請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71141完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 邱奕鵬(Yih-Peng Chiou) | |
| dc.contributor.author | Yu-Hsiang Hsu | en |
| dc.contributor.author | 許淯翔 | zh_TW |
| dc.date.accessioned | 2021-06-17T04:55:09Z | - |
| dc.date.available | 2021-08-02 | |
| dc.date.copyright | 2018-08-02 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-07-27 | |
| dc.identifier.citation | 參考文獻
[1] D. M. Pozar, Microwave Engineering, 3rd ed. New York: Wiley, 2005. [2] M. A. Morgan and T. A. Boyd, “Reflectionless filter structures,” IEEE Transactions on Microwave Theory and Techniques, vol. 63, no. 4, pp. 1263-1271, 2015. [3] C. Birdsall and R. White, “Experiments with forbidden regions of open periodic structures: application to absorptive filters,” IEEE Transactions on Microwave Theory and Techniques, vol. MTT-12, no. 3, pp. 197–202, Mar.1964. [4] V. Met, “Absorptive filters for microwave harmonic power,” Proceedings of the IRE, vol. 47, no. 10,, pp. 1762–1769, Oct. 1959. [5] J.-Y. Shao and Y.-S. Lin, “Millimeter-wave bandstop filter with absorptive stopband,” 2014 IEEE MTT-S International Microwave Symposium (IMS2014), pp. 1-4, 2014. [6] Y. Morimoto et al., “A multiharmonic absorption circuit using quasi-multilayered striplines for RF power amplifiers,” IEEE Transactions on Microwave Theory and Techniques, vol. 65, no. 1, pp. 109-118, 2017. [7] M. A. Morgan and T. A. Boyd, “Theoretical and experimental study of a new class of reflectionless filter,” IEEE Transactions on Microwave Theory and Techniques, vol. 59, no. 5, pp. 1214-1221, 2011. [8] J.-Y. Shao and Y.-S. Lin, “Narrowband coupled-line bandstop filter with absorptive stopband,” IEEE Transactions on Microwave Theory and Techniques, vol. 63, no. 10, pp. 3469-3478, 2015. [9] T.-L. Wu, Y.-H. Lin, T.-K. Wang, C.-C. Wang, and S.-T. Chen, “Electromagnetic bandgap power/ground planes for wideband suppression of ground bounce noise and radiated emission in high-speed circuits,” IEEE Transactions on Microwave Theory and Techniques, vol. 53, no. 9, pp. 2935-2942, 2005. [10] C.-K. Shen, S. Chen, and T.-L. Wu, “Compact cascaded-spiral-patch EBG structure for broadband SSN mitigation in WLAN applications,” IEEE Transactions on Microwave Theory and Techniques, vol. 64, no. 9, pp. 2740-2748, 2016. [11] C.-H. Huang and T.-L. Wu, “Analytical design of via lattice for ground planes noise suppression and application on embedded planar EBG structures,” IEEE Transactions on Components, Packaging and Manufacturing Technology, vol. 3, no. 1, pp. 21-30, 2013. [12] Y. Fan and Y. Rahmat-Samii, “Microstrip antennas integrated with electromagnetic band-gap (EBG) structures: a low mutual coupling design for array applications,” IEEE Transactions on Antennas and Propagation, vol. 51, no. 10, pp. 2936-2946, 2003. [13] B. Mohamadzade and M. Afsahi, “Mutual coupling reduction and gain enhancement in patch array antenna using a planar compact electromagnetic bandgap structure,” IET Microwaves, Antennas & Propagation, vol. 11, no. 12, pp. 1719-1725, 2017. [14] S. E. A. Semnani, “Mutual coupling reduction in waveguide slot-array antennas using electromagnetic bandgap (EBG) structures,” IEEE Antennas and Propagation Magazine, vol. 56, no. 3, pp. 68-79, 2014. [15] S. W. Wong and L. Zhu, “EBG-embedded multiple-mode resonator for UWB bandpass filter with improved upper-stopband performance,” IEEE Microwave and Wireless Components Letters, vol. 17, no. 6, pp. 421-423, 2007. [16] C. Olivieri; et al., “Analysis of near-field emissions from common-mode filters based on EBG structures,” IEEE Transactions on Electromagnetic Compatibility, vol. 59, no. 2, pp. 593-599, 2017. [17] A. Orlandi, “Multiple objectives optimization for an EBG common mode filter by using an artificial neural network,” IEEE Transactions on Electromagnetic Compatibility, vol. 60, no. 2, pp. 507-512, 2018. [18] L. Z. D. Sievenpiper, R. F. J. Broas, N. G. Alexopolous, and E. Yablonovitch, “High-impedance electromagnetic surfaces with a forbidden frequency band,” IEEE Transactions on Microwave Theory and Techniques, vol. 47,no. 11, pp. 2059–2074, Nov. 1999. [19] J. D. Baena et al., “Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines,” IEEE Transactions on Microwave Theory and Techniques, vol. 53, no. 4, pp. 1451-1461, 2005. [20] J. Hinojosa, M. Rossi, A. Saura-Rodenas, A. Alvarez-Melcon, and F. L. Martinez-Viviente, “Compact bandstop half-mode substrate integrated waveguide filter based on a broadside-coupled open split-ring resonator,” IEEE Transactions on Microwave Theory and Techniques, pp. 1-10, 2018. [21] E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Physical Review Letters, vol. 58, no. 20, pp. 2059-2062, May. 1987. [22] J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals - Modeling the Flow of Light, 2nd ed. Princeton,New Jersey: princeton university press, 2008. [23] 王士元, “蕈狀結構結合懸置微帶線的多頻EBG 特性,” 國立交通大學碩士論文, 2008年9月. [24] A. P. Feresidis, G. Goussetis, W. Shenhong, and J. C. Vardaxoglou, “Artificial magnetic conductor surfaces and their application to low-profile high-gain planar antennas,” IEEE Transactions on Antennas and Propagation, vol. 53, no. 1, pp. 209-215, 2005. [25] M. Li, Q. L. Li, B. Wang, C. F. Zhou, and S. W. Cheung, “A low-profile dual-polarized dipole antenna using wideband AMC reflector,” IEEE Transactions on Antennas and Propagation, vol. 66, no. 5, pp. 2610-2615, 2018. [26] A. L. T. I. C. Caloz, “Composite right/left-handed transmission metamaterials,” IEEE Microwave Magazine, vol. 5, no. 3, pp. 34 - 50, 2004. [27] 鄭漢維, “蕈狀結構於複合左右手洩漏波天線的應用,” 國立交通大學碩士論文, 2010年8月. [28] S. D. Rogers, “Electromagnetic-bandgap layers for broad-band suppression of TEM modes in power planes,” IEEE Transactions on Microwave Theory and Techniques, vol. 53, no. 8, pp. 2495-2505, 2005. [29] D. R. Jachowski, “Passive enhancement of resonator Q in microwave notch filters,” 2004 IEEE MTT-S International Microwave Symposium Digest, vol. 3, pp. 1315-1318, 2004. [30] D. R. J. A. C. Guyette, “Sub-octave-tunable microstrip notch filter,” IEEE International Symposium on Electromagnetic Compatibility, pp. 99-102, 2009. [31] S.-H. Chien and Y.-S. Lin, “Novel wideband absorptive bandstop filters with good selectivity,” IEEE Access, vol. 5, pp. 18847-18861, 2017. [32] J. Lee, T. C. Lee, and W. J. Chappell, “Lumped-element realization of absorptive bandstop filter with anomalously high spectral isolation,” IEEE Transactions on Microwave Theory and Techniques, vol. 60, no. 8, pp. 2424-2430, 2012. [33] Y. Horii, “A compact band elimination filter composed of a mushroom resonator embedded in a microstrip line substrate,” 2005 Asia-Pacific Microwave Conference Proceedings, vol. 3, pp. 1-4, Dec.2005. [34] M. Kim and D. G. Kam, “A wideband and compact EBG structure with a circular defected ground structure,” IEEE Transactions on Components, Packaging and Manufacturing Technology, vol. 4, no. 3, pp. 496-503, 2014. [35] S. Clavijo, R. E. Diaz, and W. E. McKinzie, “Design methodology for sievenpiper high-impedance surfaces: an artificial magnetic conductor for positive gain electrically small antennas,” IEEE Transactions on Antennas and Propagation, vol. 51, no. 10, pp. 2678-2690, 2003. [36] F. Costa, A. Monorchio, and G. Manara, “Analysis and design of ultra thin electromagnetic absorbers comprising resistively loaded high impedance surfaces,” IEEE Transactions on Antennas and Propagation, vol. 58, no. 5, pp. 1551-1558, 2010. [37] C.-L. Wang, G.-H. Shiue, W.-D. Guo, and R.-B. Wu, “A systematic design to suppress wideband ground bounce noise in high-speed circuits by electromagnetic-bandgap-enhanced split powers,” IEEE Transactions on Microwave Theory and Techniques, vol. 54, no. 12, pp. 4209-4217, 2006. [38] 王天昱, “寬頻縮小化電磁能隙結構之設計,” 國立台灣大學碩士論文, 2017年6月. [39] J. Lee, B. Kim, K. Lee, and W. J. Chappell, “Bandwidth-enhanced lumped-element absorptive bandstop filter topology and its application to LTCC bandstop filter design,” International Journal of Microwave and Wireless Technologies, vol. 7, no. 06, pp. 691-698, 2014. [40] D. Psychogiou, R. Mao, and D. Peroulis, “Series-cascaded absorptive notch-filters for 4G-LTE radios,” 2015 IEEE Radio and Wireless Symposium, pp. 177-179, 2015. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71141 | - |
| dc.description.abstract | 由於近幾年無線通訊的快速發展,通訊技術愈來愈發達且多樣化,對於傳輸速度的要求愈來愈快並且需要將不同通訊系統整合在一起,因此過去不會發生或影響不大的問題隨著通訊發展逐漸嚴重干擾到元件或系統整體的表現,所以對於濾波器的要求愈來愈嚴格,有別於傳統的反射式濾波器,近幾年吸收性濾波器逐漸受到重視。
本論文提出新的吸收性濾波器電路原型,並且根據不同的設計可以得到窄頻及寬頻的吸收性濾波器效果。接著利用蘑菇狀電磁能隙結構(mushroom-type electromagnetic bandgap structure)及電阻和微帶線來實現吸收性濾波器,並提出等效電路模型及設計流程。最後實驗結果也如預期表現出寬頻吸收性濾波器的效果,雖然有些微差異但整體趨勢是一致的,證實了我們電路模型及設計流程的準確及可信度。另外經由實驗與模擬做比較,找出了量測與製程誤差對於元件表現影響較大的主要因素。 | zh_TW |
| dc.description.abstract | Due to the rapid development of wireless communications in recent years, communication technologies have become more and more developed and diversified. The requirements for transmission speeds are getting faster and faster, and different communication systems need to be integrated. Therefore, problems that will not occur or have little impact in the past have arisen. As the development of communications has gradually interfered with the performance of components or systems as a whole, the requirements for filters have become more and more stringent. This is different from conventional reflective filters. Absorbing filters have received increasing attention in recent years.
This research proposes a new prototype of the absorptive filter circuit, and according to different designs can obtain narrowband and broadband absorptive filter effects. Then, a mushroom-type electromagnetic bandgap structure, resistors and microstrip are used to implement an absorptive filter, and an equivalent circuit model and design flow are proposed. Finally, the experimental results also showed the effects of broadband absorption filters as expected. Although there were some slight differences, the overall trend was consistent, confirming the accuracy and reliability of our circuit model and design flow. In addition, through the comparison of experiments and simulations, the main factors affecting the performance of components are found out in the measurement and process errors. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T04:55:09Z (GMT). No. of bitstreams: 1 ntu-107-R04941008-1.pdf: 5432442 bytes, checksum: 3f4f782cb3b0d8b3bb13b27dae4e4c4b (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 誌謝 I
中文摘要 II 英文摘要 III 目錄 IV 圖目錄 VI 表目錄 XI 第一章 簡介 1 1.1 研究動機 1 1.2 章節概要 4 1.3 論文貢獻 5 第二章 文獻回顧 6 2.1 光子晶體 6 2.2 蘑菇狀結構 8 2.2.1 人造磁導體 8 2.2.2 左手材料 10 2.2.3 電磁能隙 13 2.3 無反射式濾波器 16 2.4 吸收性濾波器 20 第三章 吸收性蘑菇狀結構帶阻濾波器 24 3.1 蘑菇狀結構帶阻濾波器 24 3.2 吸收性濾波器電路原型 27 3.3 設計流程 33 3.4 窄頻吸收性蘑菇狀結構帶阻濾波器 34 3.4.1 結構及電路實現過程 34 3.4.2 縮短吸收性濾波器長度的設計 49 3.5 寬頻吸收性蘑菇狀結構帶阻濾波器 65 第四章 實驗與討論 79 4.1 實驗成品及量測結果 79 4.2 量測與製程誤差的探討 84 4.3 與過去文獻做比較 93 第五章 結論 94 參考文獻 95 | |
| dc.language.iso | zh-TW | |
| dc.subject | 蘑菇狀結構 | zh_TW |
| dc.subject | 帶阻濾波器 | zh_TW |
| dc.subject | 吸收性濾波器 | zh_TW |
| dc.subject | bandstop filter | en |
| dc.subject | mushroom-type electromagnetic bandgap structure | en |
| dc.subject | absorptive filter | en |
| dc.title | 建構於蘑菇狀電磁能隙之吸收性帶阻濾波器 | zh_TW |
| dc.title | Absorptive Bandstop Filters Based on Mushroom-Type Electromagnetic Bandgap Structures | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 賴志賢(Chih-Hsien Lai),王子建(Tzyy-Jiann Wang) | |
| dc.subject.keyword | 蘑菇狀結構,吸收性濾波器,帶阻濾波器, | zh_TW |
| dc.subject.keyword | mushroom-type electromagnetic bandgap structure,absorptive filter,bandstop filter, | en |
| dc.relation.page | 99 | |
| dc.identifier.doi | 10.6342/NTU201801777 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2018-07-30 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf 未授權公開取用 | 5.31 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
