Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71130
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張書瑋(Shu-Wei Chang)
dc.contributor.authorYu-Hsuan Kuanen
dc.contributor.author關宇軒zh_TW
dc.date.accessioned2021-06-17T04:54:32Z-
dc.date.available2021-08-03
dc.date.copyright2018-08-03
dc.date.issued2018
dc.date.submitted2018-07-30
dc.identifier.citation[1] P. Thoniyot, M. J. Tan, A. A. Karim, D. J. Young, and X. J. Loh, 'Nanoparticle–hydrogel composites: Concept, design, and applications of these promising, multi‐functional materials,' Advanced Science, vol. 2, no. 1-2, 2015.
[2] L. S. Nair and C. T. Laurencin, 'Biodegradable polymers as biomaterials,' Progress in polymer science, vol. 32, no. 8, pp. 762-798, 2007.
[3] B. D. Ulery, L. S. Nair, and C. T. Laurencin, 'Biomedical applications of biodegradable polymers,' Journal of polymer science Part B: polymer physics, vol. 49, no. 12, pp. 832-864, 2011.
[4] E. M. Ahmed, F. S. Aggor, A. M. Awad, and A. T. El-Aref, 'An innovative method for preparation of nanometal hydroxide superabsorbent hydrogel,' Carbohydrate polymers, vol. 91, no. 2, pp. 693-698, 2013.
[5] E. M. Ahmed, 'Hydrogel: Preparation, characterization, and applications: A review,' Journal of Advanced Research, vol. 6, no. 2, pp. 105-121, 2015/03/01/ 2015.
[6] D. J. Beebe et al., 'Functional hydrogel structures for autonomous flow control inside microfluidic channels,' Nature, vol. 404, no. 6778, pp. 588-590, 2000.
[7] J. Patil, M. Kamalapur, S. Marapur, and D. Kadam, 'Ionotropic gelation and polyelectrolyte complexation: the novel techniques to design hydrogel particulate sustained, modulated drug delivery system: a review,' Digest Journal of Nanomaterials and Biostructures, vol. 5, no. 1, pp. 241-248, 2010.
[8] N. A. Peppas, Biomedical applications of hydrogels handbook. Springer Science & Business Media, 2010.
[9] N. S. Satarkar, D. Biswal, and J. Z. Hilt, 'Hydrogel nanocomposites: a review of applications as remote controlled biomaterials,' Soft Matter, vol. 6, no. 11, pp. 2364-2371, 2010.
[10] S.-h. Hsu et al., 'Water-based synthesis and processing of novel biodegradable elastomers for medical applications,' Journal of Materials Chemistry B, vol. 2, no. 31, pp. 5083-5092, 2014.
[11] F.-Y. Hsieh, H.-H. Lin, and S.-h. Hsu, '3D bioprinting of neural stem cell-laden thermoresponsive biodegradable polyurethane hydrogel and potential in central nervous system repair,' Biomaterials, vol. 71, pp. 48-57, 2015.
[12] F.-Y. Hsieh, L. Tao, Y. Wei, and S.-h. Hsu, 'A novel biodegradable self-healing hydrogel to induce blood capillary formation,' NPG Asia Materials, vol. 9, no. 3, p. e363, 2017.
[13] S.-h. Hsu, W.-C. Chang, and C.-T. Yen, 'Novel flexible nerve conduits made of water-based biodegradable polyurethane for peripheral nerve regeneration,' Journal of Biomedical Materials Research Part A, vol. 105, no. 5, pp. 1383-1392, 2017.
[14] C.-W. Ou, C.-H. Su, U. S. Jeng, and S.-h. Hsu, 'Characterization of Biodegradable Polyurethane Nanoparticles and Thermally Induced Self-Assembly in Water Dispersion,' ACS Applied Materials & Interfaces, vol. 6, no. 8, pp. 5685-5694, 2014/04/23 2014.
[15] K.-C. Hung, C.-S. Tseng, and S.-h. Hsu, 'Synthesis and 3D Printing of Biodegradable Polyurethane Elastomer by a Water-Based Process for Cartilage Tissue Engineering Applications,' Advanced Healthcare Materials, vol. 3, no. 10, pp. 1578-1587, 2014.
[16] Lin, Hsin-Hua, et al. 'Preparation and characterization of a biodegradable polyurethane hydrogel and the hybrid gel with soy protein for 3D cell-laden bioprinting.' Journal of Materials Chemistry B 4.41 (2016): 6694-6705.
[17] J. E. Mark, Physical properties of polymers handbook. Springer, 2007.
[18] Y. Dong, S. Liao, M. Ngiam, C. K. Chan, and S. Ramakrishna, 'Degradation behaviors of electrospun resorbable polyester nanofibers,' Tissue Engineering Part B: Reviews, vol. 15, no. 3, pp. 333-351, 2009.
[19] M. C. Serrano, E. J. Chung, and G. Ameer, 'Advances and applications of biodegradable elastomers in regenerative medicine,' Advanced Functional Materials, vol. 20, no. 2, pp. 192-208, 2010.
[20] J. Chlupac, E. Filova, and L. Bacakova, 'Blood vessel replacement: 50 years of development and tissue engineering paradigms in vascular surgery,' Physiological Research, vol. 58, p. S119, 2009.
[21] Y. Zhang, E. A. Matsumoto, A. Peter, P.-C. Lin, R. D. Kamien, and S. Yang, 'One-step nanoscale assembly of complex structures via harnessing of an elastic instability,' Nano letters, vol. 8, no. 4, pp. 1192-1196, 2008.
[22] B. J. Alder and T. E. Wainwright, 'Studies in molecular dynamics. I. General method,' The Journal of Chemical Physics, vol. 31, no. 2, pp. 459-466, 1959.
[23] A. Rahman, 'Correlations in the motion of atoms in liquid argon,' Physical Review, vol. 136, no. 2A, p. A405, 1964.
[24] J. Irving and J. G. Kirkwood, 'The statistical mechanical theory of transport processes. IV. The equations of hydrodynamics,' The Journal of chemical physics, vol. 18, no. 6, pp. 817-829, 1950.
[25] D. Hossain, M. Tschopp, D. Ward, J. Bouvard, P. Wang, and M. Horstemeyer, 'Molecular dynamics simulations of deformation mechanisms of amorphous polyethylene,' Polymer, vol. 51, no. 25, pp. 6071-6083, 2010.
[26] W. L. Mattice and U. W. Suter, Conformational theory of large molecules: the rotational isomeric state model in macromolecular systems. Wiley-Interscience, 1994.
[27] M. P. Allen, 'Introduction to molecular dynamics simulation,' Computational soft matter: from synthetic polymers to proteins, vol. 23, pp. 1-28, 2004.
[28] D. Frenkel, B. Smit, J. Tobochnik, S. R. McKay, and W. Christian, 'Understanding Molecular Simulation,' Computers in Physics, vol. 11, no. 4, pp. 351-354, 1997.
[29] D. C. Rapaport, R. L. Blumberg, S. R. McKay, and W. Christian, 'The art of molecular dynamics simulation,' Computers in Physics, vol. 10, no. 5, pp. 456-456, 1996.
[30] P. Hobza, M. Kabeláč, J. Šponer, P. Mejzlík, and J. Vondrášek, 'Performance of empirical potentials (AMBER, CFF95, CVFF, CHARMM, OPLS, POLTEV), semiempirical quantum chemical methods (AM1, MNDO/M, PM3), and ab initio Hartree–Fock method for interaction of DNA bases: Comparison with nonempirical beyond Hartree–Fock results,' Journal of computational chemistry, vol. 18, no. 9, pp. 1136-1150, 1997.
[31] P. Dauber‐Osguthorpe, V. A. Roberts, D. J. Osguthorpe, J. Wolff, M. Genest, and A. T. Hagler, 'Structure and energetics of ligand binding to proteins: Escherichia coli dihydrofolate reductase‐trimethoprim, a drug‐receptor system,' Proteins: Structure, Function, and Bioinformatics, vol. 4, no. 1, pp. 31-47, 1988.
[32] C. Manual, 'Force field based simulations,' MSI, San Diego, CA, 1998.
[33] M. P. Allen and D. J. Tildesley, Computer simulation of liquids. Oxford university press, 1989.
[34] A. Dalke and K. Schulten, 'Using TCL for molecular visualization and analysis,' in Proceedings of the Pacific Symposium on Biocomputing, 1997, vol. 97, pp. 85-96.
[35] C. D. Bruce, M. L. Berkowitz, L. Perera, and M. D. Forbes, 'Molecular dynamics simulation of sodium dodecyl sulfate micelle in water: micellar structural characteristics and counterion distribution,' The Journal of Physical Chemistry B, vol. 106, no. 15, pp. 3788-3793, 2002.
[36] A. V. Verkhovtsev, A. V. Yakubovich, G. B. Sushko, M. Hanauske, and A. V. Solov’yov, 'Molecular dynamics simulations of the nanoindentation process of titanium crystal,' Computational Materials Science, vol. 76, pp. 20-26, 2013.
[37] Hoffman, Allan S. 'Hydrogels for biomedical applications.' Advanced drug delivery reviews 64 (2012): 18-23.
[38] Han, Ping, and David M. Bartels. 'Temperature dependence of oxygen diffusion in H 2 O and D 2 O.' The Journal of physical chemistry 100.13 (1996): 5597-5602.
[39] Tamai, Yoshinori, and Hideki Tanaka. 'Permeation of small penetrants in hydrogels.' Fluid Phase Equilibria 144.1-2 (1998): 441-448.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71130-
dc.description.abstract如今,生物降解水膠已成為許多生物應用的熱門材料。它們不僅具有與天然軟組織相似的機械性能,而且還具有在人體中使用後被降解的功能。最近,一種新型水性生物可降解聚氨酯已經被合成並顯示出在生物醫學應用中具有很大的潛力。此材料具有優良的生物相容性,生物降解能力和機械性質。且已被作為3D列印墨水,並成功製造出神經細胞培養的載體。然而,可降解聚氨酯的成膠機制以及軟鏈段與生物降解聚氨酯性質之間的關係在實驗上尚未明確。
本研究旨在透過原子尺度分子動力模擬探討生物可降解聚氨酯的成膠機制。為了瞭解成膠行為,我們模擬了3種以PCL和PLA為主要軟鏈成分之聚氨酯模型。並藉由分析成膠過程不同階段的結構與性質差異性,包括分子間氫鍵、與水間氫鍵、頭尾端距與表面個數,探討其中成膠的關聯性,並發現聚氨酯奈米粒子間的堆積作用,會是影響成膠的關鍵。
本研究也利用模擬探討氧氣在生物可降解聚氨酯水膠內部的擴散行為。為了瞭解水膠之氧氣擴散,我們透過模擬不同的生物可降解聚氨酯水膠之網狀結構模型。並分析了氧氣在模型中的運動軌跡以及在運動時受到水分子與聚氨酯高分子的影響。並發現氧氣在水膠中擴散時,容易與聚氨酯分子產生吸附,降低擴散速率。
zh_TW
dc.description.abstractBiodegradable hydrogels have become popular materials for many biological applications. They not only exhibit similar mechanical properties as natural soft tissues but also have the ability to be degraded in human body after their useful lifetime. Recently, a novel waterborne biodegradable polyurethane(WDPU) has been synthesized and shown to have great potential in biomedical applications. It is synthesized by a green water-based process, and has great biocompatibility, biodegradability, and mechanical properties. Furthermore, it has been used as a 3D printing ink recently to create a neural cell culture carrier successfully. However, the gelation mechanisms of WDPU and the relationship between the soft segments of the polymer and the material properties of WDPU at macro-scale are still not clear.
In this study, we aim to explore the gelation mechanisms of WDPU through a full atomistic simulation approach. To investigate gel formation, we build three different WDPU models with PLA and PCL as soft segments, and analyze differences in structure and properties at different stage of gelation process.
Also, we use simulations to investigate the diffusion behavior of oxygen in WDPU hydrogels. In order to understand the oxygen diffusion of WDPU hydrogel, we build the network structure models of different WDPU hydrogels. We analyze the trajectory of oxygen in the model and the movement of oxygen in WDPU. We found that when oxygen diffuses in the hydrogel, it easily adsorbs with the polyurethane molecules and reduces the diffusion rate.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T04:54:32Z (GMT). No. of bitstreams: 1
ntu-107-R05521217-1.pdf: 4944302 bytes, checksum: 98b717bb55eea5817f56bee45086dda7 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents致謝 I
摘要 II
ABSTRACT III
目錄 IV
圖表目錄 VII
表格目錄 XI
第一章 介紹 1
1.1背景資料 1
1.2文獻回顧 3
1.2.1 可生物降解聚氨酯 3
1.2.2 分子動力模擬 9
1.3論文目的 10
1.4論文方向 10
第二章 方法 11
2.1 分子動力模擬 11
2.1.1 設計條件 12
2.1.2 CVFF力場 13
2.1.3 週期性邊界條件 14
2.2 模型設計 15
2.3 模擬過程 17
2.3.1 單顆奈米粒子在水溶液中 19
2.3.2 四顆奈米粒子在固分30%水溶液中 19
2.3.3 無定型聚氨酯在固分30%水溶液中 20
2.3.4 水中之氧氣擴散 21
2.3.5 水膠中之氧氣擴散 22
2.4 分析方法 23
2.4.1 迴轉半徑 23
2.4.2 頭尾端距(End to end distance) 23
2.4.3 氫鍵 24
2.4.4 表面個數 24
2.4.5 擴散係數 25
2.4.6 周圍質量 26
第三章 聚氨酯之成膠機制 27
3.1 聚氨酯奈米粒子差異性 28
3.1.1 迴轉半徑分析 29
3.1.2 分子結構 30
3.1.3 聚氨酯分子間氫鍵分析 31
3.1.4 聚氨酯與水間氫鍵分析 33
3.2 奈米粒子間交互作用 40
3.2.1 聚氨酯間氫鍵分析 40
3.2.2 聚氨酯與水間氫鍵分析 43
3.3 聚氨酯水膠差異性 45
3.3.1 分子結構 46
3.3.2 氫鍵分析 48
3.4 討論 50
第四章 聚氨酯水膠之氧氣擴散 52
4.1 水中之氧氣擴散 52
4.2 孔洞寬度對水膠之氧氣擴散影響 53
4.2.1 PCL75DL25擴散分析 54
4.2.2 PCL75LL25擴散分析 59
4.3 水膠之氧氣擴散 62
4.4 討論 64
第五章 結論與未來展望 65
5.1 結論 65
5.2 未來展望 66
6 參考文獻 67
dc.language.isozh-TW
dc.title以分子動力模擬探討水性生物可降解聚氨酯的成膠機制以及氧氣擴散性質zh_TW
dc.titleThe gelation mechanism and oxygen diffusion property of waterborne biodegradable polyurethane hydrogel:
Molecular dynamics approach
en
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳俊杉(Chuin-Shan Chen),徐善慧(Shan-hui Hsu)
dc.subject.keyword分子動力模擬,水膠,生物可降聚氨酯,zh_TW
dc.subject.keywordmolecular dynamics,waterborne biodegradable polyurethane,hydrogel,en
dc.relation.page71
dc.identifier.doi10.6342/NTU201802072
dc.rights.note有償授權
dc.date.accepted2018-07-30
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept土木工程學研究所zh_TW
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  目前未授權公開取用
4.83 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved