Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71105
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳育任(Yuh-Renn Wu)
dc.contributor.authorTian-Jing Jiangen
dc.contributor.author江天靖zh_TW
dc.date.accessioned2021-06-17T04:53:14Z-
dc.date.available2020-08-24
dc.date.copyright2020-08-24
dc.date.issued2020
dc.date.submitted2020-08-20
dc.identifier.citation1. Sheu, B., et al. EP1: Moore's law challenges below 10nm: Technology, design and economic implications. in 2015 IEEE International Solid-State Circuits Conference - (ISSCC) Digest of Technical Paper, 2015
2. Ferain, I., Colinge, C. and Colinge, J., Multigate transistors as the future of classical metal–oxide–semiconductor field-effect transistors. Nature 479, 310–316, 2011
3. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, Electric Field Effect in Atomically Thin Carbon Films. Science, Vol. 306, Issue 5696, pp. 666-669, 2004
4. Fröhlich, J., Pfister, C, On the absence of spontaneous symmetry breaking and of crystalline ordering in two-dimensional systems. Commun.Math. Phys. 81, 277–298, 1981
5. N. D. Mermin and H. Wagner, Absence of Ferromagnetism or Antiferromagnetism in One- or Two-Dimensional Isotropic Heisenberg Models. Phys. Rev. Lett. 17, 1307, 1966
6. Xinming Li, Li Tao, Zefeng Chen, Hui Fang, Xuesong Li, Xinran Wang, Jian-Bin Xu1, and Hongwei Zhu, Graphene and related two-dimensional materials: Structure-property relationships for electronics and optoelectronics. Applied Physics Reviews 4 021306, 2017
7. Zhengyu He, et al. Atomic Structure and Dynamics of Metal Dopant Pairs in Graphene. Nano Letters 14 (7), 3766-3772, 2014
8. Minjoung Jang, The Potential Power of Graphene. Student International Journal of Research, ISSN 2508-1454(online) Volume-3, Issue-4, 2016
9. Akbar, F., Kolahdouz, M., Larimian, S. et al. Graphene synthesis, characterization and its applications in nanophotonics, nanoelectronics, and nanosensing. J Mater Sci: Mater Electron 26, 4347–4379, 2015
10. A. Celis, M. N.Nair, A. Taleb-Ibrahimi, E. H. Conrad, C. Berger, W. A. de Heer and A. Tejeda, Graphene nanoribbons: fabrication, properties and devices. J. Phys. D: Appl. Phys. 49 143001, 2016
11. Francesco Bonaccorso, Antonio Lombardo, Tawfique Hasan, Zhipei Sun, Luigi Colombo, Andrea C. Ferrari, Production and processing of graphene and 2d crystals. Materials Today, Volume 15, Issue 12, Pages 564-589, 2012
12. Raccichini, R., et al., The role of graphene for electrochemical energy storage. Nature Materials, 14: p. 271, 2014
13. Rebecca S. Edwards and Karl S. Coleman, Graphene synthesis: relationship to applications. Nanoscale, 5, 38-51, 2013
14. G. Wang, B. Wang, J. Park, Y. Wang, B. Sun and J. Yao, Highly efficient and large-scale synthesis of graphene by electrolytic exfoliation. Carbon, 47, 3242–3246, 2009
15. Ruan M, Hu Y, Guo Z, et al. Epitaxial graphene on silicon carbide: Introduction to structured graphene. MRS Bulletin. 37(12):1138-1147, 2012
16. Guo, B., et al., Graphene Doping: A Review. Vol. 1, 80-89, 2011
17. Wei, D., et al., Synthesis of N-Doped Graphene by Chemical Vapor Deposition and Its Electrical Properties. Nano Letters, 9(5): p. 1752-1758, 2009
18. Hugo Pinto and Alexander Markevich, Electronic and electrochemical doping of graphene by surface adsorbates. Beilstein J. Nanotechnol ,5, 1842–1848, 2014
19. Schedin, F., et al., Detection of individual gas molecules adsorbed on graphene. Nature Materials, 6: p. 652, 2007
20. Schwierz, F., Graphene transistors. Nature Nanotechnology, 2010. 5: p. 487.
21. Han, M.Y., et al., Energy Band-Gap Engineering of Graphene Nanoribbons. Physical Review Letters, 98(20): p. 206805, 2007
22. Aihua, Z., et al., Bandgap engineering of zigzag graphene nanoribbons by manipulating edge states via defective boundaries. Nanotechnology, 22(43): p. 435702, 2011
23. Zhang, Y., et al., Direct observation of a widely tunable bandgap in bilayer graphene. Nature, 459: p. 820, 2009
24. Reina, A., et al., Transferring and Identification of Single- and Few-Layer Graphene on Arbitrary Substrates. The Journal of Physical Chemistry C, 112(46): p. 17741-17744, 2008
25. Jinhong Du, Hui-Ming Cheng, The Fabrication, Properties, and Uses of Graphene/Polymer Composites. Macromol. Chem. Phys., 213: 1060-1077, 2012
26. Mohanty, N. and V. Berry, Graphene-Based Single-Bacterium Resolution Biodevice and DNA Transistor: Interfacing Graphene Derivatives with Nanoscale and Microscale Biocomponents. Nano Letters, 8(12): p. 4469-4476, 2008
27. Wang, T., Huang, D., Yang, Z. et al., A Review on Graphene-Based Gas/Vapor Sensors with Unique Properties and Potential Applications. Nano-Micro Lett. 8, 95–119, 2016
28. Gints Kucinskis, Gunars Bajars, Janis Kleperis, Graphene in lithium ion battery cathode materials: A review. Journal of Power Sources, Volume 240, Pages 66-79, 2013
29. Losurdo, M., et al., Graphene CVD growth on copper and nickel: role of hydrogen in kinetics and structure. Physical Chemistry Chemical Physics, 13(46): p. 20836-20843, 2011
30. X. Li, W. Cai, L. Colombo, and R. S. Ruoff, Evolution of Graphene Growth on Ni and Cu by Carbon Isotope Labeling. Nano Letters, vol. 9, no. 12, pp. 4268-4272, 2009
31. Robert M. Jacobberger and Michael S. Arnold, Graphene Growth Dynamics on Epitaxial Copper Thin Films. Chemistry of Materials, 25, (6), 871-877, 2013
32. L. Gao, J. R. Guest, and N. P. Guisinger, Epitaxial Graphene on Cu(111). Nano Letters, vol. 10, no. 9, pp. 3512-3516, 2010
33. X. Li et al., Large-Area Graphene Single Crystals Grown by Low-Pressure Chemical Vapor Deposition of Methane on Copper. Journal of the American Chemical Society, vol. 133, no. 9, pp. 2816-2819, 2011
34. Sagar, R.R., X. Zhang, and C. Xiong, Growth of graphene on copper and nickel foils via chemical vapour deposition using ethylene. Materials Research Innovations, 18(sup4): p. S4-706-S4-710, 2014
35. Chih-Sheng Chen, Chien-Kuo Hsieh, Effects of acetylene flow rate and processing temperature on graphene films grown by thermal chemical vapor deposition. Thin Solid Films, 584, 265–269, 2015
36. Z. Sun, Z. Yan, J. Yao, E. Beitler, Y. Zhu, and J. M. Tour, Growth of graphene from solid carbon sources. Nature, vol. 468, p. 549, 2010
37. Xiao-Ye Wang, Xuelin Yao and Klaus Müllen, Polycyclic aromatic hydrocarbons in the graphene era. Sci. China Chem. 62, 1099–1144, 2019
38. Z. Li et al., Low-Temperature Growth of Graphene by Chemical Vapor Deposition Using Solid and Liquid Carbon Sources. ACS Nano, vol. 5, no. 4, pp. 3385-3390, 2011
39. Butrymowicz, D.B., J.R. Manning, and M.E. Read, Diffusion in Copper and Copper Alloys. Part I. Volume and Surface Self-Diffusion in Copper. Journal of Physical and Chemical Reference Data, 2(3), p. 643-656, 1973
40. Jang, J., Son, M., Chung, S. et al, Low-temperature-grown continuous graphene films from benzene by chemical vapor deposition at ambient pressure. Sci Rep 5, 17955, 2015
41. HoKwon Kim, Cecilia Mattevi, M. Reyes Calvo, et al, Activation Energy Paths for Graphene Nucleation and Growth on Cu. ACS Nano, 6, 4, 3614–3623, 2012
42. Yasumitsu Miyata, Keiichi Kamon, Kazunori Ohashi, Ryo Kitaura, Masamichi Yoshimura, and Hisanori Shinohara, A simple alcohol-chemical vapor deposition synthesis of single-layer graphenes using flash cooling. Appl. Phys. Lett. 96, 263105, 2010
43. Choi, D.S., et al., Effect of cooling condition on chemical vapor deposition synthesis of graphene on copper catalyst. ACS Applied Materials and Interfaces, 6(22): p. 19574-19578, 2014
44. K. Nagashio, T. Nishimura, K. Kita and A. Toriumi, Metal/graphene contact as a performance Killer of ultra-high mobility graphene analysis of intrinsic mobility and contact resistance. 2009 IEEE International Electron Devices Meeting (IEDM), Baltimore, MD, pp. 1-4, 2009
45. Xia, F., et al., The origins and limits of metal–graphene junction resistance. Nature Nanotechnology, 6, p. 179, 2011
46. Yihong Wu, Ying Wang, Jiayi Wang, Miao Zhou, Aihua Zhang, Chun Zhang, Yanjing Yang, Younan Hua and Baoxi Xu, Electrical transport across metal/twodimensional carbon junctions: Edge versus side contacts. AIP Advances 2, 012132, 2012
47. Joshua T. Smith, Aaron D. Franklin, Damon B. Farmer and Christos D. Dimitrakopoulos, Reducing Contact Resistance in Graphene Devices through Contact Area Patterning. ACS Nano, 7, 4, 3661-3667, 2013
48. Wei Sun Leong, Hao Gong and John T. L. Thong, Low-Contact-Resistance Graphene Devices with Nickel-Etched-Graphene Contacts. ACS Nano, 8, 1, 994-1001, 2014
49. Chung Wei Chen, Fan Ren, Gou-Chung Chi, Sheng-Chun Hung, Y. P. Huang, Jihyun Kim, Ivan I. Kravchenko, and Stephen J. Pearton, UV ozone treatment for improving contact resistance on graphene. J. Vac. Sci. Technol. B 30, 060604, 2012
50. Filippo Giubileoa and Antonio Di Bartolomeo, The role of contact resistance in graphene field-effect devices. Progress in Surface Science,Volume 92, Issue 3, Pages 143-175, 2017
51. F. M. Smits, Measurement of sheet resistivities with the four-point probe. The Bell System Technical Journal, Volume: 37, Issue: 3, 1958
52. Thien-Toan Tran and Ashok Mulchandani, Carbon nanotubes and graphene nano field-effect transistor-based biosensors. Trends in Analytical Chemistry Volume 79, Pages 222-232, 2016
53. Shideh Ahmadi, Nilofar Asim, M. A. Alghoul, F. Y. Hammadi, Kasra Saeedfar, N. A. Ludin, Saleem H. Zaidi and K. Sopian, The Role of Physical Techniques on the Preparation of Photoanodes for Dye Sensitized Solar Cells. International Journal of Photoenergy, Volume, Article ID 198734, 2014
54. Das, A., Pisana, S., Chakraborty, B. et al. Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nature Nanotech 3, 210–215, 2008
55. S. Pisana et al., Breakdown of the adiabatic Born–Oppenheimer approximation in graphene. Nature Materials, vol. 6, p. 198, 02/11/online, 2007
56. O. Lindberg, Hall Effect. Proceedings of the IRE, vol. 40, no. 11, pp. 1414-1419, 1952
57. Ki Chang Kwon, Kyoung Soon Choi and Soo Young Kim, Increased Work Function in Few‐Layer Graphene Sheets via Metal Chloride Doping. Adv. Funct. Mater. 22, 4724, 2012
58. C. Bautista-Flores, R. Y. Sato-Berrú, and D. Mendoza, Doping Graphene by Chemical Treatments Using Acid and Basic Substances. Journal of Materials Science and Chemical Engineering, vol. 03, no. 10, pp. 17-21, 2015
59. Wenjuan Zhu, Vasili Perebeinos, Marcus Freitag, and Phaedon Avouris, Carrier scattering, mobilities, and electrostatic potential in monolayer, bilayer, and trilayer graphene. PHYSICAL REVIEW B 80, 235402, 2009
60. Giovannetti, G., et al., Doping Graphene with Metal Contacts. Physical Review Letters, 101(2): p. 026803, 2008
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71105-
dc.description.abstract本研究主要分文兩階段,第一部分為摻雜物對石墨烯的影響,我們透過光電子能譜對摻雜物做定性分析,從碳1s特徵峰的位移以及材料功函數改變中,了解摻雜物確實與石墨烯發生了載子交換,並改變了石墨烯的費米能階,以TEPA為N型摻雜物,Catechol為P型。接著,透過霍爾量測分析摻雜時間對石墨烯載子遷移率以及電阻率的變化,藉由德汝德公式可知載子濃度、載子遷移率對電阻率的相關性,了解載子遷移率及電阻率都隨摻雜時間增加而下降是透過載子濃度的補償。最後透過拉曼光譜以及電性狄拉克點的位移做定量分析。
第二部分將利用傳輸線量測(TLM)進一步探討石墨烯與金屬的接觸電阻,發現石墨烯對不同功函數的金屬其接觸電阻差異很大,因此,透過摻雜物輔助改質石墨烯使其功函數匹配變的非常重要,結果顯示,以鈦金屬作為接觸的元件,透過TEPA摻雜其接觸電阻最低;而鎳金屬作為接觸的元件,Catechol摻雜顯示最低的接觸電阻。
zh_TW
dc.description.abstractThis study is mainly divided into two part. The first part is the influence of dopants on graphene. Through photoelectron spectroscopy, the dopants were qualitatively analyzed. We confirmed the charge transfer will happen between dopant and graphene through the displacement of the characteristic peak of carbon 1s and the change in the work function of graphene. TEPA is an N-type dopant, and Catechol is a p-type dopant. Next, the Hall measurement is used to analyze the change of doping time on the mobility and resistivity of graphene. The correlation between carrier concentration, mobility and resistivity can be known by Drude formula and understanding that both carrier mobility and resistivity decrease with increasing doping time is compensated by carrier concentration. Finally, we finished quantitative analysis through the Raman spectroscopy and electrical Dirac point shift.
In the second part, transmission line measurement (TLM) will be used to explore the contact resistance between graphene and metal. We found that the contact resistance of graphene to metal with different work function had a big difference. Work function matching becomes very important. The results show that the contact resistance of Titanium as the contact metal is the lowest through TEPA doping; while Nickel as the contact metal, Catechol doping shows the lowest contact resistance.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T04:53:14Z (GMT). No. of bitstreams: 1
U0001-1908202009565100.pdf: 4222890 bytes, checksum: d47f064ae23d76ed99ed9e94b15ff37e (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents
口試委員會審定書 #
誌謝 I
中文摘要 II
ABSTRACT III
CONTENTS IV
List of Figures VII
List of Tables XI
Chapter 1 緒論 1
1.1 背景簡介 1
1.1.1 半導體發展趨勢 1
1.1.2 二維材料興起之優勢 2
1.2 石墨烯簡介 4
1.2.1 石墨烯結構與基本特性 4
1.2.2 石墨烯的製備方法 6
1.2.3 石墨烯之摻雜介紹 7
1.2.4 石墨烯困境與未來應用 9
1.3 研究動機 11
Chapter 2 實驗理論與方法 12
2.1 實驗理論及原理 12
2.1.1 化學氣象沉積(Chemical Vapor Deposition ,CVD) 12
2.1.2 金屬與石墨烯接觸特性 14
2.1.3 石墨烯場效電晶體 18
2.2 實驗儀器介紹 19
2.2.1 氧電漿蝕刻機 19
2.2.2 蒸鍍機 19
2.2.3 拉曼光譜儀(Raman spectrometer) 20
2.2.4 光電子能譜分析 23
2.2.5 掃描式電子束微影設備 25
2.2.6 霍爾效應量測分析儀 26
2.2.7 電性量測系統 26
2.3 實驗方法 27
2.3.1 石墨烯成長 27
2.3.2 石墨烯轉印製程 28
2.3.3 金屬電極製備 29
2.3.4 石墨烯氣相摻雜法 30
Chapter 3 摻雜對石墨烯之特性分析 31
3.1 光譜特性分析 31
3.1.1 X光光電子光譜(XPS)分析 31
3.1.2 紫外光光電子光譜(UPS)分析 32
3.2 霍爾量測分析以及四點探針量測 35
3.3 拉曼光譜分析 37
3.4 電學特性分析 41
Chapter 4 金屬/二維材料之介面分析 44
4.1 金屬/石墨烯介面分析 44
4.1.1 金屬/石墨烯介面摻雜阻抗分析 44
4.1.2 金屬/P型摻雜石墨烯接觸阻抗分析 46
4.1.3 金屬/N型摻雜石墨烯接觸阻抗分析 47
4.1.4 數據統整分析 49
4.2 下電極元件摻雜分析 53
4.2.1 P型摻雜接觸電阻分析 53
4.2.2 N型摻雜接觸電阻分析 55
4.3 短通道長度元件分析 57
Chapter 5 總結與未來展望 59
5.1 總結 59
5.2 未來展望 59
REFERENCE 60
dc.language.isozh-TW
dc.subject氣相吸附摻雜zh_TW
dc.subject載子遷移率zh_TW
dc.subject接觸電阻zh_TW
dc.subject電阻率zh_TW
dc.subject石墨烯zh_TW
dc.subjectDopingen
dc.subjectGrapheneen
dc.subjectPhysisorptionen
dc.subjectResistivityen
dc.subjectMobilityen
dc.subjectContact Resistanceen
dc.title利用有機分子摻雜石墨稀改良其接觸電阻zh_TW
dc.titleImprove Contact Resistance of Graphene with Organic Molecule dopingen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.coadvisor吳志毅(Chih-I Wu)
dc.contributor.oralexamcommittee陳美杏(Mei-Hsin Chen),吳肇欣(Chao-Hsin Wu),張文豪(Wen-Hao Chang)
dc.subject.keyword石墨烯,氣相吸附摻雜,電阻率,載子遷移率,接觸電阻,zh_TW
dc.subject.keywordGraphene,Physisorption,Doping,Resistivity,Mobility,Contact Resistance,en
dc.relation.page63
dc.identifier.doi10.6342/NTU202004069
dc.rights.note有償授權
dc.date.accepted2020-08-20
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
U0001-1908202009565100.pdf
  未授權公開取用
4.12 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved