Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71158
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor曾雪峰(Snow H. Tseng)
dc.contributor.authorSsu-Han Lien
dc.contributor.author李思翰zh_TW
dc.date.accessioned2021-06-17T04:56:02Z-
dc.date.available2020-08-08
dc.date.copyright2018-08-08
dc.date.issued2018
dc.date.submitted2018-07-27
dc.identifier.citation[1] S. Hu and L. Wang, 'Photoacoustic imaging and characterization of the microvasculature,' Journal of Biomedical Optics, vol. 15, no. 1, p. 011101, 2010.
[2] M. Xu and L. Wang, 'Photoacoustic imaging in biomedicine,' Review of Scientific Instruments, vol. 77, no. 4, p. 041101, 2006.
[3] R. Badea and S. Ioanitescu, Ultrasound Imaging of Liver Tumors – Current Clinical Applications
[4] D. B. Kopans, 'Breast imaging,' in Classic Papers in Breast Disease: CRC Press, 2004, pp. 162-180.
[5] M. H. Bae, B. Moo-Ho, and J. Mok-Kun, 'A study of synthetic-aperture imaging with virtual source elements in B-mode ultrasound imaging systems,' IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 47, no. 6, pp. 1510-1519, 2000.
[6] C. Burckhardt, 'Speckle in ultrasound B-mode scans,' IEEE Transactions on Sonics and Ultrasonics, vol. 25, no. 1, pp. 1-6, 1978.
[7] T. Elatrozy, A. Nicolaides, T. Tegos, and A. Zarka, 'The effect of B-mode ultrasonic image standardisation on the echodensity of symptomatic and asymptomatic carotid bifurcation plaques,' International Angiology, vol. 17, no. 3, p. 179, 1998.
[8] A. Rosencwaig and A. Gersho, 'Theory of the photoacoustic effect with solids,' Journal of applied physics, vol. 47, no. 1, pp. 64-69, 1976.
[9] C. A. Bennett and R. R. Patty, 'Thermal wave interferometry: a potential application of the photoacoustic effect,' Applied optics, vol. 21, no. 1, p. 49, 1982.
[10] A. Rosencwaig, 'Photoacoustic spectroscopy of solids,' The Journal of the Acoustical Society of America, vol. 58, no. S1, pp. S52-S52, 1975.
[11] D. Gazis, 'Three‐Dimensional Investigation of the Propagation of Waves in Hollow Circular Cylinders. II. Numerical Results,' The Journal of the Acoustical Society of America, vol. 31, no. 5, pp. 573-578, 1959.
[12] D. Gazis, 'Three‐Dimensional Investigation of the Propagation of Waves in Hollow Circular Cylinders. I. Analytical Foundation,' The Journal of the Acoustical Society of America, vol. 31, no. 5, pp. 568-573, 1959.
[13] K.-W. Wu, Y.-A. Wang, and P.-C. Li, 'Laser Generated Leaky Acoustic Waves for Needle Visualization,' IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 65, no. 4, pp. 546-556, 2018.
[14] G. Mur, 'Absorbing Boundary Conditions for the Finite-Difference Approximation of the Time-Domain Electromagnetic-Field Equations,' IEEE Transactions on Electromagnetic Compatibility, vol. EMC-23, no. 4, pp. 377-382, 1981.
[15] A. Taflove and S. C. Hagness, Computational electrodynamics: the finite-difference time-domain method. Artech house, 2005.
[16] K. S. Kunz and R. J. Luebbers, The finite difference time domain method for electromagnetics. CRC press, 1993.
[17] T. Weiland, 'TIME DOMAIN ELECTROMAGNETIC FIELD COMPUTATION WITH FINITE DIFFERENCE METHODS,' International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, vol. 9, no. 4, pp. 295-319, 1996.
[18] B. Van Leer, 'Towards the ultimate conservative difference scheme III. Upstream-centered finite-difference schemes for ideal compressible flow,' Journal of computational physics, vol. 23, no. 3, pp. 263-275, 1977.
[19] K. Yee and Y. Kane, 'Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media,' IEEE Transactions on Antennas and Propagation, vol. 14, no. 3, pp. 302-307, 1966.
[20] X. Yuan et al., 'Formulation and validation of Berenger's PML absorbing boundary for the FDTD simulation of acoustic scattering,' IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 44, no. 4, pp. 816-822, 1997.
[21] X. Yuan, Y. Xiaojuen, D. Borup, J. Wiskin, M. Berggren, and S. A. Johnson, 'Simulation of acoustic wave propagation in dispersive media with relaxation losses by using FDTD method with PML absorbing boundary condition,' IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 46, no. 1, pp. 14-23, 1999.
[22] J. B. Schneider, 'Understanding the finite-difference time-domain method,' School of electrical engineering and computer science Washington State University.–URL: http://www. Eecs. Wsu. Edu/~ schneidj/ufdtd/(request data: 29.11. 2012), 2010.
[23] V. Ostashev, D. K. Wilson, L. Liu, D. Aldridge, N. Symons, and D. Marlin, 'Equations for finite-difference, time-domain simulation of sound propagation in moving inhomogeneous media and numerical implementation,' The Journal of the Acoustical Society of America, vol. 117, no. 2, pp. 503-517, 2005.
[24] R. M. Alford, K. R. Kelly, and D. M. Boore, 'ACCURACY OF FINITE‐DIFFERENCE MODELING OF THE ACOUSTIC WAVE EQUATION,' Geophysics, vol. 39, no. 6, pp. 834-842, 1974.
[25] J.-P. Berenger, 'A perfectly matched layer for the absorption of electromagnetic waves,' Journal of computational physics, vol. 114, no. 2, pp. 185-200, 1994.
[26] S. Gedney, 'An Anisotropic PML Absorbing Media for the FDTD Simulation of Fields in Lossy and Dispersive Media,' Electromagnetics, vol. 16, no. 4, pp. 399-415, 1996.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71158-
dc.description.abstract利用雷射產生之漏溢聲波能偵測針在組織內的位置以及傾角。在模擬上,利用時域有限差分法 (finite-difference time-domain, FDTD) 模擬超音波在針壁介質傳遞狀態以及由針壁邊界漏溢出去形成的漏溢聲波在組織介質中的傳遞狀態。首先,我們利用超音波之控制方程式 (governing equations) 模擬出超音波傳遞模型,並加以驗證,進而建構出實驗之架構並吻合實驗操作。我們將超音波源置於針壁介質內,改變針之厚度以及位置、組織介質以及密度、波源之頻率以及波長,分析在不同超音波參數下的傳遞現象差異。最後,將模擬結果與實驗數據做比對分析,有助於實驗操作端之分析研究。zh_TW
dc.description.abstractHere we model acoustic waves by employing the finite-difference time-domain (FDTD) simulation technique. We model acoustic waves source at the position of the needle emitting waves out of the needle and propagating through the scattering medium. In simulation, we analyze the phenomenon for leaky acoustic waves propagating out of the needle and leaking to the surrounding medium that can be detected by the ultrasound (US) transducer. The needle angle and position are calculated based on characteristics of guided waves and leaky acoustic waves. Further, we change the wavelength of the acoustic wave, the speed of sound and the density of medium of wave propagation, the size of needle and the location of sensors. We can analyze the different phenomenon of acoustics for different material parameters. Finally, the simulation results are used to help analyze experimental measurements.en
dc.description.provenanceMade available in DSpace on 2021-06-17T04:56:02Z (GMT). No. of bitstreams: 1
ntu-107-R05941092-1.pdf: 2670298 bytes, checksum: ab910a3c188ba9f2246d48e9a7015a42 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents口試委員會審定書 #
中文摘要 i
Abstract ii
CONTENTS iii
LIST OF FIGURES v
Chapter 1 緒論 1
1.1 超音波影像系統之背景 1
1.1.1 光聲造影 (Photoacoustic imaging/ Optoacoustic imaging) 1
1.1.2 超音波 (Ultrasound imaging, US) [3] [3] 2
1.2 研究動機及目標 5
1.2.1 研究動機 5
1.2.2 研究目標 7
Chapter 2 實驗方法 8
2.1 光聲效應 (Photoacoustic effect) 8
2.2 超聲波導波 10
2.3 漏溢聲波 (Leaky acoustic waves) 14
2.4 實驗架構 15
Chapter 3 模擬架構 18
3.1 時域有限差分法 (finite-difference time-domain method, FDTD) 18
3.1.1 中央差分法 (Central Difference Scheme) 19
3.1.2 Yee Algorithm 22
3.1.3 超聲波之有限差分法表達式 25
3.2 Courant Limit 35
3.3 吸收邊界條件 : Berenger’s PML Absorbing Boundary Condition 36
3.4 模擬參數與模型 40
Chapter 4 數值模擬結果與分析 45
4.1.1 驗證 45
4.1.2 針定位機制與結果 56
Chapter 5 結論與未來展望 62
5.1 結論 62
5.2 未來展望 63
REFERENCE 66
dc.language.isozh-TW
dc.title以時域有限差分法模擬雷射產生之漏溢聲波定位針在生物組織內之位置zh_TW
dc.titleFDTD modeling of leaky acoustic waves for needle positioning within biological tissuesen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee李百祺(Pai-Chi Li),陳士元(Shih-Yuan Chen)
dc.subject.keyword漏溢聲波,雷射誘發導波,時域有限差分法,完美匹配層,zh_TW
dc.subject.keywordleaky acoustic wave,laser-induced guided wave,finite-difference time-domain,perfectly matched layer,en
dc.relation.page69
dc.identifier.doi10.6342/NTU201802075
dc.rights.note有償授權
dc.date.accepted2018-07-27
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  目前未授權公開取用
2.61 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved