Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71100
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳逸聰(Yit-Tsong Chen)
dc.contributor.authorYu-Ching Changen
dc.contributor.author張鈺靖zh_TW
dc.date.accessioned2021-06-17T04:52:59Z-
dc.date.available2023-07-20
dc.date.copyright2018-08-02
dc.date.issued2018
dc.date.submitted2018-07-30
dc.identifier.citation1.Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A., Electric field effect in atomically thin carbon films. Science 2004, 306 , 666-669.
2.Geim, A. K.; Novoselov, K. S., The rise of graphene. Nanoscience and Technology 2010, 6, 11-19.
3.Grätzel, M., Dye-sensitized solar cells. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 2003, 4 , 145-153.
4.Zhang, Q.; Myers, D.; Lan, J.; Jenekhe, S. A.; Cao, G., Applications of light scattering in dye-sensitized solar cells. Physical Chemistry Chemical Physics 2012, 14 , 14982-14998.
5.Hagfeldt, A.; Boschloo, G.; Sun, L.; Kloo, L.; Pettersson, H., Dye-sensitized solar cells. Chemical Reviews 2010, 110 , 6595-6663.
6.Partoens, B.; Peeters, F. M., From graphene to graphite: Electronic structure around the K point. Physical Review B 2006, 74 , 075404.
7.Wallace, P. R., The band theory of graphite. Physical Review 1947, 71 , 622-634.
8.Fuchs, J.-N., Dirac fermions in graphene and analogues: magnetic field and topological properties. arXiv preprint arXiv:1306.0380 2013.
9.Lee, C.; Wei, X.; Kysar, J. W.; Hone, J., Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 2008, 321, 385-388.
10.Roy, N.; Sengupta, R.; Bhowmick, A. K., Modifications of carbon for polymer composites and nanocomposites. Progress in Polymer Science 2012, 37, 781-819.
11.Stoller, M. D.; Park, S.; Zhu, Y.; An, J.; Ruoff, R. S., Graphene-based ultracapacitors. Nano Letters 2008, 8, 3498-3502.
12.Bolotin, K.; Sikes, K.; Hone, J.; Stormer, H.; Kim, P., Temperature-dependent transport in suspended graphene. Physical ReviewLletters 2008, 101 , 096802.
13.Schriver, M.; Regan, W.; Gannett, W. J.; Zaniewski, A. M.; Crommie, M. F.; Zettl, A., Graphene as a long-term metal oxidation barrier: worse than nothing. ACS Nano 2013, 7, 5763-5768.
14.Chen, S.; Brown, L.; Levendorf, M.; Cai, W.; Ju, S.-Y.; Edgeworth, J.; Li, X.; Magnuson, C. W.; Velamakanni, A.; Piner, R. D., Oxidation resistance of graphene-coated Cu and Cu/Ni alloy. ACS Nano 2011, 5, 1321-1327.
15.Balandin, A. A.; Ghosh, S.; Bao, W.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C. N., Superior thermal conductivity of single-layer graphene. Nano Letters 2008, 8, 902-907.
16.Nair, R. R.; Blake, P.; Grigorenko, A. N.; Novoselov, K. S.; Booth, T. J.; Stauber, T.; Peres, N. M.; Geim, A. K., Fine structure constant defines visual transparency of graphene. Science 2008, 320, 1308-1308.
17.Yi, M.; Shen, Z., A review on mechanical exfoliation for the scalable production of graphene. Journal of Materials Chemistry A 2015, 3, 11700-11715.
18.Pang, S.; Englert, J. M.; Tsao, H. N.; Hernandez, Y.; Hirsch, A.; Feng, X.; Mullen, K., Extrinsic corrugation-assisted mechanical exfoliation of monolayer graphene. Adv Mater 2010, 22, 5374-5377.
19.Hernandez, Y.; Nicolosi, V.; Lotya, M.; Blighe, F. M.; Sun, Z.; De, S.; McGovern, I. T.; Holland, B.; Byrne, M.; Gun'Ko, Y. K.; Boland, J. J.; Niraj, P.; Duesberg, G.; Krishnamurthy, S.; Goodhue, R.; Hutchison, J.; Scardaci, V.; Ferrari, A. C.; Coleman, J. N., High-yield production of graphene by liquid-phase exfoliation of graphite. Nature Nanotechnology 2008, 3, 563-568.
20.Hogan, B.; Kovalska, E.; F. Craciun, M.; Baldycheva, A., 2D material liquid crystals for optoelectronics and photonics. Journal of Materials Chemistry C 2017, 5, 11185-11195.
21.Caldwell, J. D.; Anderson, T. J.; Culbertson, J. C.; Jernigan, G. G.; Hobart, K. D.; Kub, F. J.; Tadjer, M. J.; Tedesco, J. L.; Hite, J. K.; Mastro, M. A.; Myers-Ward, R. L.; Eddy, C. R.; Campbell, P. M.; Gaskill, D. K., Technique for the dry transfer of epitaxial graphene onto arbitrary substrates. ACS Nano 2010, 4, 1108-1114.
22.Zaretski, A.; Lipomi, D., Processes for non-destructive transfer of graphene: Widening the bottleneck for industrial scale production. Nanoscale 2015, 7, 9963-9969.
23.Pei, S.; Cheng, H.-M., The reduction of graphene oxide. Carbon 2012, 50, 3210-3228.
24.Brodie, B. C., XIII. On the atomic weight of graphite. Philosophical Transactions of the Royal Society of London 1859, 149, 249-259.
25.Ren, S.; Rong, P.; Yu, Q., Preparations, properties and applications of graphene in functional devices: A concise review. Ceramics International 2018, 44, 11940-11955.
26.Rowley-Neale, S. J.; Randviir, E. P.; Abo Dena, A. S.; Banks, C. E., An overview of recent applications of reduced graphene oxide as a basis of electroanalytical sensing platforms. Applied Materials Today 2018, 10, 218-226.
27.Gomez, L.; Zhang, Y.; Zhou, C., Large Scale Graphene by Chemical Vapor Deposition: Synthesis, Characterization and Applications. Graphene-Synthesis, Characterization, Properties and Applications. 2011.
28.Al-Shurman, K.; Naseem, H. In CVD graphene growth mechanism on nickel thin films, Proceedings of the 2014 COMSOL Conference in Boston, 2014.
29.Hussain, S.; Iqbal, M. W.; Park, J.; Ahmad, M.; Singh, J.; Eom, J.; Jung, J., Physical and electrical properties of graphene grown under different hydrogen flow in low pressure chemical vapor deposition. Nanoscale Research Letters 2014, 9, 546.
30.Gunlycke, D.; Lawler, H.; White, C., Room-temperature ballistic transport in narrow graphene strips. Physical Review B 2007, 75, 085418.
31.Novoselov, K. S.; Jiang, Z.; Zhang, Y.; Morozov, S.; Stormer, H. L.; Zeitler, U.; Maan, J.; Boebinger, G.; Kim, P.; Geim, A. K., Room-temperature quantum Hall effect in graphene. Science 2007, 315, 1379-1379.
32.Schwierz, F., Graphene transistors. Nature Nanotechnology 2010, 5, 487-496.
33.Guo, B.; Fang, L.; Zhang, B.; Gong, J. R., Graphene doping: a review. Insciences J. 2011, 1, 80-89.
34.Tseng, C.-A.; Lee, C.-P.; Huang, Y.-J.; Pang, H.-W.; Ho, K.-C.; Chen, Y.-T., One-step synthesis of graphene hollow nanoballs with various nitrogen-doped states for electrocatalysis in dye-sensitized solar cells. Materials Today Energy 2018, 8, 15-21.
35.Rani, P.; Jindal, V., Designing band gap of graphene by B and N dopant atoms. RSC Advances 2013, 3, 802-812.
36.Qu, L.; Liu, Y.; Baek, J.-B.; Dai, L., Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS nano 2010, 4, 1321-1326.
37.Gao, H.; Song, L.; Guo, W.; Huang, L.; Yang, D.; Wang, F.; Zuo, Y.; Fan, X.; Liu, Z.; Gao, W., A simple method to synthesize continuous large area nitrogen-doped graphene. Carbon 2012, 50, 4476-4482.
38.Deng, D.; Pan, X.; Yu, L.; Cui, Y.; Jiang, Y.; Qi, J.; Li, W.-X.; Fu, Q.; Ma, X.; Xue, Q., Toward N-doped graphene via solvothermal synthesis. Chemistry of Materials 2011, 23, 1188-1193.
39.Guo, B.; Liu, Q.; Chen, E.; Zhu, H.; Fang, L.; Gong, J. R., Controllable N-doping of graphene. Nano Letters 2010, 10, 4975-4980.
40.Wen, Z.; Wang, X.; Mao, S.; Bo, Z.; Kim, H.; Cui, S.; Lu, G.; Feng, X.; Chen, J., Crumpled nitrogen‐doped graphene nanosheets with ultrahigh pore volume for high‐performance supercapacitor. Advanced Materials 2012, 24, 5610-5616.
41.Wang, Y.; Shao, Y.; Matson, D. W.; Li, J.; Lin, Y., Nitrogen-doped graphene and its application in electrochemical biosensing. ACS Nano 2010, 4, 1790-1798.
42.Wang, H.; Maiyalagan, T.; Wang, X., Review on recent progress in nitrogen-doped graphene: synthesis, characterization, and its potential applications. ACS Catalysis 2012, 2, 781-794.
43.Denis, P. A., Band gap opening of monolayer and bilayer graphene doped with aluminium, silicon, phosphorus, and sulfur. Chemical Physics Letters 2010, 492, 251-257.
44.Yang, Z.; Yao, Z.; Li, G.; Fang, G.; Nie, H.; Liu, Z.; Zhou, X.; Chen, X. a.; Huang, S., Sulfur-doped graphene as an efficient metal-free cathode catalyst for oxygen reduction. ACS Nano 2011, 6, 205-211.
45.Iyakutti, K.; Kumar, E. M.; Lakshmi, I.; Thapa, R.; Rajeswarapalanichamy, R.; Surya, V. J.; Kawazoe, Y., Effect of surface doping on the band structure of graphene: a DFT study. Journal of Materials Science: Materials in Electronics 2016, 27, 2728-2740.
46.Denis, P. A., Band gap opening of monolayer and bilayer graphene doped with aluminium, silicon, phosphorus, and sulfur. Chemical Physics Letters 2010, 492, 251-257.
47.Wang, J.; Ma, R.; Zhou, Z.; Liu, G.; Liu, Q., Magnesiothermic synthesis of sulfur-doped graphene as an efficient metal-free electrocatalyst for oxygen reduction. Scientific Reports 2015, 5, 9304.
48.Liu, Y.; Ma, Y.; Jin, Y.; Chen, G.; Zhang, X., Microwave-assisted solvothermal synthesis of sulfur-doped graphene for electrochemical sensing. Journal of Electroanalytical Chemistry 2015, 739, 172-177.
49.Poh, H. L.; Šimek, P.; Sofer, Z. k.; Pumera, M., Sulfur-doped graphene via thermal exfoliation of graphite oxide in H2S, SO2, or CS2 gas. Acs Nano 2013, 7, 5262-5272.
50.Duan, J.; Chen, S.; Jaroniec, M.; Qiao, S. Z., Heteroatom-doped graphene-based materials for energy-relevant electrocatalytic processes. ACS Catalysis 2015, 5, 5207-5234.
51.Chen, J.-F.; Mao, Y.; Wang, H.-F.; Hu, P., Theoretical study of heteroatom doping in Tuning the catalytic activity of graphene for triiodide reduction. ACS Catalysis 2016, 6 , 6804-6813.
52.Xu, J.; Dong, G.; Jin, C.; Huang, M.; Guan, L., Sulfur and nitrogen co‐doped, few‐layered graphene oxide as a highly efficient electrocatalyst for the oxygen‐reduction reaction. ChemSusChem 2013, 6, 493-499.
53.You, J.-M.; Ahmed, M. S.; Han, H. S.; eun Choe, J.; Üstündağ, Z.; Jeon, S., New approach of nitrogen and sulfur-doped graphene synthesis using dipyrrolemethane and their electrocatalytic activity for oxygen reduction in alkaline media. Journal of Power Sources 2015, 275, 73-79.
54.Guechi, A.; Chegaar, M.; Aillerie, M., Air mass effect on the performance of organic solar cells. Energy Procedia 2013, 36, 714-721.
55.Arvesen, J. C.; Griffin, R. N.; Pearson, B. D., Determination of extraterrestrial solar spectral irradiance from a research aircraft. Applied Optics 1969, 8, 2215-2232.
56.Vijayakumar, S., Master thesis-Behaviour of Photovoltaic Systems During Grid Disturbances. 2013.
57.Tsubomura, H.; Matsumura, M.; Nomura, Y.; Amamiya, T., Dye sensitised zinc oxide: aqueous electrolyte: platinum photocell. Nature 1976, 261, 402-403.
58.Hagfeldt, A.; Grätzel, M., Molecular photovoltaics. Accounts of Chemical Research 2000, 33, 269-277.
59.Yang, X.; Yanagida, M.; Han, L., Reliable evaluation of dye-sensitized solar cells. Energy & Environmental Science 2013, 6, 54-66.
60.Hang Meen, T.; Tsai, J.-K.; Shin Tu, Y.; Wu, T.-C.; Dung Hsu, W.; Chang, S.-J., Optimization of the dye-sensitized solar cell performance by mechanical compression. Nanoscale Research Letters 2014, 9, 523.
61.Park, N.-G.; Schlichthörl, G.; Van de Lagemaat, J.; Cheong, H.; Mascarenhas, A.; Frank, A., Dye-sensitized TiO2 solar cells: structural and photoelectrochemical characterization of nanocrystalline electrodes formed from the hydrolysis of TiCl4. The Journal of Physical Chemistry B 1999, 103, 3308-3314.
62.Park, N.-G.; Van de Lagemaat, J.; Frank; AJ, Comparison of dye-sensitized rutile-and anatase-based TiO2 solar cells. The Journal of Physical Chemistry B 2000, 104, 8989-8994.
63.Sun, B.; Vorontsov, A. V.; Smirniotis, P. G., Role of platinum deposited on TiO2 in phenol photocatalytic oxidation. Langmuir 2003, 19 , 3151-3156.
64.Hagfeldt, A.; Graetzel, M., Light-induced redox reactions in nanocrystalline systems. Chemical Reviews 1995, 95, 49-68.
65.Grätzel, M., Solar energy conversion by dye-sensitized photovoltaic cells. Inorganic chemistry 2005, 44, 6841-6851.
66.Clifford, J. N.; Palomares, E.; Nazeeruddin, M. K.; Grätzel, M.; Durrant, J. R., Dye dependent regeneration dynamics in dye sensitized nanocrystalline solar cells: evidence for the formation of a ruthenium bipyridyl cation/iodide intermediate. The Journal of Physical Chemistry C 2007, 111, 6561-6567.
67.Murakami, T. N.; Grätzel, M., Counter electrodes for DSC: application of functional materials as catalysts. Inorganica Chimica Acta 2008, 361, 572-580.
68.Lee, C.-P.; Li, C.-T.; Ho, K.-C., Use of organic materials in dye-sensitized solar cells. Materials Today 2017, 20, 267-283.
69.Sengupta, D.; Das, P.; Mondal, B.; Mukherjee, K., Effects of doping, morphology and film-thickness of photo-anode materials for dye sensitized solar cell application – A review. Renewable and Sustainable Energy Reviews 2016, 60, 356-376.
70.Obotowo, I. N.; Obot, I. B.; Ekpe, U. J., Organic sensitizers for dye-sensitized solar cell (DSSC): Properties from computation, progress and future perspectives. Journal of Molecular Structure 2016, 1122, 80-87.
71.Nazeeruddin, M. K.; Baranoff, E.; Grätzel, M., Dye-sensitized solar cells: A brief overview. Solar Energy 2011, 85, 1172-1178.
72.Sharma, D.; Purohit, G., Analysis of the Effect of Fill Factor on the Efficiency of Solar PV System for Improved Design of MPPT. The 6th World Conference on Photovoltaic Energy Conversion 2014.
73.Antonacci, P.; Chevalier, S.; Lee, J.; Yip, R.; Ge, N.; Bazylak, A., Feasibility of combining electrochemical impedance spectroscopy and synchrotron X-ray radiography for determining the influence of liquid water on polymer electrolyte membrane fuel cell performance. International Journal of Hydrogen Energy 2015, 40, 16494-16502.
74.Liu, H.; George, M. G.; Ge, N.; Muirhead, D.; Shrestha, P.; Lee, J.; Banerjee, R.; Zeis, R.; Messerschmidt, M.; Scholta, J., Microporous layer degradation in polymer electrolyte membrane fuel cells. Journal of The Electrochemical Society 2018, 165, 3271-3280.
75.Sekar, N.; Ramasamy, R. P., Electrochemical impedance spectroscopy for microbial fuel cell characterization. J Microb Biochem Technol S 2013, 6 .
76.Vielstich, W., Cyclic voltammetry. Handbook of fuel cells 2010.
77.Hou, S.; Cai, X.; Wu, H.; Yu, X.; Peng, M.; Yan, K.; Zou, D., Nitrogen-doped graphene for dye-sensitized solar cells and the role of nitrogen states in triiodide reduction. Energy & Environmental Science 2013, 6 (11), 3356-3362.
78.Zhang, Y.; Sun, Z.; Wang, H.; Wang, Y.; Liang, M.; Xue, S., Nitrogen-doped graphene as a cathode material for dye-sensitized solar cells: effects of hydrothermal reaction and annealing on electrocatalytic performance. RSC Advances 2015, 5, 10430-10439.
79.Kannan, A. G.; Zhao, J.; Jo, S. G.; Kang, Y. S.; Kim, D.-W., Nitrogen and sulfur co-doped graphene counter electrodes with synergistically enhanced performance for dye-sensitized solar cells. J. Mater. Chem. A 2014, 2, 12232-12239.
80.Tucek, J.; Blonski, P.; Sofer, Z.; Simek, P.; Petr, M.; Pumera, M.; Otyepka, M.; Zboril, R., Sulfur Doping Induces Strong Ferromagnetic Ordering in Graphene: Effect of Concentration and Substitution Mechanism. Adv Mater 2016, 28, 5045-53.
81.Wang, X.; Wang, J.; Wang, D.; Dou, S.; Ma, Z.; Wu, J.; Tao, L.; Shen, A.; Ouyang, C.; Liu, Q., One-pot synthesis of nitrogen and sulfur co-doped graphene as efficient metal-free electrocatalysts for the oxygen reduction reaction. Chemical Communications 2014, 50, 4839-4842.
82.Kundu, S.; Xia, W.; Busser, W.; Becker, M.; Schmidt, D. A.; Havenith, M.; Muhler, M., The formation of nitrogen-containing functional groups on carbon nanotube surfaces: a quantitative XPS and TPD study. Physical Chemistry Chemical Physics 2010, 12, 4351-4359.
83.Wang, W.-W.; Dang, J.-S.; Zhao, X.; Nagase, S., Formation mechanisms of graphitic-N: oxygen reduction and nitrogen doping of graphene oxides. The Journal of Physical Chemistry C 2016, 120, 5673-5681.
84.Wang, Z.; Dong, Y.; Li, H.; Zhao, Z.; Wu, H. B.; Hao, C.; Liu, S.; Qiu, J.; Lou, X. W. D., Enhancing lithium–sulphur battery performance by strongly binding the discharge products on amino-functionalized reduced graphene oxide. Nature Communications 2014, 5, 5002.
85.Nicholson, R. S., Theory and application of cyclic voltammetry for measurement of electrode reaction kinetics. Analytical Chemistry 1965, 37, 1351-1355.
86.Lavagnini, I.; Antiochia, R.; Magno, F., An extended method for the practical evaluation of the standard rate constant from cyclic voltammetric data. Electroanalysis 2004, 16, 505-506.
87.Li, W.; Tan, C.; Lowe, M. A.; Abruna, H. D.; Ralph, D. C., Electrochemistry of individual monolayer graphene sheets. ACS Nano 2011, 5, 2264-2270.
88.Subramanian, V.; Wolf, E. E.; Kamat, P. V., Catalysis with TiO2/gold nanocomposites. Effect of metal particle size on the Fermi level equilibration. Journal of the American Chemical Society 2004, 126, 4943-4950.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71100-
dc.description.abstract現今世界對能源的高度需求,造成化石燃料的大量使用以及其醞藏量快速的遞減,進而引發嚴重的環境汙染與能源危機。因此,再生能源是人類現在極需努力開發的能源,其中最具發展潛力和應用價值的太陽能目前已經成為各國積極開發的方向。染料敏化太陽能電池(dye-sensitized solar cell, DSSC)是一種薄膜太陽能電池,其製程容易、成本低,具備可撓性、多彩性與可透光性等特性,應用範圍廣泛。但染料敏化太陽能電池的光電轉換效率尚低,且其材料仍需使用到一些貴重金屬,例如鉑(platinum)、釕(ruthenium)等。因此開發具有更高的光電轉換效率且不使用貴重金屬的材料仍是研究焦點之一。本研究利用二維材料石墨烯(graphene)建構成球型結構,並開發出三維石墨烯中空球(graphene hollow nanoballs, GHBs)、氮-摻雜石墨烯中空球(nitrogen-doped graphene hollow nanoballs, N-GHBs)、硫-摻雜石墨烯中空球(sulfur-doped graphene hollow nanoballs, S-GHBs)以及氮、硫-摻雜石墨烯中空球(nitrogen/sulfur-codoped graphene hollow nanoballs, N,S-GHBs)等材料,將其應用於染料敏化太陽能電池。
本研究第一部份利用化學氣相沉積法(chemical vapor deposition, CVD),將石墨烯球沉積於各種基板上,例如矽晶片(silicon wafer, Si)、碳布(carbon cloth, CC)。並於上述CVD方法中再加入氮前驅物或硫前驅物來合成氮-摻雜、硫-摻雜以及氮、硫-摻雜的石墨烯中空球。第二部分將上述材料做為無金屬之催化觸媒,應用於染料敏化太陽能之對電極(counter electrode),進行碘還原催化反應(triiodide reduction)。石墨烯本身已具有高載子遷移率、高導電性、可饒性、高機械強度等特性,而本研究所開發的石墨烯中空球更解決了平面石墨烯相互堆疊的問題,且可提供更高的表面積。此外,異原子的摻雜可降低電荷轉移之電阻(charge-transfer resistance),因而提升石墨烯中空球作為染料敏化太陽能電池電極的催化活性。故本研究探討了氮、硫兩種異原子摻雜的石墨烯中空球,對碘還原反應具有不同的催化效應,並發現氮、硫共同摻雜時具有協同效應,可進一步提升催化活性。將氮、硫-摻雜的石墨烯中空球作為對電極觸媒之染料敏化太陽能電池元件效率可達9.02 %,其效率可匹配於使用標準白金對電極製作之電池元件(8.90 %)。
zh_TW
dc.description.abstractA huge amount of fossil fuels, such as coal, petroleum, and gas, has been consumed in order to meet the high demand of energy in the world. However, the combustion of these fossil fuels results in not only detrimentally environmental pollution, but also the rapid reduction of fossil resources on the Earth. Recently, several kinds of renewable energy, e.g., fuel cells, wind power, and solar energy, have drawn tremendous attention in academic studies and industrial applications. Among them, solar energy is the most attractive renewable energy; in particular, dye-sensitized solar cells (DSSCs) have the advantages of simple fabrication processes, low cost, flexibility, and semi-transparency. However, if a DSSC possesses low power conversion efficiency and utilizes noble metals, e.g., platinum (Pt) or ruthenium (Ru), as a counter electrode (CE), these disadvantages would hinder this DSSC from wide applications. Therefore, it is an urgent challenge to develop a noble metal-free CE with high power conversion efficiency in DSSCs.
Graphene has high carrier mobility, high electrical conductivity, high mechanical strength and flexiblility. In this study, we took advantage of the unique chracteristics of graphene to fabricate high-performance DSSCs by employing different graphene-based CEs, such as graphene hollow nanoballs (GHBs), nitrogen-doped graphene hollow nanoballs (N-GHBs), sulfur-doped graphene hollow nanoballs (S-GHBs), and nitrogen/sulfur-codoped graphene hollow nanoballs (N,S-GHBs). First, we synthesized GHBs on silicon wafers (Si) or carbon cloth (CC) substrates with a chemical vapor deposition (CVD) method. A nitrogen or sulfur precursor, or both, was incorporated in the CVD rection to from N-GHBs, S-GHBs, and N,S-GHBs, respectively. Second, the as-synthesized doped GHBs were used as metal-free CEs to investigate their power conversion efficiencies in DSSCs. The highly curved GHBs could avoid the self-assembly restacking of planar graphene sheets and provide high surface area. In addition, the heteroatomic incorporation in GHBs can reduce the charge-transfer resistance and enhance the catalytic activity of GHBs. We found that pristine GHB (with ∆EP of 698 mV) and heteroatom-doped GHBs (∆EP of 530 mV for N-GHBs and ∆EP of 498 mV for S-GHBs) have different catalytic activities on the I-/I3- reduction reaction and the N,S-GHBs (∆EP of 459 mV) shows the best catalytic performance due to the synergistic effect of electronic and geometric changes. Consequently, the power conversion efficiency of a DSSC with N,S-GHBs as a CE reaches to 9.02 %, comparable to that (8.90 %) of a standard sputtered Pt CE-based cell.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T04:52:59Z (GMT). No. of bitstreams: 1
ntu-107-R05223150-1.pdf: 11575930 bytes, checksum: d500a76f2054c64fbabf581ff223deb8 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents口試委員會審定書..................................................................................................i
謝誌.......................................................................................................................ii
中文摘要...............................................................................................................iii
Abstract.................................................................................................................v
目錄.....................................................................................................................vii
圖目錄..................................................................................................................xi
表目錄.................................................................................................................xvi
簡稱用語對照表.................................................................................................xvii
第一章 導論...........................................................................................................1
1.1 石墨烯簡介......................................................................................................1
1.2染料敏化太陽能電池........................................................................................2
1.3 研究動機.........................................................................................................3
第二章 文獻回顧....................................................................................................4
2.1石墨烯之結構與特性........................................................................................4
2.1.1石墨烯之結構................................................................................................4
2.1.2石墨烯之特性................................................................................................7
2.2石墨烯之製備方法............................................................................................8
2.2.1機械剝離法(mechanical exfoliation)..............................................................9
2.2.2液相剝離法(liquid-phase exfoliation)...........................................................10
2.2.3碳化矽磊晶成長法(epitaxial growth)............................................................11
2.2.4氧化石墨烯還原法(reduction of graphene oxide)........................................11
2.2.5化學氣相沉積法(chemical vapor deposition, CVD).....................................12
2.3石墨烯之摻雜.................................................................................................14
2.3.1氮摻雜石墨烯..............................................................................................15
2.3.2硫摻雜石墨烯..............................................................................................20
2.3.3氮、硫-摻雜石墨烯.....................................................................................24
2.4能源概況........................................................................................................26
2.4.1太陽能........................................................................................................26
2.4.2太陽能電池................................................................................................28
2.5染料敏化太陽能電池.....................................................................................29
2.5.1染料敏化太陽能電池的發展........................................................................29
2.5.2染料敏化太陽能電池的結構........................................................................30
2.5.3染料敏化太陽能電池的運作機制.................................................................37
第三章 實驗方法與材料......................................................................................41
3.1合成石墨烯中空球(GHBs)..............................................................................41
3.2染料敏化太陽能電池原件製作.......................................................................48
3.2.1 透明導電基板的清洗..................................................................................48
3.2.2製備多孔性TiO2薄膜光電極.......................................................................49
3.2.3製備石墨烯對電極......................................................................................50
3.2.4電解液的配製.............................................................................................51
3.2.5電池組裝....................................................................................................51
3.3檢測儀器.......................................................................................................52
3.3.1掃描式電子顯微鏡(scanning electron microscopy, SEM)...........................52
3.3.2高解析穿透式電子顯微鏡(high-resolution transmission electron microscopy, HRTEM)............................................................................................................52
3.3.3 X光光電子能譜儀 (X-ray photoelectron spectroscopy, XPS) ...................53
3.3.4太陽光模擬器(solar simulator)....................................................................54
3.3.5恆電位/恆電流儀(Potentiostat/Galvanostat)..........................................55
3.3.6入射光子—電子轉換效率測量(incident photon-to-electron conversion efficiency, IPCE)................................................................................................57
3.3.7電化學阻抗分析頻譜(electrochemistry impedance spectroscopy, EIS)......58
3.3.8循環伏安法(cyclic voltammetry, CV)...........................................................60
第四章 結果與討論.............................................................................................62
4.1石墨烯中空球的合成.....................................................................................62
4.1.1硫摻雜以及氮硫共摻雜石墨烯中空球的合成溫度選擇................................62
4.2石墨烯中空球的鑑定.....................................................................................63
4.2.1石墨烯中空球表面結構鑑定........................................................................63
4.2.2石墨烯中空球殼厚度鑑定............................................................................67
4.2.3石墨烯中空球元素成分、比例以及化學鏈結分析.......................................67
4.3染料敏化太陽能電池量測..............................................................................72
4.3.1 循環伏安法(cyclic voltammetry, CV)測量..................................................72
4.3.2 染料敏化太陽能電池元件量測...................................................................78
4.3.3入射光子—電子轉換效率測量(incient photon-to-electron conversion efficiency, IPCE).................................................................................................83
4.3.4電化學阻抗分析頻譜(electrochemistry impedance spectroscopy, EIS)測量.......................................................................................................................85
第五章 結論........................................................................................................87
參考資料............................................................................................................89
dc.language.isozh-TW
dc.title氮、硫-摻雜之石墨烯中空球電觸媒於染料敏化太陽能電池之應用zh_TW
dc.titleNitrogen/sulfur-codoped graphene hollow nanoballs as efficient metal-free electro-catalysts for dye-sensitized solar cellsen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張哲政(Che-Chen Chang),廖尉斯(Wei-Ssu Liao),李權倍(Chuan-Pei Lee)
dc.subject.keyword化學氣相沉積,染料敏化太陽能電池,石墨烯,異原子摻雜,無銀對電極,zh_TW
dc.subject.keywordchemical vapor deposition,dye-sensitized solar cells,graphene,heteroatom-doped,Pt-free counter electrode,en
dc.relation.page96
dc.identifier.doi10.6342/NTU201802144
dc.rights.note有償授權
dc.date.accepted2018-07-30
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept化學研究所zh_TW
顯示於系所單位:化學系

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  目前未授權公開取用
11.3 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved