Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 海洋研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71154
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor詹森(Sen Jan)
dc.contributor.authorShih-Hong Wangen
dc.contributor.author王釋虹zh_TW
dc.date.accessioned2021-06-17T04:55:50Z-
dc.date.available2020-08-01
dc.date.copyright2018-08-01
dc.date.issued2018
dc.date.submitted2018-07-27
dc.identifier.citationBeal, L. M. (2007). Is interleaving in the Agulhas Current driven by near-inertial velocity perturbations? Journal of Physical Oceanography 37, 932-945, doi:10.1175/JPO3040.1.
Chen, C.-T. and Huang, M.-H. (1996). A mid-depth front separating the South China Sea water and the Philippine Sea water. Journal of Oceanography 52, 17-25, doi:10.1007/BF02236530.
Dillon, T. M. (1982). Vertical overturns: A comparison of Thorpe and Ozmidov length scales. Journal of Geophysical Research: Oceans 87, 9601-9613, doi:10.1029/ JC087iC12p09601.
Ferrari, R. and Wunsch, C. (2009). Ocean circulation kinetic energy: Reservoirs, sources, and sinks. Annual Review of Fluid Mechanics 41, 253-282, doi:10.1146/annurev.fluid.40.111406.102139.
Flament, P. (2002). A state variable for characterizing water masses and their diffusive stability: spiciness. Progress in Oceanography 54, 493-501, doi:10.1016/S0079 -6611(02)00065-4.
Galbraith, P. S. and Kelley, D. E. (1996). Identifying overturns in CTD profiles. Journal of Atmospheric and Oceanic Technology 13, 688-702, doi:10.1175/1520-0426(1996)013<0688:IOICP>2.0.CO;2.
Gregg, M. C. (1989). Scaling turbulent dissipation in the thermocline. Journal of Geophysical Research: Oceans 94, 9686-9698, doi:10.1029/JC094iC07p09686.
Jackett, D. R. and McDougall, T. J. (1985). An oceanographic variable for the characterization of intrusions and water masses. Deep Sea Research Part A, Oceanographic Research Papers 32, 1195-1207, doi:10.1016/0198-0149 (85)90003-2.
Jan, S., Yang, Y. J., Wang, J., Mensah, V., Kuo, T.-H., Chiou, M.-D., Chern, C.-S., Chang, M.-H. and Chien, H. (2015). Large variability of the Kuroshio at 23.75°N east of Taiwan. Journal of Geophysical Research: Oceans 120, 1825-1840, doi:10.1002/2014JC010614.
Johns, W. E., Lee, T. N., Zhang, D., Zantopp, R., Liu, C.-T. and Yang, Y. (2001). The Kuroshio East of Taiwan: Moored Transport Observations from the WOCE PCM-1 Array, Journal of Physical Oceanography 31, 1031-1053, doi:10.1175/1520-0485(2001)031<1031:TKEOTM>2.0.CO;2
Joyce, T. M. (1977). A note on the lateral mixing of water masses. Journal of Physical Oceanography 7, 626-629, doi:10.1175/1520-0485(1977)007<0626:ANOTLM >2.0.CO;2.
Mater, B. D., Venayagamoorthy, S. K., St. Laurent, L. and Moum, J. N. (2015). Biases in Thorpe-scale estimates of turbulence dissipation. Part I: Assessments from large-scale overturns in oceanographic data. Journal of Physical Oceanography 45, 2497-2521, doi:10.1175/JPO-D-14-0128.1.
McDougall, T. J. (2015). Spiciness. Journal of Marine Research 73, 141-152, doi:10.1357/002224015816665589.
Mensah, V., Jan, S., Chang, M. H. and Yang, Y. J. (2015). Intraseasonal to seasonal variability of the intermediate waters along the Kuroshio path east of Taiwan. Journal of Geophysical Research-Oceans 120, 5473-5489, doi:10.1002 /2015jc010768.
Mensah, V., Jan, S., Chiou, M.-D., Kuo, T. H. and Lien, R.-C. (2014). Evolution of the Kuroshio tropical water from the Luzon Strait to the east of Taiwan. Deep-Sea Research Part I 86, 68-81, doi:10.1016/j.dsr.2014.01.005.
Merrifield, S. T., St Laurent, L., Owens, B., Thurnherr, A. M. and Toole, J. M. (2016). Enhanced diapycnal diffusivity in intrusive regions of the Drake Passage. Journal of Physical Oceanography 46, 1309-1321, doi:10.1175/Jpo-D-15-0068.1.
Munk, W. and Wunsch, C. (1998). Abyssal recipes II: Energetics of tidal and wind mixing. Deep-Sea Research Part I 45, 1977-2010, doi:10.1016/S0967-0637(98)00070-3.
Nagai, T., Tandon, A., Yamazaki, H. and Doubell, M. J. (2009). Evidence of enhanced turbulent dissipation in the frontogenetic Kuroshio Front thermocline. Geophysical Research Letters 36, doi:10.1029/2009GL038832.
Nagai, T., Inoue, R., Tandon, A. and Yamazaki, H. (2015). Evidence of enhanced double-diffusive convection below the main stream of the Kuroshio Extension. Journal of Geophysical Research: Oceans 120, 8402-8421, doi:10.1002 /2015jc011288.
Nitani, H. (1972). Beginning of the Kuroshio, in Kuroshio: Its Physical Aspects, edited by H. Stommel and K. Yoshida, pp. 129–163, University of Tokyo Press, Tokyo, Japan.
Nasmyth, P. W. (1970). Oceanic turbulence, PhD thesis, University of British Columbia, Vancouver, Canada.
Osborn, T. R. (1980). Estimates of the local rate of vertical diffusion from dissipation measurements. Journal of Physical Oceanography 10, 83-89, doi:10.1175 /1520-0485(1980)010<0083:EOTLRO>2.0.CO;2.
Richards, K. and Banks, H. (2002). Characteristics of interleaving in the western equatorial Pacific. Journal of Geophysical Research: Oceans 107, 24-1-24-12, doi:10.1029/2001jc000971.
Ruddick, B. (1983). A practical indicator of the stability of the water column to double-diffusive activity. Deep-Sea Research Part a-Oceanographic Research Papers 30, 1105-1107, doi:10.1016/0198-0149(83)90063-8.
Ruddick, B. (1992). Intrusive mixing in a Mediterranean salt lens—Intrusion slopes and dynamical mechanisms. Journal of Physical Oceanography 22, 1274-1285, doi:10.1175/1520-0485(1992)022<1274:IMIAMS>2.0.CO;2.
Ruddick, B. (1997). Differential fluxes of heat and salt: Implications for circulation and ecosystem modeling. Oceanography 10, 122-127, doi:10.5670/ oceanog.1997.04.
Ruddick, B. and Kerr, O. (2003). Oceanic thermohaline intrusions: theory. Progress in Oceanography 56, 483-497, doi:10.1016/S0079-6611(03)00029-6.
Shcherbina, A. Y., Gregg, M. C., Alford, M. H. and Harcourt, R. R. (2009). Characterizing thermohaline intrusions in the North Pacific subtropical frontal zone. Journal of Physical Oceanography 39, 2735-2756, doi:10.1175/ 2009jpo4190.1.
Talley, L. D., G. L. Pickard, W. J. Emery, and J. H. Swift (2011). Descriptive Physical Oceanography: An Introduction, 6th ed., Academic Press, London, 560.
Thompson, A. F., Gille, S. T., Mackinnon, J. A. and Sprintall, J. (2007). Spatial and temporal patterns of small-scale mixing in Drake Passage. Journal of Physical Oceanography 37, 572-592, doi:10.1175/JPO3021.1.
Thorpe, S. A. (1977). Turbulence and mixing in a Scottish Loch. Philosophical Transactions of the Royal Society a-Mathematical Physical and Engineering Sciences 286, 125-181, doi:DOI 10.1098/rsta.1977.0112.
Tian, J., Yang, Q. and Zhao, W. (2009). Enhanced diapycnal mixing in the South China Sea. Journal of Physical Oceanography 39, 3191-3203, doi:10.1175/ 2009JPO3899.1.
Turner, J. S. (1973). Buoyancy effects in fluids, Cambridge : Cambridge University Press, Cambridge, 367.
Wunsch, C. (1998). The work done by the wind on the oceanic general circulation. Journal of Physical Oceanography 28, 2332-2340, doi:10.1175/1520-0485(1998)028<2332:TWDBTW>2.0.CO;2.
Zhang, D., Lee, T. N., Johns, W. E., Liu, C.-T. and Zantopp, R. (2001). The Kuroshio East of Taiwan: Modes of Variability and Relationship to Interior Ocean Mesoscale Eddies, Journal of Physical Oceanography 31, 1054-1074.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71154-
dc.description.abstract本研究使用水下滑翔觀測儀(Seaglider)在臺灣東南部海域進行高解析度的水文觀測資料,探討北太平洋中層水(North Pacific Intermediate Water)和南海中層水(South China Sea Intermediate Water)兩水團之間層疊交錯現象(interleaving)的動力過程。Seaglider為自主式水下載具,利用改變自身浮力的方式,往返於海面至水深1000 m之間取得水文剖面資料。本研究使用在2011、2012及2016年在臺灣東南部海域以沿著三角形測線進行連續性的觀測,其中每航次中皆有數百回從海面至水深1000 m的水文剖面資料。
從Seaglider觀測的水文資料顯示,在東西向N1測線上的西測經常觀測到南海中層水,而在測線的東側經常觀測到北太平洋中層水,並且可在121.8°E至122.1°E之間觀測到分隔兩個不同水團的鋒面。利用觀測的水文資料計算跨等密度面鮮度曲線(diapycnal spiciness curvature)判別水團層疊交錯的現象,從結果顯示N1測線中在中層水(intermediate water) 400 m到800 m之間有南海中層水入侵北太平洋中層水的水團層疊現象,其水平尺度為O(10-100) km,垂直尺度為O(10-100) m。此外,由Turner angle判別海水在穩定分層下是否有鹽指擴展(salt fingering)或擴散對流(diffusive convection)的現象,結果顯示當北太平洋中層水在南海中層水上面時,在介面上多發生擴散對流的現象。相對的,當南海中層水在北太平洋中層水之上時,在介面上多發生鹽指擴展的現象。說明雙重擴散驅動南海中層水和北太平洋中層水在黑潮橫向方向互相入侵,使得在靠近臺灣東岸可以發現到北太平洋中層水,而在124°E還能發現類似南海中層水的原因。
然而,此海域的垂直渦流擴散率κ_ρ (vertical eddy diffusivity of density)會影響上下兩層不同水團混合的速度,但由於缺乏紊流儀在臺灣東部的黑潮裡直接量測紊流,本研究使用2012至2017年研究船在臺灣東部海域三條東西向測線KTV1、KTV2和KTV3上觀測的高垂直解析度水文資料,藉由Thorpe scale方法推算發生密度翻轉(overturning)區域的紊流動能消散率ε (turbulent kinetic energy dissipation rate)和垂直渦流擴散係數。Thorpe scale方法推算結果顯示臺灣東部海域在中層水區域的ε為O(10-9-10-7) W kg-1,κ_ρ為O(10-4-10-3) m2 s-1,而紊流儀量測的結果顯示ε為O(10-10-10-8) W kg-1,κ_ρ為O(10-6-10-3) m2 s-1,相對於一般大洋中κ_ρ在O(10-5) m2 s-1 大的許多,可能造成在水團層疊交錯的區域較快的垂直混合了南海中層水和北太平洋中層水。
zh_TW
dc.description.abstractTo examine the water masses exchanges in the Kuroshio, thousands of high-resolution CTD profiles (salinity, temperature and depth) from the sea surface down to 1000 m depth where acquired by Seagliders across the Kuroshio off the southeast coast of Taiwan. Results from the observations quantify vigorous layered intrusions of South China Sea Water to North Pacific Water transported by the Kuroshio, resulting in the interleaving of the two water masses, particularly in the intermediate layer. The diapycnal spiciness curvature was used to characterize the magnitude of interleaving, suggests that significant interleaving mostly occurred in the intermediate layer between 400 m and 800 m, and the vertical and horizontal length scales were O(10-100) m and O(10-100) km, respectively. The Turner angle, which is a useful parameter for classifying salt fingering and diffusive convection processes, suggests that double diffusion is a dominant process in the interleaving regions. In addition, in order to quantify the turbulence property in the Kuroshio, shipboard hydrographic surveys at the KTV1、KTV2 and KTV3 transect were analyzed. The turbulent kinetic energy dissipation rates (ε) and vertical eddy diffusivity of density (k_ρ) estimated using the Thorpe scale, average value of ε and k_ρ is O(10-7-10-9) W kg-1 and O(10-4-10-3) m2 s-1 at depths between 600 m and 1000 m. This is a plausible cause for the fast mixing of South China Sea Intermediate Water and North Pacific Intermediate Water in the Kuroshio.en
dc.description.provenanceMade available in DSpace on 2021-06-17T04:55:50Z (GMT). No. of bitstreams: 1
ntu-107-R05241103-1.pdf: 12804956 bytes, checksum: 1dfcc31e36e65bb2aed0bc64226645d1 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents誌謝 i
摘要 iii
Abstract v
目錄 vi
圖目錄 viii
表目錄 xiii
第一章 緒論 1
第二章 觀測資料與分析方法 7
2-1 水下滑翔觀測儀資料 7
2-1-1 儀器介紹 7
2-1-2 觀測資料 9
2-2 研究船測水文資料 13
2-2-1 紊流儀 13
2-2-2 研究船測水文資料 15
2-3 衛星測高資料 20
2-4 水團層疊和紊流分析方法 21
2-4-1 Diapycnal spiciness curvature 21
2-4-2 Turner角度 23
2-4-3 Thorpe scale方法 26
第三章 水下滑翔觀測儀觀測結果 29
3-1 N1斷面水文觀測結果 29
3-2 臺灣東部流場對水團分佈之影響 37
3-2-1 西行中尺度渦旋的影響 37
3-2-2 南海中層水的影響 40
3-3 水團層疊交錯現象 42
3-3-1 Diapycnal Spiciness Curvature計算結果 42
3-3-2 Turner angle計算結果 47
第四章 黑潮流域之紊流特性 51
4-1 Thorpe scale推算結果 51
4-2 紊流儀量測結果 55
4-2-1 紊流儀觀測之溫度和鹽度 61
第五章 討論與結論 64
參考文獻 67
dc.language.isozh-TW
dc.title黑潮中水團層疊交錯和紊流特性之觀測與研究zh_TW
dc.titleQuantifying interleaving of water masses and associated turbulence property in the Kuroshioen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee曾若玄(Ruo-Shan Tseng),張明輝(Ming-Huei Chang)
dc.subject.keyword黑潮,水團層疊交錯,紊流,北太平洋水,南海水,zh_TW
dc.subject.keywordKuroshio,interleaving,turbulence,North Pacific water,South China Sea,en
dc.relation.page71
dc.identifier.doi10.6342/NTU201802081
dc.rights.note有償授權
dc.date.accepted2018-07-30
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept海洋研究所zh_TW
顯示於系所單位:海洋研究所

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  目前未授權公開取用
12.5 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved