Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生態學與演化生物學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71138
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor丁照棣(Chau-Ti Ting)
dc.contributor.authorSheng-Yu Changen
dc.contributor.author張勝瑜zh_TW
dc.date.accessioned2021-06-17T04:54:59Z-
dc.date.available2020-08-24
dc.date.copyright2020-08-24
dc.date.issued2020
dc.date.submitted2020-08-19
dc.identifier.citationAndrade López, J. M., S. M. Lanno, J. M. Auerbach, E. C. Moskowitz, L. A. Sligar et al., 2017 Genetic basis of octanoic acid resistance in Drosophila sechellia: functional analysis of a fine-mapped region. Mol. Ecol. 26: 1148–1160.
Anholt, R. R. H., 2020 Chemosensation and evolution of Drosophila host plant selection. iScience 23: 100799.
Barrett, R. D. H., and D. Schluter, 2008 Adaptation from standing genetic variation. Trends Ecol. Evol. 23: 38–44.
Battlay, P., J. M. Schmidt, A. Fournier-Level, and C. Robin, 2016 Genomic and transcriptomic associations identify a new insecticide resistance phenotype for the selective sweep at the Cyp6g1 locus of Drosophila melanogaster. Genes Genom. Genet. 6: 1573–1581.
Burns, M. P., F. D. Cavallaro, and J. B. Saltz, 2020 Does divergence in habitat breadth associate with species differences in decision making in Drosophila sechellia and Drosophila simulans? Genes 11: 528.
CABI, 2020. Invasive Species Compendium. Wallingford, UK: CAB International. www.cabi.org/isc.
Choi, S. W., and P. F. O’Reilly, 2019 PRSice-2: Polygenic Risk Score software for biobank-scale data. Gigascience 8: 1–6.
Colosimo, P. F., K. E. Hosemann, S. Balabhadra, G. V. Jr, M. Dickson et al., 2005 Widespread parallel evolution in sticklebacks by repeated fixation of Ectodysplasin alleles. Science 307: 1928–1933.
Duneau, D., H. Sun, J. Revah, K. S. Miguel, H. D. Kunerth et al., 2018 Signatures of insecticide selection in the genome of Drosophila melanogaster. Genes Genom. Genet. 8: 3469–3480.
Dworkin, I., and C. D. Jones, 2009 Genetic changes accompanying the evolution of host specialization in Drosophila sechellia. Genetics 181: 721–736.
Dworkin, I., and C. D. Jones, 2015 Evolutionary genetics: You are what you evolve to eat. Curr. Biol. 25: R341–R344.
Etges, W. J., 2019 Evolutionary genomics of host plant adaptation: insights from Drosophila. Curr. Opin. Insect Sci. 36: 96–102.
Everett, L. J., W. Huang, S. Zhou, M. A. Carbone, R. F. Lyman et al., 2020 Gene expression networks in the Drosophila genetic reference panel. Genome Res. 30: 485–496.
Fadda, M., I. Hasakiogullari, L. Temmerman, I. Beets, S. Zels et al., 2019 Regulation of feeding and metabolism by neuropeptide F and short neuropeptide F in invertebrates. Front. Endocrinol. 10: 1–17.
Farine, J. P., L. Legal, B. Moreteau, and J. L. Le Quere, 1996 Volatile components of ripe fruits of Morinda citrifolia and their effects on Drosophila. Phytochemistry 41: 433–438.
Feder, J. L., S. H. Berlocher, J. B. Roethele, H. Dambroski, J. J. Smith et al., 2003 Allopatric genetic origins for sympatric host-plant shifts and race formation in Rhagoletis. Proc. Natl. Acad. Sci. USA 100: 10314–10319.
Green, L., P. Battlay, A. Fournier-Level, R. T. Good, and C. Robin, 2019 Cis- and trans-acting variants contribute to survivorship in a naïve Drosophila melanogaster population exposed to ryanoid insecticides. Proc. Natl. Acad. Sci. USA 116: 10424–10429.
Groen, S. C., and N. K. Whiteman, 2016 Using Drosophila to study the evolution of herbivory and diet specialization. Curr. Opin. Insect Sci. 14: 66–72.
Higa, I., and Y. Fuyama, 1993 Genetics of food preference in Drosophila sechellia - I. Responses to food attractants. Genetica 88: 129–136.
Hoekstra, H. E., R. J. Hirschmann, R. A. Bundey, P. A. Insel, and J. P. Crossland, 2006 A single amino acid mutation contributes to adaptive beach mouse color pattern. Science 313: 101–104.
Hommel, G., 1988 A Stagewise Rejective multiple test procedure based on a modified Bonferroni test. Biometrika 75(2): 383.
Huang, Y., and D. Erezyilmaz, 2015 The genetics of resistance to morinda fruit toxin during the postembryonic stages in Drosophila sechellia. Genes Genom. Genet. 5: 1973–1981.
Huang, W., A. Massouras, Y. Inoue, J. Peiffer, M. Ràmia et al., 2014 Natural variation in genome architecture among 205 Drosophila melanogaster Genetic Reference Panel lines. Genome Res. 24: 1193–1208.
Hungate, E. A., E. J. Earley, I. A. Boussy, D. A. Turissini, C. T. Ting et al., 2013 A locus in Drosophila sechellia affecting tolerance of a host plant toxin. Genetics 195: 1063–1075.
Ito, S., S. Fujiyama-Nakamura, S. Kimura, J. Lim, Y. Kamoshida et al., 2012 Epigenetic silencing of core histone genes by HERS in Drosophila. Mol. Cell 45: 494–504.
Jones, C. D., 2001 The genetic basis of larval resistance to a host plant toxin in Drosophila sechellia. Genet. Res. 78: 225–233.
Lanno, S. M., S. M. Gregory, S. J. Shimshak, M. K. Alverson, K. Chiu et al., 2017 Transcriptomic analysis of octanoic acid response in Drosophila sechellia using RNA-sequencing. Genes Genom. Genet. 7(12): 3867-3873
Lanno, S. M., and J. D. Coolon, 2019 Derived esterase activity in Drosophila sechellia contributes to evolved octanoic acid resistance. Insect Mol. Biol. 28: 798–806.
Lanno, S. M., I. Lam, Z. Drum, S. C. Linde, S. M. Gregory et al., 2019a Genomics analysis of L-DOPA exposure in Drosophila sechellia. Genes Genom. Genet. 9: 3973–3980.
Lanno, S. M., S. J. Shimshak, R. D. Peyser, S. C. Linde, and J. D. Coolon, 2019b Investigating the role of Osiris genes in Drosophila sechellia larval resistance to a host plant toxin. Ecol. Evol. 9: 1922–1933.
Lavista-Llanos, S., A. Svatoš, M. Kai, T. Riemensperger, S. Birman et al., 2014 Dopamine drives Drosophila sechellia adaptation to its toxic host. eLife 3: 1–17.
Lee, K. S., K. H. You, J. K. Choo, Y. M. Han, and K. Yu, 2004 Drosophila short neuropeptide F regulates food intake and body size. J. Biol. Chem. 279: 50781–50789.
Legal, L., J. R. David, and J. M. Jallon, 1992 Toxicity and attraction effects produced by Morinda citrifolia fruits on the Drosophila melanogaster complex of species. Chemoecology 3: 125–129.
Liang, B. L., and Y. Fuyama, 2000 Can D. simulans breed on Morinda citrifolia, the host plant of D. sechellia? Dros. Inf. Serv. 2000: 10-13.
Luca, F., G. H. Perry, and A. Di Rienzo, 2010 Evolutionary adaptations to dietary changes. Annu. Rev. Nutr. 30: 291-314.
MacKay, T. F. C., S. Richards, E. A. Stone, A. Barbadilla, J. F. Ayroles et al., 2012 The Drosophila melanogaster Genetic Reference Panel. Nature 482: 173–178.
McBride, C. S., 2007 Rapid evolution of smell and taste receptor genes during host specialization in Drosophila sechellia. Proc. Natl. Acad. Sci. USA 104: 4996–5001.
McBride, C. S., and J. R. Arguello, 2007 Five Drosophila genomes reveal nonneutral evolution and the signature of host specialization in the chemoreceptor superfamily. Genetics 177: 1395–1416.
Mitchell, C. L., C. E. Latuszek, K. R. Vogel, I. M. Greenlund, E. Hobmeier et al., 2017 α-amanitin resistance in Drosophila melanogaster: A genome-wide association approach. PLoS One 12: e0173162.
Peyser, R. D., S. M. Lanno, S. J. Shimshak, and J. D. Coolon, 2017 Analysis of cytochrome P450 contribution to evolved plant toxin resistance in Drosophila sechellia. Insect Mol. Biol. 26: 715–720.
Prieto-Godino, L. L., R. Rytz, S. Cruchet, B. Bargeton, L. Abuin et al., 2017 Evolution of acid-sensing olfactory circuits in Drosophilids. Neuron 93: 661-676.
Rane, R. V., D. F. Clarke, S. L. Pearce, G. Zhang, A. A. Hoffmann et al., 2019 Detoxification genes differ between cactus-, fruit-, and flower-feeding Drosophila. J. Hered. 110: 80–91.
R’Kha, S., P. Capy, and J. R. David, 1991 Host-plant specialization in the Drosophila melanogaster species complex: a physiological, behavioral, and genetical analysis. Proc. Natl. Acad. Sci. USA 88: 1835–1839.
Root, C. M., K. I. Ko, A. Jafari, and J. W. Wang, 2011 Presynaptic facilitation by neuropeptide signaling mediates odor-driven food search. Cell 145: 133–144.
Schmidt, J. M., P. Battlay, R. S. Gledhill-Smith, R. T. Good, C. Lumb et al., 2017 Insights into DDT resistance from the Drosophila melanogaster Genetic Reference Panel. Genetics 207: 1181–1193.
Smith, C. R., C. Morandin, M. Noureddine, and S. Pant, 2008 Conserved roles of Osiris genes in insect development, polymorphism and protection. J. Evol. Biol. 31: 516–529.
Steiner, C. C., J. N. Weber, and H. E. Hoekstra, 2007 Adaptive variation in beach mice produced by two interacting pigmentation genes. PLoS Biol. 5: 1880–1889.
Tam, V., N. Patel, M. Turcotte, Y. Bossé, G. Paré et al., 2019 Benefits and limitations of genome-wide association studies. Nat. Rev. Genet. 20: 467–484.
Tishkoff, S. A., F. A. Reed, A. Ranciaro, B. F. Voight, C. C. Babbitt et al., 2007 Convergent adaptation of human lactase persistence in Africa and Europe. Nat. Genet. 39: 31–40.
Toshima, N., C. Hara, C. J. Scholz, and T. Tanimura, 2014 Genetic variation in food choice behaviour of amino acid-deprived Drosophila. J. Insect Physiol. 69: 89–94.
Wei, G. J., C. T. Ho, and A. N. S. Huang, 2011 Analysis of volatile compounds in noni fruit (Morinda citrifolia L.) juice by steam distillation-extraction and solid phase microextraction coupled with GC/AED and GC/MS. J. Food Drug Anal. 19: 33–39.
Wilcoxon, F., 1946 Individual comparisons of grouped data by ranking methods. J. Econ. Entomol. 39: 269.
Yassin, A., 2017 Drosophila yakuba mayottensis, a new model for the study of incipient ecological speciation. Fly 11: 37–45.
Yassin, A., V. Debat, H. Bastide, N. Gidaszewski, J. R. David et al., 2016 Recurrent specialization on a toxic fruit in an island Drosophila population. Proc. Natl. Acad. Sci. USA 113: 4771–47
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71138-
dc.description.abstract食性的適應在物種分化的過程中扮演重要的角色,但是我們對於在食性適應的早期,生物在遺傳上有什麼樣的改變還不甚了解。在果蠅食性適應的例子中,有些果蠅能夠去取食諾麗果這種對於大部分的果蠅物種都有毒的食物,例如塞席爾果蠅。本研究利用了黃果蠅這種目前已知在不同品系之間有對於諾麗果毒素存在耐受性差異的物種,去了解食性適應之前有什麼樣的基因參與了諾麗果毒素的解毒。總共117個來自北美的黃果蠅品系參與了全基因體關聯性分析,我們發現到不同性別以及品系間都存在著諾麗果毒素耐受性的差異。在將近四百萬個遺傳變異中有116個在不同性別中都被發現和諾麗果毒素耐受性有相關,而這些遺傳變異大多座落於非編碼區。在和塞席爾果蠅及其他近源種果蠅相比較之後發現,大部分的遺傳變異只出現在黃果蠅中,而且是在種內既有的遺傳變異。我們更近一步的利用這些遺傳變異去預測非洲族群的黃果蠅對於諾麗果毒素的耐受性並且和真實的耐受性比較之後,讓我們了解到非洲族群和北美的族群可能存在著不同的機制參與諾麗果毒素的解毒。這些發現讓我們更了解在生物食性適應的早期在遺傳上有什麼變化。zh_TW
dc.description.abstractDiet adaptation is an important cause of host-associated differentiation. Many studies have focused on the species in which host specialization has driven speciation or population differentiation. However, it is still unknown the underlying genetic changes evolved earlier during specialization. In Drosophila, noni fruit is toxic to most species except very few species such as D. sechellia. Multiple mechanisms have been involved in the noni specialization in D. sechellia. To understand early genetic changes during diet adaptation, we chose D. melanogaster that exhibits some tolerance variation to noni fruit. We performed a genome-wide association study (GWAS) to reveal the genetic basis of noni-toxin tolerance in D. melanogaster using 117 DGRP (Drosophila Genetic Reference Panel) lines. We found considerable sexual and strain variation of noni-toxin tolerance. Among the ~4 million variants detected in the 117 DGRP lines, 116 candidate variants shared between the two sexes were associated with the noni-toxin tolerance. These candidate variants were mainly located in non-coding regions of the genome. The genetic basis of toxin tolerance in D. melanogaster is different from that in D. sechellia because most candidate variants were derived alleles, which were not present in the closely related species including D. sechellia. These candidate variants were mainly coming from standing variation, which also exists in ancestral African populations. The correction between these candidate variants identified from the American DGRP population and the observed noni-fruit tolerance in the two African DPGP2 populations, suggesting that the underlying genetic bases of tolerance are different. These findings advance our understanding of the underlying genetic change of early evolution in diet adaptation.en
dc.description.provenanceMade available in DSpace on 2021-06-17T04:54:59Z (GMT). No. of bitstreams: 1
U0001-1908202005033800.pdf: 6809804 bytes, checksum: ebc58a88dbefbd5bc2a52649e2028211 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents摘要 i
Abstract ii
Contents iv
List of Figures vi
List of Tables viii
Introduction 1
Materials and methods 7
Results 14
Strain and sexual variation of noni-toxin tolerance in the DGRP population 14
Genome-Wide Association Study of Noni-toxin tolerance in 117 DGRP lines 16
Candidate genes from the GWAS analysis 22
The source of genetic variation 27
Tolerance prediction and the noni-toxin tolerance variation in the African (DPGP2) population 30
Discussion 33
Recurrent specialization in Drosophila species 33
Natural variation of Noni-toxin tolerance in Drosophila melanogaster 35
Candidate genes in GWAS analysis 38
Noni-toxin tolerance in African populations 40
Literature Cited 42
Appendix 47
dc.language.isoen
dc.subject黃果蠅zh_TW
dc.subject食性適應zh_TW
dc.subject既有的遺傳變異zh_TW
dc.subjectdiet adaptationen
dc.subjectDGRPen
dc.subjectDPGP2en
dc.subjectstanding variationen
dc.title全基因體關聯性分析尋找黃果蠅諾麗果毒性耐受基因zh_TW
dc.titleGenome-Wide Association Study of the Noni-toxin Tolerance in Drosophila melanogasteren
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee方淑(Shu Fang),李壽先(Shou-Hsien Li),李承叡(Cheng-Ruei Lee),葉淑丹(Shu-Dan Yeh)
dc.subject.keyword食性適應,黃果蠅,既有的遺傳變異,zh_TW
dc.subject.keyworddiet adaptation,DGRP,DPGP2,standing variation,en
dc.relation.page59
dc.identifier.doi10.6342/NTU202004064
dc.rights.note有償授權
dc.date.accepted2020-08-19
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生態學與演化生物學研究所zh_TW
顯示於系所單位:生態學與演化生物學研究所

文件中的檔案:
檔案 大小格式 
U0001-1908202005033800.pdf
  未授權公開取用
6.65 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved