 Appendix 77 Curriculum Vitae 84 | |
| dc.language.iso | en | |
| dc.subject | 木質素 | zh_TW |
| dc.subject | 混合溶劑 | zh_TW |
| dc.subject | 甲酸 | zh_TW |
| dc.subject | 銠 | zh_TW |
| dc.subject | 液化 | zh_TW |
| dc.subject | rhodium | en |
| dc.subject | lignin | en |
| dc.subject | liquefaction | en |
| dc.subject | mixed solvents | en |
| dc.subject | formic acid | en |
| dc.title | 利用甲酸與碳搭載銠金屬及乙醇水混合液系統高效催化木質素液化解聚反應 | zh_TW |
| dc.title | Efficient Liquefaction of Lignin Using Formic Acid and Carbon-supported Rhodium Catalyst in an Ethanol/Water Mixed Solvent System | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 葉汀峰(Ting-Feng Yeh),柯淳涵(Chun-Han Ko),林曉洪(Sheau-Horng Lin),吉川琢也(Takuya Yoshikawa) | |
| dc.subject.keyword | 木質素,液化,銠,甲酸,混合溶劑, | zh_TW |
| dc.subject.keyword | lignin,liquefaction,rhodium,formic acid,mixed solvents, | en |
| dc.relation.page | 85 | |
| dc.identifier.doi | 10.6342/NTU201802033 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2018-07-27 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf 未授權公開取用 | 3.37 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
