Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71095
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃漢邦(Han-Pang Huang)
dc.contributor.authorGiovanni Ventiliien
dc.contributor.author馮笛zh_TW
dc.date.accessioned2021-06-17T04:52:43Z-
dc.date.available2018-08-01
dc.date.copyright2018-08-01
dc.date.issued2018
dc.date.submitted2018-07-30
dc.identifier.citation1. M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean et al., “Tensorflow: a system for large-scale machine learning,” Operating Systems Design and Implementation (OSDI), vol. 16, pp. 265-283, November, 2016.
2. H. Admoni, and B. Scassellati. “Social eye gaze in human-robot interaction: a review,” Journal of Human-Robot Interaction, vol. 6, no. 1, pp. 25-63, 2017.
3. E. Bal, E. Harden, D. Lamb, A. V. Van Hecke, J. W. Denver, and S. W. Porges, “Emotion recognition in children with autism spectrum disorders: Relations to eye gaze and autonomic state,” Journal of autism and developmental disorders, vol. 40, no. 3, pp. 358-370, 2010.
4. J. D. Boucher, U. Pattacini, A. Lelong, G. Bailly, F. Elisei, S. Fagel, and J. Ventre-Dominey. “I reach faster when I see you look: gaze effects in human–human and human–robot face-to-face cooperation,” Frontiers in Neurorobotics, vol. 6, no. 3, 2012.
5. G. Bradski, and A. Kaehler, “OpenCV,” Dr. Dobb’s journal of software tools, 2000.
6. C. Breazeal, C. D. Kidd, A. L. Thomaz, G. Hoffman, and M. Berlin, “Effects of nonverbal communication on efficiency and robustness in human-robot teamwork,” IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 708-713, August 2005.
7. Z. Cao, T. Simon, S. E. Wei, and Y. Sheikh, “Realtime multi-person 2d pose estimation using part affinity fields”, Computer Vision and Pattern Recognition (CVPR), vol. 1, n. 2, p. 7, July, 2017.
8. H. H. Clark, and S. E. Brennan. “Grounding in communication,” Perspectives on socially shared cognition, vol. 13, pp.127-149, 1991.
9. Y. Ebisawa, and S. I. Satoh, “Effectiveness of pupil area detection technique using two light sources and image difference method,” IEEE Proceedings of the 15th Annual International in Engineering in Medicine and Biology Society, pp. 1268-1269, 1993.
10. M. Elsabbagh, E. Mercure, K. Hudry, S. Chandler, G. Pasco, T. Charman and BASIS Team. “Infant neural sensitivity to dynamic eye gaze is associated with later emerging autism,” Current biology, vol. 22, no. 4, pp. 338-342, 2012.
11. G. D. Forney, “The Viterbi algorithm,” Proceedings of the IEEE, vol. 61 no. 3, pp. 268-278, 1973.
12. M. Freeth, P. Chapman, D. Ropar, and P. Mitchell, “Do gaze cues in complex scenes capture and direct the attention of high functioning adolescents with ASD? Evidence from eye-tracking.” Journal of autism and developmental disorders, vol. 40, no. 5, pp. 534-547, 2010.
13. Z.M. Griffin, and K. Bock, “What the eyes say about speaking,” Psychological Science, vol. 11, no. 4, pp. 274-279, 2000.
14. E.T. Hall, “The hidden dimension”, Garden City, NY: Doubleday, 1966.
15. B. Heenan, S. Greenberg, S. Aghel-Manesh, and E. Sharlin, “Designing social greetings in human robot interaction,” ACM Proceedings of the 2014 conference on Designing interactive systems, pp. 855-864, June 2014.
16. F. Jelinek, L. Bahl, and R. Mercer, “Design of a linguistic statistical decoder for the recognition of continuous speech,” IEEE Transactions on Information Theory, vol. 21 no. 3, pp. 250-256, 1975.
17. M. Kampmann, and L. Zhang,“Estimation of eye, eyebrow and nose features in videophone sequences,” International workshop on very low bitrate video coding, vol. 98, pp. 101-104, October 1998.
18. A. Kar, “Skeletal Tracking Using Microsoft Kinect,” Methodology, vol. 1, no. 1, p. 11, 2010.
19. A. Kendon, “Conducting interaction: Patterns of behavior in focused encounters”, CUP Archive, vol. 7, 1990.
20. K. N. Kim, and R. S. Ramakrishna, “Vision-based eye-gaze tracking for human computer interface,” IEEE International Conference on Systems, Man, and Cybernetics, vol. 2, pp. 324-329, 1999.
21. D.E. King, “Dlib-ml: A machine learning toolkit,” Journal of Machine Learning Research, vol. 10, pp. 1755-1758, 2009.
22. A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImagNet classification with deep convolutional neural networks,” Advances in neural information processing systems, pp. 1097-1105, 2012
23. D. Li, D. Winfield, and D. J. Parkhurst, “Starburst: A hybrid algorithm for video-based eye tracking combining feature-based and model-based approaches,” IEEE Computer Society Conference on Computer Vision and Pattern Recognition-Workshops, pp. 79-79, June 2005.
24. B. Mutlu, J. Forlizzi, and J. Hodgins, “A storytelling robot: Modeling and evaluation of human-like gaze behavior,” 6th IEEE-RAS international conference on Humanoid robots, (pp. 518-523), December 2006.
25. T. Nakano, K. Tanaka, Y. Endo, Y. Yamane, T. Yamamoto, Y. Nakano, and S. Kitazawa, “Atypical gaze patterns in children and adults with autism spectrum disorders dissociated from developmental changes in gaze behavior,” Proceedings of the Royal Society of London B: Biological Sciences, 2010.
26. B. Noris, J. Nadel, M. Barker, N. Hadjikhani, and A. Billard, “Investigating gaze of children with ASD in naturalistic settings,” PloS one, vol. 7, no. 9, 2012.
27. A. Peréz, M. L. Córdoba, A. Garcia, R. Méndez, M. L. Munoz, J. L. Pedraza, and F. Sanchez, “A precise eye-gaze detection and tracking system”, 2003.
28. C. L. Sidner, C. D. Kidd, C. Lee, and N. Lesh, “Where to look: a study of human-robot engagement.” ACM Proceedings of the 9th international conference on Intelligent user interfaces, pp. 78-84, January 2004.
29. B.A. Smith, Q. Yin, S.K. Feiner and S.K. Nayar, 'Gaze Locking: Passive Eye Contact Detection for Human–Object Interaction,' ACM Symposium on User Interface Software and Technology (UIST), pp. 271-280, Oct. 2013.
30. M. Tomasello, B. Hare, H. Lehmann, and J. Call, “Reliance on head versus eyes in the gaze following of great apes and human infants: the cooperative eye hypothesis,” Journal of human evolution, vol. 52, no. 3, pp. 314-320, 2007.
31. D. Vasquez, T. Fraichard, and C. Laugier, “Growing Hidden Markov Models: An incremental tool for learning and predicting human and vehicle motion,” The International Journal of Robotics Research, vol. 28, no. 11-12, pp. 1486-1506, 2009.
32. A. Yamazaki, K. Yamazaki, Y. Kuno, M. Burdelski, M. Kawashima and H. Kuzuoka, “Precision timing in human-robot interaction: coordination of head movement and utterance,” ACM Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 131-140, April 2008.
33. C. Yu, P. Schermerhorn, and M. Scheutz. “Adaptive eye gaze patterns in interactions with human and artificial agents,” ACM Transactions on Interactive Intelligent Systems (TiiS), vol. 1, no. 2, p. 13, 2012.
34. M. Zheng, A. Moon, E.A. Croft, and M. Q. H. Meng, “Impacts of robot head gaze on robot-to-human handovers,” International Journal of Social Robotics, vol. 7, no. 5, pp. 783-798, 2015.
35. “University of Bradford Website”. Retrieved 15 May, 2018 from https://www.bradford.ac.uk
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71095-
dc.description.abstract人類的眼睛是一種強力的非語言交流工具:眼神不僅能夠表達興趣、展現專注、透露意圖,更能在許多面對面互動中扮演重要的角色。此外,人們的視線在社交活動中會無意識地恪守某種不成文的規則。然而當我們談到機器人時,鮮少有人機互動應用專門處理人類視線,且既使有,他們也只處理特定層面與場合。本論文致力於創造一套具有自動地感應、理解和對人類眼神做出反應功能的全面性智慧型系統,以利提升人機互動的流暢度並使機器人更加人性化。使用於該實驗室開發輪型機器人身上的系統,利用經卷積神經網路處理過的二維圖像來偵測並追蹤視線,然後使用嶄新的變形漸進式隱馬爾可夫模型來評估與該機器人交流的對象的意圖。最後,機器人按照所獲得的人類意圖來做出反應。該系統準確率高達80%以上,已經被證明可以增加人類接近時的交流成立成功率且降低會話中錯誤的發生,也被證明在提升總體人機互動之使用者體驗水平上是有效的提升。zh_TW
dc.description.abstractHuman eyes represent a strong non-verbal communication tool: eye gaze not only gives cues about interest, attention and intention of people, but also manages several kinds of social face-to-face interaction. Moreover, people unconsciously but rigorously follow specific unwritten rules when directing their gaze during social interactions. When it comes to robots, however, only few applications take into account human gaze in Human-Robot Interaction (HRI), focusing on some specific aspects or scenarios. This thesis aims to create a comprehensive intelligent system to automatically sense, understand and react to human eye gaze, in order to both improve HRI smoothness and make robots behave more human-likely. The online system, mounted on a mobile robot, detects and tracks the gaze of humans from 2D images based on a Convolutional Neural Network (CNN), it then uses a novel incremental variant of Hidden Markov Model (iCHMM) to estimate the intention of the person with whom the interaction is taking place. Finally, with this information, the robot acts accordingly to its own intention. The system has been proved to have an overall accuracy greater than 80% in correctly estimate the intention of people. The robot both increased the success rate of interaction establishment during human approaching and decreased turn taking mistakes in conversations. It was also proved to be effective in raising the overall quality of user experience during HRI.en
dc.description.provenanceMade available in DSpace on 2021-06-17T04:52:43Z (GMT). No. of bitstreams: 1
ntu-107-R05522842-1.pdf: 6563200 bytes, checksum: c9493cf63f39c4fc16231c54a5e87dcf (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents誌謝 vii
摘要 ix
Abstract xi
List of Tables xv
List of Figures xvii
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Gaze in Human Robot Interaction 3
1.3 Contributions 5
Chapter 2 Model of Human Social Gaze 7
2.1 Social Gaze in Salutation Events 10
2.2 Social Gaze in Interaction Establishment 11
2.3 Social Gaze in Conversation and Presentation 12
2.4 Intentions Expressed by the Gaze Behavior 13
Chapter 3 Gaze Tracking Visual System 15
3.1 Eye Trackers 16
3.2 Machine Learning-Based Eye Tracker 18
3.2.1 3D Reference System 19
3.2.2 People Detection 21
3.2.3 Deep Learning Eyes Gaze Tracker 23
3.3 Gaze Classification 25
Chapter 4 Understand Social Gaze 27
4.1 Coupled Hidden Markov Models 29
4.2 Incremental Coupled Hidden Markov Model 30
4.2.1 Structure and Probabilistic Model 31
4.2.2 State Estimation 34
4.2.3 Offline Learning 35
4.2.4 Update Rules and Online Learning 36
4.3 Overall System Structure 38
Chapter 5 Deployment and Experiments 41
5.1 Hardware Platform 41
5.2 Scenarios 43
5.3 Implementation 44
5.3.1 CNN-Based Gaze Tracker Model Training 44
5.3.2 HMM model 48
5.3.3 Additional Software 51
5.4 Results 53
5.4.1 Interaction Establishment 53
5.4.2 Conversation 58
5.4.3 Human Model Results 62
Chapter 6 Conclusions and Future Work 65
6.1 Conclusion 65
6.2 Future Work 66
References 69
dc.language.isozh-TW
dc.title人類注視在人類和機器人互動中的內涵zh_TW
dc.titleUnderstanding Human Gaze as a Nonverbal Communication Cue in Human-Robot Interactionen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee黃從仁(Tsung-Ren Huang),林達德(Ta-Te Lin),傅楸善(Chiou-Shann Fuh)
dc.subject.keyword人機互動,人類行為理解,人類意圖,機器視覺,zh_TW
dc.subject.keywordHRI,Human Behavior Understanding,Human Intention,Robotic Vision,en
dc.relation.page72
dc.identifier.doi10.6342/NTU201802126
dc.rights.note有償授權
dc.date.accepted2018-07-30
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept機械工程學研究所zh_TW
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  目前未授權公開取用
6.41 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved