請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71094
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 楊志忠 | |
dc.contributor.author | Keng-Ping Chou | en |
dc.contributor.author | 周耿平 | zh_TW |
dc.date.accessioned | 2021-06-17T04:52:40Z | - |
dc.date.available | 2022-07-30 | |
dc.date.copyright | 2018-08-01 | |
dc.date.issued | 2018 | |
dc.date.submitted | 2018-07-30 | |
dc.identifier.citation | [1] K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, “Room-temperature Fabrication of Transparent Flexible Thin-film Transistor Using Amorphous Oxide Semiconductor,” Nature. 432, 488 (2004).
[2] H. Liu, V. Avrutin, N. Izyumskaya, Ü. Özgür, and H. Morkoç, “Transparent Conducting Oxides for Electride Applications in Light Emitting and Absorbing Devices,” Superlattices and Microstructure. 45, 458 (2010). [3] M. Tadatsugu, “Transparent Couducting Oxide Semiconductors for Transparent Electrodes,” Sci. Techno. 20, S35 (2005). [4] G. J. Exarhos, and X. D. Zhou, “Discovery-based Design of Transparent Conducting Oxide Films,” Thin Solid Film. 515, 7025 (2007). [5] H. Agura, A. Suzuki, T. Matsushita, T. Aoki, and M. Okuda, “Low Resistivity Transparent Conducting Al-doped ZnO Films Prepared by Pulsed Laser Deposition,” Thin Solid Film. 445, 263 (2003). [6] A. Suzuki, T. Matsushita, N. Wada, Y. Sakamoto, and M. Okuda, “Transparent Conducting Al-doped ZnO Films Prepared by Pulsed Laser Deposition,” Jpn. J. Appl. Phys. 35, L56 (1996) [7] V. Bhosle, A. Tiwari, and J. Narayan, “Electrical Properties of Transparent and Conducting Ga Doped ZnO,” J. Appl. Phys. 100, 033713 (2006). [8] N. Ken, T. Kentaro, S. Mitsuhiko, N. Daisuke, I. Norikazu, S. Masayuki, T. Hidemi, T. Hitoshi, F. Paul, M. Koji, I. Kakuya, Y. Akimasa, and N. Shigeru, “Improved External Efficiency InGaN-Based Light-Emitting Diodes with Transparent Conductive Ga-Doped ZnO as p-Electrodes,” Jpn. J. Appl. Phys. 43, L180 (2004). [9] J. L. Zhao, X. W. Sun, H. Ryu, and Y. B. Moon, “Thermally Stable Transparent Conducting and Highly Infrared Reflective Ga-doped ZnO Thin Films by Metal Organic Chemical Vapor Deposition,” Opt. Materials. 33, 768 (2011). [10] S. W. Shin, K. U. Sim, J. H. Moon, and J. H. Kim, “The Effect of Processing Parameters on The Properties of Ga-doped ZnO Thin Films by RF Magnetron Sputtering,” Curr. Appl. Phys. 10, S274 (2010). [11] T. Y. Park, Y. S. Choi, J. W. Kang, J. H. Jeong, S. J. Park, D. M. Jeon, J. W. Kim, and Y. C. Kim, “Enhanced optical power and low forward voltage of GaN-based light-emitting diodes with Ga-doped ZnO transparent conducting layer,” Appl. Phys. Lett. 96, 051124 (2010). [12] J. Yang, Y. Pei, B. Fan, S. Huang, Z. Chen, C. Tong, H. Luo, J. Liang, and G. Wang, “GaN-Based LEDs With Al-Doped ZnO Transparent Conductive Layer Grown by Metal Organic Chemical Vapor Deposition: Ultralow Forward Voltage and Highly Uniformity,” IEEE Electron Device Lett. 36, 372 (2015). [13] X. Lin, H. Luo, X. Jia, J. Wang, J. Zhou, Z. Jiang, L. Pan, S. Huang, and X. Chen, “Efficient and ultraviolet durable inverted polymer solar cells using thermal stable GZO-AgTi-GZO multilayers as a transparent electrode,” Organic Electronics. 39, 177 (2016). [14] Q. Huang, W. Shen, X. Fang, G. Chen, Y. Yang, J. Huang, R. Tan, and W. Song, “Highly thermostable, flexible, transparent, and conductive films on polyimide substrate with an AZO/AgNW/AZO structure,” ACS Appl. Mater. Interfaces 7, 4299 (2015). [15] D. C. Look, and K. D. Leedy, “ZnO plasmonics for telecommunications,” Appl. Phys. Lett. 102, 182107 (2013). [16] G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative Plasmonic Materials: Beyond Gold and Silver,” Adv. Mater. 25, 3264 (2013). [17] N. Nader, S. Vangala, J. R. Hendrickson, K. D. Leedy, D. C. Look, J. Guo, and J. W. Cleary, “Investigation of plasmon resonance tunneling through subwavelength hole arrays in highly doped conductive ZnO films,” J. Appl. Phys. 118, 173106 (2015). [18] J. Kim, A. Dutta, B. Memarzadeh, A. V. Kildishev, H. Mosallaei, and A. Boltasseva, “Zinc Oxide Based Plasmonic Multilayer Resonator: Localized and Gap Surface Plasmon in the Infrared,” ACS Photonics. 2, 1224 (2015). [19] T. Premkumar, Y.S. Zhou, Y. F. Lu, and K. Baskar, “Optical and Field-Emission Properties of ZnO Nanostructures Deposited Using High-Pressure Pulsed Laser Deposition,” ACS Appl. Mater. Interfaces. 2, 2863 (2010). [20] C. L. Hsu, C. W. Su, and T. J. Hsueh, “Enhanced field emission of Al-doped ZnO nanowires grown on a flexible polyimide substrate with UV exposure,” RSC Adv. 4, 2980 (2014). [21] J. Zhong, H. Chen, G. Saraf, Y. Lu, C. K. Choi, J. J. Song, D. M. Mackie, and H. Shen, “Integrated ZnO nanotips on GaN light emitting diodes for enhanced emission efficiency,” Appl. Phys. Lett. 90, 203515 (2007). [22] J. K. Sheu, Y. S. Lu, M. L. Lee, W. C. Lai, C. H. Kuo, and C. J. Tun, “Enhanced efficiency of GaN-based light-emitting diodes with periodic textured Ga-doped ZnO transparent contact layer,” Appl. Phys. Lett. 90, 263511 (2007). [23] Y. J. Lee, D. S. Ruby, D. W. Peters, B. B. McKenzie, and J. W. P. Hsu, “ZnO Nanostructures as Efficient Antireflection Layers in Solar Cells,” Nano letters. 8, 1501 (2008). [24] C. P. Cheng, P. H. Lin, Y. J. Hung, S. S. Hsu, L. Y. Chen, Y. W. Cheng, M. Y. Ke, and J. J. Huang, “Investigation of light absorption properties and acceptance angles of nanopatterned GZO/a-Si/p+-Si photodiodes,” Nanotechnology. 21, 215201 (2010). [25] J. R. Bellingham, W. A. Phillips, and C. J. Adkins, “Intrinsic performance limits in transparent conducting oxides,” J. Mater. Sci. Lett. 11, 263 (1992). [26] N. Taga, H. Odaka, Y. Shigesato, and I. Yasui, “Electrical properties of heteroepitaxial grown tin‐doped indium oxide films,” J. Appl. Phys. 80, 978 (1996). [27] M. Bender, J. Trube, and J. Stollenwerk, “Deposition of transparent and conducting indium-tin-oxide films by the r.f.-superimposed DC sputtering technology,” Thin Solid Films. 354, 100 (1999). [28] T. Minami, “New n-type transparent conducting oxides,” MRS Bull. 25, 38 (2000). [29] N. Kikuchi, E. Kusano, H. Nanto, A. Kinbara, and H. Hosono, “Phonon scattering in electron transport phenomena of ITO films,” Vacuum. 59, 492 (2000). [30] K. Ellmer, “Resistivity of polycrystalline zinc oxide films: current status and physical limit,” J. Phys. D Appl. Phys. 34, 3097 (2001). [31] H. Odaka, Y. Shigesato, T. Murakani, and S. Iwata, “Electronic Structure Analyses of Sn-doped In2O3,” Jpn. J. Appl. Phys. 40, 3231 (2001). [32] B. Thangaraju, “Structural and electrical studies on highly conducting spray deposited fluorine and antimony doped SnO2 thin films from SnCl2 precursor,” Thin Solid Films. 402, 71 (2002). [33] H.C. Lee, and O. O. Park, “Behaviors of carrier concentrations and mobilities in indium–tin oxide thin films by DC magnetron sputtering at various oxygen flow rates,” Vacuum. 77, 69 (2004). [34] H.C. Lee, and O. O. Park, “Electron scattering mechanisms in indium-tin-oxide thin films: grain boundary and ionized impurity scattering,” Vacuum. 75, 275 (2004). [35] H.C. Lee, “Electron scattering mechanisms in indium–tin-oxide thin films prepared at the various process conditions,” Appl. Surf. Sci. 252, 3428 (2006). [36] H. Han, J. W. Mayer, and T. L. Alford, “Effect of various annealing environments on electrical and optical properties of indium tin oxide on polyethylene napthalate,” J. Appl. Phys. 99, 123711 (2006). [37] Y. Shigesato, D.C. Paine, and T. E. Haynes, “Study of the effect of ion implantation on the electrical and microstructural properties of tin‐doped indium oxide thin films,” J. Appl. Phys. 73, 3805 (1993). [38] Y. Shigesato, and D.C. Paine, “Study of the effect of Sn doping on the electronic transport properties of thin film indium oxide,” Appl. Phys. Lett. 62, 1268 (1993). [39] T. M. Ratcheva, M. D. Nanova, L. V. Vassilev, and M. G. Mikhailov, “Properties of In2O3: Te films prepared by the spraying method,” Thin Solid Films. 139, 189 (1986). [40] J. Bruneaux, H. Cachet, M. Froment, and A. Messad, “Correlation between structural and electrical properties of sprayed tin oxide films with and without fluorine doping,” Thin Solid Films. 197, 129 (1991). [41] S. Dasgupta, M. Lukas, K. Dossel, R. Kruk, and H. Hahn, “Electron mobility variations in surface-charged indium tin oxide thin films,” Phys. Rev. B. 80, 085425 (2009) . [42] K. Ellmer, and R. Mientus, “Carrier transport in polycrystalline transparent conductive oxides: A comparative study of zinc oxide and indium oxide,” Thin Solid Films. 516, 4620 (2008). [43] K. Ellmer, and R. Mientus, “Carrier transport in polycrystalline ITO and ZnO:Al II: The influence of grain barriers and boundaries,” Thin Solid Films. 516, 5829 (2008). [44] C. W. Bunn, “A Comparative Review of ZnO Materials and Devices,” Proc. Phys. Soc. London. 47, 836 (1935). [45] T. C. Damen, S. P. S. Porto, and B. Tell, “Raman Effect in Zinc Oxide,” Phys. Rev. 142, 570 (1966). [46] E. Mollwo, and Z. Angew, “Dispersion, absorption and thermal emission of zinc-oxide crystals,” Phys. 6, 257 (1954). [47] G. Galli, and J. E. Coker, “EPITAXIAL ZnO ON SAPPHIRE,” Appl. Phys. Lett. 16, 439 (1970). [48] D. G. Thomas, “The exciton spectrum of zinc oxide,” J. Phys. Chem. Solids. 15, 86 (1960). [49] D. C. Reynolds, D. C. Look, B. Jogai, C. W. Litton, G. Cantwell, and W. C. Harsch, “Valence-band ordering in ZnO,” Phys. Rev. B. 60, 2340 (1999). [50] Y. Z. Zhu, G. D. Chen, Honggang Ye, Aron, Walsh, C. Y. Moon, and Su-Huai Wei, “Electronic structure and phase stability of MgO, ZnO, CdO, and related ternary alloys,” Phys. Rev. B. 77, 245209 (2008). [51] André Schleife, Claudia Röd, Jürgen Furthmüller, and Friedhelm Bechstedt, “Electronic and optical properties of MgxZn1−xO and CdxZn1−xO from ab initio calculations,” New J. Phys. 13, 085012 (2011). [52] E. Ohshima, H. Ogino, I. Niikura, K. Maeda, M. Sato, M. Ito, and T. Fukuda, “Growth of the 2-in-size bulk ZnO single crystals by the hydrothermal method,” J. Cryst. Growth. 260, 166 (2004). [53] J. M. Ntep, S. S. Hassani, A. Lusson, A. Tromson-Carli, D. Ballutaud, G. Didier, and R. Triboulet, “ZnO growth by chemical vapour transport,” J. Cryst. Growth. 207, 30 (1999). [54] D. C. Look, “Recent advances in ZnO materials and devices,” Mater. Sci. Eng. B. 80, 381 (2001). [55] D. M. Bagnall1, Y. F. Chen, Z. Zhu, T. Yao, S. Koyama, M. Y. Shen, and T. Goto, “Optically pumped lasing of ZnO at room temperature,” Appl. Phys. Lett. 70, 2230 (1997). [56] J. H. Lim, C. K. Kong, K. K. Kim, I. K. Park, D. K. Hwang, and S. J. Park, “UV Electroluminescence Emission from ZnO Light-Emitting Diodes Grown by High-Temperature Radiofrequency Sputtering,” Adv. Mater. 18, 2720 (2006). [57] S. Liang, H. Sheng, Y. Liu, Z. Huo, Y. Lu, and H. Shen, “ZnO Schottky ultraviolet photodetectors,” J. Cryst. Growth. 225, 110 (2001). [58] M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, “Nanowire dye-sensitized solar cells,” Nat. Mater. 4, 455 (2005). [59] Q. Wan, Q. H. Li, Y. J. Chen, T. H. Wang, X. L. He, J. P. Li, and C. L. Lin, “Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors,” Appl. Phys. Lett. 84, 3654 (2004). [60] S. J. Pearton, D. P. Norton, K. Ip, Y. W. Heo, and T. Steiner, “Recent advances in processing of ZnO,” J. Vac. Sci. Technol. B. 22, 932 (2004). [61] H. P. Maruska and J. J. Tietjen, “THE PREPARATION AND PROPERTIES OF VAPOR‐DEPOSITED SINGLE‐CRYSTAL‐LINE GaN,” Appl. Phys. Lett. 15, 327 (1969). [62] C. Klingshirn, “ZnO: From basics towards applications,” Phys. Status Solidi B. 244, 3027 (2007). [63] U. Rössler, “Semiconductors: II-VI and I-VII Compounds; Semimagnetic Compounds,” Landolt-Börnstein, New Series III/41B (1999). [64] C. F. Klingshirn, B. K. Meyer, A. Waag, A. Hoffmann, J. M. and M. Geurts, “Zinc Oxide” Springer. 204, 682 (2010). [65] C. Klingshirn, “ZnO: Material, Physics and Applications,” Chem. Phys. Chem. 8, 782 (2007). [66] S. Y. Myong, S. J. Baik, C. H. Lee, W. Y. Cho, and K. S. Lim, “Extremely Transparent and Conductive ZnO:Al Thin Films Prepared by Photo-Assisted Metalorganic Chemical Vapor Deposition (photo-MOCVD) Using AlCl3(6H2O) as New Doping Material,” Jpn. J. Appl. Phys. 36, L1078 (1997). [67] B. M. Ataev, A. M. Bagamadova, A. M. Djabrailov, V. V. Mamedo, and R. A. Rabadanov, “Highly conductive and transparent Ga-doped epitaxial ZnO films on sapphire by CVD,” Thin Solid Films. 260, 19 (1995). [68] V. Assuncao, E. Fortunato, A. Marques, H. Aguas, I. Ferreira, M. E. V. Costa, and R. Martins, “Influence of the deposition pressure on the properties of transparent and conductive ZnO:Ga thin-film produced by r.f. sputtering at room temperature,” Thin Solid Films. 427, 401 (2003). [69] Z. F. Liu, F. K. Shan, Y. X. Li, B. C. Shin, and Y. S. Yu, “Epitaxial growth and properties of Ga-doped ZnO films grown by pulsed laser deposition,” J. Cryst. Growth. 259, 130 (2003). [70] B. C. Jiao, X. D. Zhang, C. C. Wei, J. Sun, Q. Huang, and Y. Zhao, “Effect of acetic acid on ZnO:In transparent conductive oxide prepared by ultrasonic spray pyrolysis,” Thin Solid Films. 520, 1323 (2011). [71] H. J. Ko, Y. F. Chen, S. K. Hong, H. Wenisch, T. Yao, and D. C. Look, “Ga-doped ZnO films grown on GaN templates by plasma-assisted molecular-beam epitaxy,” Appl. Phys. Lett. 77, 3761 (2000). [72] J. Hu and R. G. Gordon, “Textured fluorine-doped ZnO films by atmospheric pressure chemical vapor deposition and their use in amorphous silicon solar cells,” Solar Cells. 30, 437 (1991). [73] M. Olvera, S. Tirado Guerra, A. Maldonado, and L. CastaCeda, “Chemically sprayed ZnO:F thin films deposited from diluted solutions: Effect of the time of aging on physical characteristics,” Sol. Energy Mater. Sol. Cells 90, 2346 (2006). [74] G. F. Neumark, ”Achievement of well conducting wide band-gap semiconductors: Role of solubility and of nonequilibrium impurity incorporation,” Phys. Rev. Lett. 62, 1800 (1989). [75] W. Walukiewicz, “Defect formation and diffusion in heavily dopedsemiconductors,” Phys. Rev. B. 50, 5221 (1994). [76] C. G. Van de Walle, D. B. Laks, G. F. Neumark, and S. T. Pantelides, “First-principles calculations of solubilities and doping limits: Li, Na, and N in ZnSe,” Phys. Rev. B. 47, 9425 (1993). [77] F. Schirmer, and D. Zwingel, “The structure of the paramagnetic lithium center in zinc oxide and beryllium oxide,” J. Phys. Chem. Solids. 29, 1407 (1968). [78] A. Valentini, F. Quaranta, M. Rossi, and G. Battaglin, “Preparation and characterization of Li‐doped ZnO films,” J. Vac. Sci. Technol. A 9, 286 (1991). [79] Y. Kanai, “Admittance Spectroscopy of Cu-Doped ZnO Crystals,” Jpn. J. Appl. Phys. Part 1 30, 703 (1991). [80] Y. F. Yao, C. H. Shen, W. F. Chen, P. Y. Shih, W. H. Chou, C. Y. Su, H. S. Chen, C. H. Liao, W. M. Chang, Y. W. Kiang, and C. C. Yang, “Void Structures in Regularly Patterned ZnO Nanorods Grown with the Hydrothermal Method,” J. Nanomaterials. 11, (2014). [81] M. Sakurai, Y. G. Wang, T. Uemura, and M. Aono, “Electrical properties of individual ZnO nanowires,” Nanotechnology. 20, 155203 (2009). [82] Z. Zheng, Z. S. Lim, Y. Peng, L. You, L. Chen, and J. Wang, “General Route to ZnO Nanorod Arrays on Conducting Substrates via Galvanic-cell-based approach,” Scientific Reports. 3, 2434 (2013). [83] S. Xu, and Z. L. Wang, “One-dimensional ZnO nanostructures: Solution growth and functional properties,” Nano Research. 4 1013 (2011). [84] B. Sunandan, and D. Joydeep, “Hydrothermal growth of ZnO nanostructures,” Sci. Technol. Adv. Mat. 10, 013001 (2009). [85] T. Gao, and T. Wang, “Vapor Phase Growth of ZnO Nanorod–Nanobelt Junction Arrays,” J. Nanosci. Nanotechnol. 5, 1120 (2005). [86] W. I. Park, G. C. Yi, M. Kim, and S. J. Pennycook, “ZnO Nanoneedles Grown Vertically on Si Substrates by Non‐Catalytic Vapor‐Phase Epitaxy,” Adv. Mater. 14, 1841 (2002). [87] W. I. Park, D. H. Kim, S. W. Jung, and G. C. Yi, “Metalorganic vapor-phase epitaxial growth of vertically well-aligned ZnO nanorods,” Appl. Phys. Lett. 80, 4232 (2002). [88] R. S. Wagner, and W. C. Ellis, “VAPOR‐LIQUID‐SOLID MECHANISM OF SINGLE CRYSTAL GROWTH.” Appl. Phys. Lett. 4, 89. (1964). [89] S. Jebril, H. Kuhlmann, S. Müller, C. Ronning, L. Kienle, V. Duppel, and Y. K. Mishra, “Epitactically Interpenetrated High Quality ZnO Nanostructured Junctions on Microchips Grown by the Vapor−Liquid−Solid Method,” Crystal Growth & Design. 10, 2842 (2010). [90] F. H. Chu, C. W. Huang, C. L. Hsin, C. W. Wang, S. Y. Yu, P. H. Yeh, and W. W. Wu, “Well-aligned ZnO nanowires with excellent field emission and photocatalytic properties,” Nanoscale 4, 1471 (2012). [91] V. Bhosle, A. Tiwari, and J. Narayan, “Electrical properties of transparent and conducting Ga doped ZnO,” J. Appl. Phys. 100, 033713. (2006). [92] H. M. Chiu, H. J. Tsai, W. K. Hsu, and J. M. Wu, “Experimental and computational insights in the growth of gallium-doped zinc oxide nanostructures with superior field emission properties,” Cryst. Eng. Comm. 15, 5764 (2013). [93] H. C. Hsu, and D. H. Chen, “Synthesis and conductivity enhancement of Al-doped ZnO nanorod array thin films,” Nanotechnology. 21, 285603 (2010). [94] Y. F. Yao, C. G. Tu, T. W. Chang, H. T. Chen, C. M. Weng, C. Y. Su, C. Hsieh, C. H. Liao, Y. W. Kiang, and C. C. Yang, “Growth of Highly Conductive Ga-Doped ZnO Nanoneedles,” ACS Appl. Mater. Interfaces. 7, 10525 (2015). [95] Y. F. Yao, C. H. Lin, C. Hsieh, C. Y. Su, E. Zhu, S. Yang, C. M. Weng, M. Y. Su, M. C. Tsai, S. S. Wu, S. H. Chen, C. G. Tu, H. T. Chen, Y. W. Kiang, C. C. Yang, “Multi-mechanism efficiency enhancement in growing Ga-doped ZnO as the transparent conductor on a light-emitting diode,” Optics Express. 23, 32274 (2015). [96] V. Gottschalch, G. Wagner, J. Bauer, H. Paetzelt, and M. Shirnow, “VLS growth of GaN nanowires on various substrates,” J. Cryst. Growth. 310, 5123 (2008). [97] P. Madras, E. Dailey, and J. Drucker, “Kinetically Induced Kinking of Vapor−Liquid−Solid Grown Epitaxial Si Nanowires,” Nano letters. 9, 3826 (2009). [98] D. P. Nicholls , R. Vincent , D. Cherns , Y. Sun and M. N. R. Ashfold, “Polarity determination of zinc oxide nanorods by defocused convergent-beam electron diffraction,” Philosophical Magazine Letters. 87(6), 417 (2007). [99] G. Binnig and H. Rohrer, “SCANNING TUNNELING MICROSCOPY,” Surface Science. 126, 236 (1983). [100] Mikkelsen, N. Skold, L. Ouattara, M. Borgstrom, J. N. Andersen, L. Samuelson, W. Seifert, and E. Lundrgen, “Direct imaging of the atomic structure inside a nanowire by scanning tunnelling microscopy,” Nature Materials. 3, 519 (2004). [101] Kisielowskia, C. J. D. Hetheringtona, Y. C. Wanga, R. Kilaasa, M. A. O’Keefea, A. Thustd, “Imaging columns of the light elements carbon,nitrogen and oxygen with sub Angstrom resolution,” Ultramicroscopy. 89, 243 (2001). [102] M. R. Wagner, T. P. Bartel, R. Kirste, and A. Hoffmann, “Influence of substrate surface polarity on homoepitaxial growth of ZnO layers by chemical vapor deposition,” Phys. Rev. B. 79, 035307 (2009). [103] M. d. l. Mata, C. Magen, J. Gazquez, M. I. B. Utama, M. Heiss, S. Lopatin, F. Furtmayr, C. J. Fernández-Rojas, B. Peng, J. Ramon Morante, R. Rurali, M. Eickhoff, A. F. Morral, Q. Xiong, and J. Arbiol, “Polarity Assignment in ZnTe, GaAs, ZnO, and GaN-AlN Nanowires from Direct Dumbbell Analysis,” Nano Lett. 12, 2579 (2012). [104] H. Maki, T. Ikoma, I. Sakaguchi, N. Ohashi, H. Haneda, J. Tanaka, and N. Ichinose, “Control of surface morphology of (000-1)ZnO by hydrochloric acid etching,” Thin Solid Films 411, 91 (2002). [105] H. Tampo, P. Fons, A. Yamada, K. K. Kim, H. Shibata, K. Matsubara, S. Niki, H. Yoshikawa, and H. Kanie,“Determination of crystallographic polarity of ZnO layers,” Appl. Phys. Lett. 87, 141904 (2005). [106] X. Wang, Y. Tomita, O. H. Row, M. Ohsugi, S. B. Che, Y. Ishitani, and A. Yoshikawa, “Polarity control of ZnO films grown on nitrided c-sapphire by molecular-beam epitaxy,” Appl. Phys. Lett. 86, 011921 (2005). [107] N. Ohashi, K. Takahashi, S. Hishita, I. Sakaguchi, H. Funakubo, and H. Haneda, “Fabrication of ZnO Microstructures by Anisotropic Wet-Chemical Etching,” J. Electrochem. Soc. 154, D82 (2007). [108] S. C. Han, J. K. Kim, J. Y. Kim, K. K. Kim, H. Tampo, S. Niki, and J. M. Lee, “Formation of Hexagonal Pyramids and Pits on V-/VI-Polar and III-/II-Polar GaN/ZnO Surfaces by Wet Etching,” J. Electrochem. Soc. 157, D60 (2010). [109] J. L. Weyher, S. M€uller, I. Grzegory, and S. Porowski, “Chemical polishing of bulk and epitaxial GaN,” J. Cryst. Growth. 182, 17 (1997). [110] M. Seelmann-Eggebert, J. L. Weyher, H. Obloh, H. Zimmermann, A. Rar, and S. Porowski, “Polarity of (00.1) GaN epilayers grown on a (00.1) sapphire,” Appl. Phys. Lett. 71, 2635 (1997). [111] J. L. Rouviere, J. L. Weyher, M. Seelmann-Eggebert, and S. Porowski, “Polarity determination for GaN films grown on (0001) sapphire and high-pressure-grown GaN single crystals,” Appl. Phys. Lett. 73, 668 (1998). [112] T. Palacios, F. Calle, M. Varela, C. Ballesteros, E. Monroy, F. B. Naranjo, M. A. Sanchez-Garcıa, E. Calleja, and E. Munoz, “Wet etching of GaN grown by molecular beam epitaxy on Si(111),” Semicond. Sci. Technol. 15, 996 (2000). [113] L. Dongsheng, M. Sumiya, K. Yoshimura, Y. Suzuki, Y. Fukuda, and S. Fuke, “Characteristics of the GaN Polar Surface during an Etching Process in KOH Solution,” Phys. Status Solidi A. 180, 357 (2000). [114] Y. K. Hsu, Y. G. Lin, and Y. C. Chen, “Polarity-dependent photoelectrochemical activity in ZnO nanostructures for solar water splitting,” Electrochem. Commun. 13(12), 1383 (2011). [115] K. Fujii, Y. Iwaki, H. Masui, T. J. Baker, M. Iza, H. Sato, J. Kaeding, T. Yao, J. S. Speck, S. P. Denbaars, S. Nakamura, and K. Ohkawa, “Photoelectrochemical Properties of Nonpolar and Semipolar GaN,” Jpn. J. Appl. Phys. 46(10A), 6573 (2007). [116] Y. G. Lin, Y. K. Hsu, A. M. Basilio, Y. T. Chen, K. H. Chen, and L. C. Chen, “Photoelectrochemical activity on Ga-polar and N-polar GaN surfaces for energy conversion,” Opt. Express. 22, A21 (2014). [117] M. W. Allen, C. H. Swartz, T. H. Myers, T. D. Veal, C. F. McConville, and S. M. Durbin, “Bulk transport measurements in ZnO: The effect of surface electron layers,” Phys. Rev. B. 81, 075211 (2010). [118] S. A. Chevtchenko, J. C. Moore, U. Ozgur, X. Gu, A. A. Baski, H. Morkoc, B. Nemeth, and J. E. Nause, “Comparative study of the (0001) and (000-1) surfaces of ZnO,” Appl. Phys. Lett. 89, 182111 (2006). [119] R. H. Fowler, and L. Nordheim, “Electron emission in intense electric fields,” Proc. Roy. Soc. London A 119, 173 (1928). [120] C. X. Xu, X. W. Sun, and B. J. Chen, “Field emission from gallium-doped zinc oxide nanofiber array,” Appl. Phys. Lett. 84, 1540 (2004). [121] M. W. Allen, R. Heinhold, P. Miller, M. J. H. Henseler, R. J. Mendelsberg, S. M. Durbin, and R. J. Reeves, “Polarity effects in the optical properties of hydrothermal ZnO,” Appl. Phys. Lett. 103, 231109 (2013). [122] I. Duff, L. Lymperakis, and J. Neugebauer, “Understanding and controlling indium incorporation and surface segregation on InxGa1 − xN surfaces: An ab initio approach,” Phys. Rev. B. 89, 085307 (2014). [123] P. J. Schuck, M. D. Mason, R. D. Grober, O. Ambacher, A. P. Lima, C. Miskys, R. Dimitrov, and M. Stutzmann, “Spatially resolved photoluminescence of inversion domain boundaries in GaN-based lateral polarity heterostructures, ” Appl. Phys. Lett. 79, 952 (2001). [124] R. Kirste, R. Collazo, G. Callsen, M. R. Wagner, T. Kure, J. Sebastian Reparaz, S. Mita, J. Xie, A. Rice, J. Tweedie, Z. Sitar, and A. Hoffmann, “Temperature dependent photoluminescence of lateral polarity junctions of metal organic chemical vapor deposition grown GaN,” J. Appl. Phys. 110, 093503 (2011). [125] P. M. Coulon, M. Mexis, M. Teisseire, M. Jublot, P. Vennéguès, M. Leroux, and J. Zuniga-Perez, “Dual-polarity GaN micropillars grown by metalorganic vapour phase epitaxy: Cross-correlation between structural and optical properties,” J. Appl. Phys. 115, 153504 (2014). [126] T. Zywietz, J. Neugebauer, and M. Scheffler, “Adatom diffusion at GaN (0001) and (000-1) surfaces,” Appl. Phys. Lett. 73, 487 (1998). [127] V. Sallet, C. Sartel, C. Vilar, A. Lusson, and P. Galtier, “Opposite crystal polarities observed in spontaneous and vapour-liquid-solid grown ZnO nanowires,” Appl. Phys. Lett. 102, 182103 (2013). [128] Y. F. Yao, S. Yang, H. H. Lin, K. P. Chou, C. M. Weng, J. Y. Liao, C. H. Lin, H. T. Chen, C. Y. Su, C. G. Tu, Y. W. Kiang, and C. C. Yang,“Anti-reflection behavior of a surface Ga-doped ZnO nanoneedle structure and the controlling factors” Optical Materials Express, 7(11), 4058 (2017). [129] R. Ishikawa, E. Okunishi, H. Sawada, Y. Kondo, F. Hosokawa and E. Abe1, “Direct imaging of hydrogen-atom columns in a crystal by annular bright-field electron microscopy,” Nature Materials. 10, 278 (2011). [130] E. Okunishi, I. Ishikawa, H. Sawada, F. Hosokawa, M. Hori and Y. Kondo, “Visualization of Light Elements at Ultrahigh Resolution by STEM Annular Bright Field Microscopy,” Microsc Microanal. 15(2), 164 (2009). [131] J. L. Rouviere, J. L. WeyherM, Seelmann-EggebertS, Porowski, “Polarity determination for GaN films grown on (0001) sapphire and high pressure-grown GaN single crystals,” Appl. Phys. Lett. 73(5), 668 (1998). [132] H. Simon, T. Krekeler, G. Schaan, and W. Mader, “Metal-Seeded Growth Mechanism of ZnO Nanowires,” Cryst. Growth Des. 13, 572 (2013). [133] S. R. Hejazi, H. R. Madaah Hosseini, and M. Sasani Ghamsari, “The role of the reactants and droplet interfaces on nucleation and growth of Zno nanorods synthesized by vapor-liquid-solid(VLS) mechanism,” Journal of Alloys and Compounds. 455, 353 (2008). [134] G. E. Cirlin, V. G. Dubrovskii, Yu. B. Samsonenko, A. D. Bouravleuv, K. Durose, Y. Y. Proskuryakov, Budhikar Mendes, L. Bowen, M. A. Kaliteevski, R. A. Abram, and Dagou Zeze, “Self-catalyzed, pure zincblende GaAs nanowires grown on Si(111) by molecular beam epitaxy,” Phy. Rev B. 82, 035302 (2010). [135] D. Ganalski, J. Tersoff and E. A. Stach,“Atomic resolution in stiu imaging of a double-bilayer multistep growth mode in Gallium Nitride nanowires” Nano lett. 16(4), 2283 (2016). [136] Y. Wen, J. Tersoff, M. C. Reuter, E. A. Stach, and F. M. Ross,“Step-Flow Kinetics in Nanowire Growth” Phy. Rev B. 105, 195502 (2010). [137] S. Kabisch, M. Timpel, H. Kirmse, M. A. Gluba, N. Koch and N. H. Nickel,“Polarity of pulsed laser deposited ZnO nanostructures” Appl. Phys. Lett. 108, 083114 (2016). [138] V. Consonni, E. Sarigiannidou, E. Appert, A. Bocheux, S. Guillemin, F. Donatini, I. C. Robin, J. Kioseoglou, and F. Robaut,“Selective area growth of well-ordered ZnO nanowire arrays with controllable polarity” ACS Nano. 8(5), 4761 (2014). [139] Y. S. Choi, D. K. Hwang, B. J. Kwon, J. W. Kang, Y. H. Cho, and S. J. Park,“Effect of VI/II Gas Ratio on the Epitaxial Growth of ZnO Films by Metalorganic Chemical Vapor Deposition” Jpn. J. Appl. Phys. 50, 105502 (2011). [140] H. Kato, M. Sano, K. Miyamoto, and T. Yao,“High quality ZnO epilayers grown on Zn-face ZnO substrates by plasma assisted molecular beam epitaxy” J. Cryst. Growth. 265, 375, (2004). | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71094 | - |
dc.description.abstract | 利用球面相差修正掃描式穿透電子顯微鏡的環型明場拍攝技術,我們研究在富鋅以及富氧條件下成長於不同極性氮化鎵基板上的氧化鎵鋅奈米線及薄膜極性。我們利用銀奈米顆粒當作生長催化劑經由氣-液-固生長方式成長氧化鎵鋅奈米線,在生長氧化鎵鋅奈米線期間,通過氣-固成長方式同時可在奈米線間隙成長氧化鎵鋅薄膜。雖然薄膜的極性遵循生長基板的極性,但是在富鋅(氧)的成長條件下,生長在不同極性基板的奈米線卻總是鋅(氧)極性的。換句話說,無論生長的基板極性如何,氧化鎵鋅奈米線的極性都是由其富鋅或富氧成長條件所控制。在奈米線生長初期,由於在三相線上所形成的核島之晶格尺寸差異極大,當從多個核島起始的橫向生長形成氧化鎵鋅雙層結構時,會產生高密度的堆疊缺陷。在此情況下,晶體會產生頻繁的極性反轉,因此氧化鎵鋅的極性極不穩定。當奈米線的橫截面積隨生長而變小時,不同位置的核島之晶格變得較均勻,使得堆疊缺陷減少,而極性變成較穩定。在富鋅(氧)的生長條件下,鋅(氧)極性結構中氧化鎵鋅的橫向生長速率因有較多可用的懸掛鍵而較高,所以在奈米線成長中,鋅(氧)極性結構的生長佔優勢,使得奈米線生長最終是鋅(氧)極性,而與生長基板的極性無關。 | zh_TW |
dc.description.abstract | By using the annular bright field images of scanning transmission electron microscopy observations, the polarities of Ga-doped ZnO (GaZnO) nanowires (NWs) and thin films grown on GaN templates of different polarities under the Zn- and O-rich conditions are studied. The NWs are formed through the vapor-liquid-solid process using Ag nanoparticles as growth catalyst. The thin films are deposited simultaneously through the vapor-solid process between NWs during NW growth. Although the polarity of a thin film follows that of the growth template, the NWs grown on templates of different polarities under the Zn- (O-) rich condition are always Zn (O) polar. In other words, the polarity of a GaZnO NW is controlled by the Zn- or O-rich growth condition, irrespective of the polarity of growth template. During the early stage of NW growth, because the lattice sizes among different nucleation islands (NIs) formed at the triple-phase line are quite different, stacking faults of a high density are produced when the lateral growths from multiple NIs form a GaZnO double-bilayer. In this situation, frequent domain inversions occur and GaZnO polarity is unstable. When the NW cross-sectional size becomes smaller along growth, the more uniform lattices of different NIs lead to fewer stacking faults and hence more stable polarity. Under the Zn- (O-) rich growth condition, because the lateral growth rate of GaZnO in the Zn- (O-) polar structure is higher due to more available dangling bonds, the growth of Zn- (O-) polar structure dominates NW formation such that the NW is Zn (O) polar irrespective of the polarity of growth template. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T04:52:40Z (GMT). No. of bitstreams: 1 ntu-107-R04941107-1.pdf: 4052944 bytes, checksum: f5b69d91f52285cdcbe360c7949cec5c (MD5) Previous issue date: 2018 | en |
dc.description.tableofcontents | 口試委員會審定書 I
誌謝 II 摘要 III ABSTRACT IV CHAPTER 1 INTRODUCTION 1 1.1 TRANSPARENT CONDUCTING OXIDE 1 1.2 ELECTRICAL PROPERTIES OF TCO 2 1.3 GENERAL REVIEWS ON ZNO AS A LIGHT-EMITTING MATERIAL 3 1.3.1 CRYSTAL STRUCTURES 4 1.4 DOPING OF ZNO 5 1.4.1 N-TYPE DOPING 5 1.4.2 P-TYPE DOPING 6 1.5 ZNO NANOWIRE GROWTH 6 1.6 POLARITY 8 1.7 POLARITY APPLICATIONS 9 1.8 RESEARCH MOTIVATIONS 10 1.9 THESIS ORGANIZATION 11 CHAPTER 2 ANALYSIS METHODS 19 2.1 SPECIMEN PREPARATION FOR CROSS-SECTION TRANSMISSION ELECTRON MICROSCOPY 19 2.2 HIGH-RESOLUTION TRANSMISSION ELECTRON MICROSCOPY 20 2.3 HIGH-ANGLE ANNULAR DARK-FIELD (HAADF) IMAGE 23 2.4 ANNULAR BRIGHT FIELD (ABF) 24 2.5 SCANNING ELECTRON MICROSCOPY (SEM) 25 CHAPTER 3 ANALYSIS RESULTS OF CRYSTAL POLARITY OF GAZNO NANOWIRES 36 3.1 SAMPLE GROWTH CONDITIONS 36 3.2 POLARITY BEHAVIORS OF GAZNO NANOWIRES AND THIN FILM 38 CHAPTER 4 MECHANISMS BEHIND POLARITY DETERMINATION 47 CHAPTER 5 DISCUSSIONS 59 CHAPTER 6 CONCLUSIONS 61 REFERENCES 62 | |
dc.language.iso | en | |
dc.title | 以氣-液-固生長方法形成氧化鎵鋅奈米線的極化特性 | zh_TW |
dc.title | Polarity of GaZnO Nanowire Formed with Vapor-liquid-solid Growth Process | en |
dc.type | Thesis | |
dc.date.schoolyear | 106-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 江衍偉,黃建璋,林浩雄,吳育任 | |
dc.subject.keyword | 電子顯微鏡,氧化鎵鋅,極性,氣液固, | zh_TW |
dc.subject.keyword | TEM,GaZnO,Polarity,VLS, | en |
dc.relation.page | 77 | |
dc.identifier.doi | 10.6342/NTU201802197 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2018-07-30 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
顯示於系所單位: | 光電工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-107-1.pdf 目前未授權公開取用 | 3.96 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。