Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 植物科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71072
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor葉開溫(Kai-Wun Yeh)
dc.contributor.authorShou-Chen Hsuen
dc.contributor.author徐守宸zh_TW
dc.date.accessioned2021-06-17T04:51:33Z-
dc.date.available2020-08-02
dc.date.copyright2018-08-02
dc.date.issued2018
dc.date.submitted2018-07-30
dc.identifier.citationAkum, F. N., Steinbrenner, J., Biedenkoph, D., Imani, J., and Kogel, K.H. (2015). The Piriformospora indica effector PIIN_08944 promotes the mutualistic Sebacinalean symbiosis. Front. Plant Sci. 6: 906.
Anderson, D. M. W., Hendrie, A., & Munro, A. C. (1972). The amino acid and amino sugar composition of some plant gums. Phytochemistry 11: 733-736.
Azami-Sardooei, Z., França, S.C., De Vleesschauwer, D., and Höfte, M. (2010). Riboflavin induces resistance against Botrytis cinerea in bean, but not in tomato, by priming for a hydrogen peroxide-fueled resistance response. Physiol. Mol. Plant Pathol. 75: 23-29.
Coimbra, S., Costa, M., Mendes, M. A., Pereira, A. M., Pinto, J., & Pereira, L. G. (2010). Early germination of Arabidopsis pollen in a double null mutant for the arabinogalactan protein genes AGP6 and AGP11. Sex. Plant Reprod. 23: 199-205.
Das, A., Kamal, S., Shakil, N.A., Sherameti, I., Oelmuller, R., Dua, M., Tuteja, N., Johri, A.K., and Varma, A. (2012). The root endophyte fungus Piriformospora indica leads to early flowering, higher biomass and altered secondary metabolites of the medicinal plant, Coleus forskohlii. Plant Signal. Behav. 7: 103-112.
Earley, K.W., Haag, J.R., Pontes, O., Opper, K., Juehne, T., Song, K., and Pikaard, C.S. (2006). Gateway-compatible vectors for plant functional genomics and proteomics. Plant J. 45: 616-629.
Erhardt, M., Namba, K., and Hughes, K.T. (2010). Bacterial nanomachines: the flagellum and type III injectisome. Cold Spring Harb Perspect Biol. 2: a000299.
Gao, M., & Showalter, A. M. (1999). Yariv reagent treatment induces programmed cell death in Arabidopsis cell cultures and implicates arabinogalactan protein involvement. Plant J. 19: 321-331.
Han, T., Dong, H., Cui, J., Li, M., Lin, S., Cao, J., & Huang, L. (2017). Genomic, molecular evolution, and expression analysis of genes encoding putative Classical AGPs, lysine-rich AGPs, and AG peptides in Brassica rapa. Front. Plant Sci. 8: 397.
Hu, Y., Qin, Y., & Zhao, J. (2006). Localization of an arabinogalactan protein epitope and the effects of Yariv phenylglycoside during zygotic embryo development of Arabidopsis thaliana. Protoplasma 229: 21-31.
Huitema, E., Bos, J.I., Tian, M., Win, J., Waugh, M.E., and Kamoun, S. (2004). Linking sequence to phenotype in Phytophthora-plant interactions. Trends Microbiol. 12:193-200.
Johnson KL, Jones BJ, Bacic A, Schultz CJ. (2003). The fasciclin arabinogalactan protein-like arabinogalactan proteins of Arabidopsis: a multigene family of putative cell adhesion molecules. Plant Physiol. 133:1911–1925.
Kao. (2013). Functional characterization ofselective genes responsible for growth promotion in Chinese cabbage (Brassica campestris subsp.ChinensisL.) colonized by Piriformospora indica. (Graduate Institute of Plant Biology College of Life Science National Taiwan University Master Thesis).
Kloppholz, S., Kuhn, H., and Requena, N. (2011). A secreted fungal effector of Glomus intraradices promotes symbiotic biotrophy. Current biology 21: 1204-1209.
Kumar M, Sharma R, Jogawat A, Singh P, Dua M, Gill SS,Trivedi DK, Tuteja N, Varma AK, Oelmueller R, Johri AK (2012). Piriformospora indica, a root endophytic fungus, enhances abiotic stress tolerance of the host plant. In: Tuteja N, Gill SS,Tiburcio AF, Tuteja R (eds) Improving crop resistance to abiotic stress. Wiley-Blackwell, Weinheim, pp 543–548.
Kunze, G., Zipfel, C., Robatzek, S., Niehaus, K., Boller, T., and Felix, G. (2004). The N terminus of bacterial elongation factor Tu elicits innate immunity in Arabidopsis plants. Plant Cell 16: 3496-3507.
Lamport, D. T., Kieliszewski, M. J., & Showalter, A. M. (2006). Salt stress upregulates periplasmic arabinogalactan proteins: using salt stress to analyse AGP function. New Phytol. 169: 479-492.
Lee, Y.C., Johnson, J.M., Chien, C.T., Sun, C., Cai, D., Lou, B., Oelmuller, R., and Yeh, K.W. (2011). Growth promotion of Chinese cabbage and Arabidopsis by Piriformospora indica is not stimulated by mycelium-synthesized auxin. Mol. Plant Microbe Interact. 24: 421-431.
Li, S. X., & Showalter, A. M. (1996). Cloning and developmental/stress-regulated expression of a gene encoding a tomato arabinogalactan protein. Plant Mol. Biol. 32: 641-652.
Li, W., Cowley, A., Uludag, M., Gur, T., McWilliam, H., Squizzato, S., Park, Y.M., Buso, N., and Lopez, R. (2015). The EMBL-EBI bioinformatics web and programmatic tools framework. Nucleic Acids Res. 43: W580-W584.
Li, Y., Liu, D., Tu, L., Zhang, X., Wang, L., Zhu, L., ... & Deng, F. (2010). Suppression of GhAGP4 gene expression repressed the initiation and elongation of cotton fiber. Plant Cell Rep. 29: 193-202.
Ma, H., & Zhao, J. (2010). Genome-wide identification, classification, and expression analysis of the arabinogalactan protein gene family in rice (Oryza sativa L.). J Exp. Bot. 61: 2647-2668.
Mashiguchi, K., Asami, T., & Suzuki, Y. (2009). Genome-wide identification, structure and expression studies, and mutant collection of 22 early nodulin-like protein genes in Arabidopsis. Biosci. Biotechnol. Biochem. 73: 2452-2459.
Martin, F., Aerts, A., Ahren, D., Brun, A., Danchin, E.G., Duchaussoy, F., Gibon, J., Kohler, A., Lindquist, E., Pereda, V., Salamov, A., Shapiro, H.J., Wuyts, J., Blaudez, D., Buee, M., Brokstein, P., Canback, B., Cohen, D., Courty, P.E., Coutinho, P.M., Delaruelle, C., Detter, J.C., Deveau, A., DiFazio, S., Duplessis, S., Fraissinet-Tachet, L., Lucic, E., Frey-Klett, P., Fourrey, C., Feussner, I., Gay, G., Grimwood, J., Hoegger, P.J., Jain, P., Kilaru, S., Labbe, J., Lin, Y.C., Legue, V., Le Tacon, F., Marmeisse, R., Melayah, D., Montanini, B., Muratet, M., Nehls, U., Niculita-Hirzel, H., Oudot-Le Secq, M.P., Peter, M., Quesneville, H., Rajashekar, B., Reich, M., Rouhier, N., Schmutz, J., Yin, T., Chalot, M., Henrissat, B., Kues, U., Lucas, S., Van de Peer, Y., Podila, G.K., Polle, A., Pukkila, P.J., Richardson, P.M., Rouze, P., Sanders, I.R., Stajich, J.E., Tunlid, A., Tuskan, G., and Grigoriev, I.V. (2008). The genome of Laccaria bicolor provides insights into mycorrhizal symbiosis. Nature 452: 88-92.
Motose, H., Sugiyama, M., & Fukuda, H. (2004). A proteoglycan mediates inductive interaction during plant vascular development. Nature 429: 873.
Nguema-Ona, E., Vicré-Gibouin, M., Cannesan, M. A., & Driouich, A. (2013). Arabinogalactan proteins in root–microbe interactions. Trends Plant Sci. 18: 440-449.
Pereira, A. M., Nobre, M. S., Pinto, S. C., Lopes, A. L., Costa, M. L., Masiero, S., & Coimbra, S. (2016). “Love Is Strong, and You're so Sweet”: JAGGER is essential for persistent synergid degeneration and polytubey block in Arabidopsis thaliana. Mol. Plant 9: 601-614.
Petersen, T.N., Brunak, S., von Heijne, G., and Nielsen, H. (2011). SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Meth 8: 785-786.
Petre, B., Lorrain, C., Saunders, D. G., Win, J., Sklenar, J., Duplessis, S., & Kamoun, S. (2016). Rust fungal effectors mimic host transit peptides to translocate into chloroplasts. Cell. microbiol. 18: 453-465.
Plett, J.M., Kemppainen, M., Kale, S.D., Kohler, A., Legue, V., Brun, A., Tyler, B.M., Pardo, A.G., and Martin, F. (2011). A secreted effector protein of Laccaria bicolor is required for symbiosis development. Curr. Biol. 21: 1197-1203.
Plett, J.M., Daguerre, Y., Wittulsky, S., Vayssieres, A., Deveau, A., Melton, S.J., Kohler, A., Morrell-Falvey, J.L., Brun, A., Veneault-Fourrey, C., and Martin, F. (2014). Effector MiSSP7 of the mutualistic fungus Laccaria bicolor stabilizes the Populus JAZ6 protein and represses jasmonic acid (JA) responsive genes. Proc. Natl. Acad. Sci. U. S. A. 111: 8299-8304.
Po-Wen, C., Singh, P., and Zimmerli, L. (2013). Priming of the Arabidopsis pattern-triggered immunity response upon infection by necrotrophic Pectobacterium carotovorum bacteria. Mol. Plant Pathol. 14: 58-70.
Qiang, X., Weiss, M., Kogel, K.H., and Schafer, P. (2012). Piriformospora indica-a mutualistic basidiomycete with an exceptionally large plant host range. Mol. Plant Pathol. 13: 508-518.
Qin, Y., & Zhao, J. (2006). Localization of arabinogalactan proteins in egg cells, zygotes, and two-celled proembryos and effects of β-D-glucosyl Yariv reagent on egg cell fertilization and zygote division in Nicotiana tabacum L. J. Exp. Bot. 57: 2061-2074.
Rodríguez‐Herva, J. J., González‐Melendi, P., Cuartas‐Lanza, R., Antúnez‐Lamas, M., Río‐Alvarez, I., Li, Z., ... & Collmer, A. (2012). A bacterial cysteine protease effector protein interferes with photosynthesis to suppress plant innate immune responses. Cell. Microbiol. 14: 669-681.
Schafer, P., Pfiffi, S., Voll, L.M., Zajic, D., Chandler, P.M., Waller, F., Scholz, U., Pons-Kuhnemann, J., Sonnewald, S., Sonnewald, U., and Kogel, K.H. (2009). Manipulation of plant innate immunity and gibberellin as factor of compatibility in the mutualistic association of barley roots with Piriformospora indica. Plant J. 59:461-474.
Schultz, C. J., Rumsewicz, M. P., Johnson, K. L., Jones, B. J., Gaspar, Y. M., & Bacic, A. (2002). Using genomic resources to guide research directions. The arabinogalactan protein gene family as a test case. Plant Physiol. 129: 1448-1463.
Seifert, G. J., & Roberts, K. (2007). The biology of arabinogalactan proteins. Annu. Rev. Plant Biol. 58: 137-161.
Selosse, M. A., & Le Tacon, F. (1998). The land flora: a phototroph-fungus partnership?. Trends Eco. Evol. 13: 15-20.
Serpe, M. D., & Nothnagel, E. A. (1994). Effects of Yariv phenylglycosides onRosa cell suspensions: Evidence for the involvement of arabinogalactan-proteins in cell proliferation. Planta 193:542-550.
Sherameti, I., Shahollari, B., Venus, Y., Altschmied, L., Varma, A., and Oelmuller, R. (2005). The endophytic fungus Piriformospora indica stimulates the expression of nitrate reductase and the starch-degrading enzyme glucan-water dikinase in tobacco and Arabidopsis roots through a homeodomain transcription factor that binds to a conserved motif in their promoters. J. Biol. Chem. 280: 26241-26247.
Shimizu, T., Nakano, T., Takamizawa, D., Desaki, Y., Ishii-Minami, N., Nishizawa, Y., Minami, E., Okada, K., Yamane, H., Kaku, H., and Shibuya, N. (2010). Two LysM receptor molecules, CEBiP and OsCERK1, cooperatively regulate chitin elicitor signaling in rice. Plant J. 64: 204-214.
Showalter, A. M. (2001). Arabinogalactan-proteins: structure, expression and function. Cell. Mol. Life Sci. 58: 1399-1417.
Showalter, A. M., Keppler, B. D., Lichtenberg, J., Gu, D., & Welch, L. R. (2010). A bioinformatics approach to the identification, classification, and analysis of hydroxyproline-rich glycoproteins. Plant Physiol. 153: 485–513.
Spoel, S. H., Koornneef, A., Claessens, S. M., Korzelius, J. P., Van Pelt, J. A., Mueller, M. J., Buchala, A. J., Métraux, J., Brown, R., Kazan, K., Van Loon, L. C., Dong X. and Pieterse, C. M. J. (2003). NPR1 modulates cross-talk between salicylate-and jasmonate-dependent defense pathways through a novel function in the cytosol. Plant Cell 15: 760-770.
Stein, E., Molitor, A., Kogel, K.H., and Waller, F. (2008). Systemic resistance in Arabidopsis conferred by the mycorrhizal fungus Piriformospora indica requires jasmonic acid signaling and the cytoplasmic function of NPR1. Plant Cell Physiol. 49: 1747-1751.
Sun, C., Johnson, J.M., Cai, D., Sherameti, I., Oelmuller, R., and Lou, B. (2010). Piriformospora indica confers drought tolerance in Chinese cabbage leaves by stimulating antioxidant enzymes, the expression of drought-related genes and the plastid-localized CAS protein. J. Plant Physiol. 167: 1009-1017.
Sun, W., Xu, J., Yang, J., Kieliszewski, M. J., & Showalter, A. M. (2005). The lysine-rich arabinogalactan-protein subfamily in Arabidopsis: gene expression, glycoprotein purification and biochemical characterization. Plant Cell Physiol. 46: 975-984.
Tseng, T.-T., Tyler, B.M., and Setubal, J.C. (2009). Protein secretion systems in bacterial-host associations, and their description in the Gene Ontology. BMC Microbiol. 9: S2-S2.
Tsumuraya, Y., Ogura, K., Hashimoto, Y., Mukoyama, H., & Yamamoto, S. (1988). Arabinogalactan-proteins from primary and mature roots of radish (Raphanus sativus L.). Plant Physiol. 86: 155-160.
Van Buuren, M. L., Maldonado-Mendoza, I. E., Trieu, A. T., Blaylock, L. A., & Harrison, M. J. (1999). Novel genes induced during an arbuscular mycorrhizal (AM) symbiosis formed between Medicago truncatula and Glomus versiforme. Mol. Plant Microbe Interact. 12: 171-181.
Van Hengel, A. J., Van Kammen, A. B., & De Vries, S. C. (2002). A relationship between seed development, arabinogalactan‐proteins (AGPs) and the AGP mediated promotion of somatic embryogenesis. Physiol. Plant. 114: 637-644.
Varma, A., Bakshi, M., Lou, B., Hartmann, A., and Oelmueller, R. (2012). Piriformospora indica: A novel plant growth-promoting mycorrhizal fungus. Agri. Res. 1: 117-131.
Varma, A., Savita, V., Sudha, Sahay, N., Bütehorn, B., and Franken, P. (1999). Piriformospora indica, a cultivable plant-growth-promoting root endophyte. Appl. Environ. Microbiol. 65: 2741-2744.
Verma, S., Varma, A., Rexer, K.-H., Hassel, A., Kost, G., Sarbhoy, A., Bisen, P., Bütehorn, B., and Franken, P. (1998). Piriformospora indica, gen. et sp. nov., a new root-colonizing fungus. Mycologia 90: 896-903.
Vicré, M., Santaella, C., Blanchet, S., Gateau, A., & Driouich, A. (2005). Root border-like cells of Arabidopsis. Microscopical characterization and role in the interaction with rhizobacteria. Plant Physiol. 138: 998-1008.
Waller, F., Achatz, B., and Kogel, K.-H. (2007). Analysis of the plant protective potential of the root endophytic fungus Piriformospora indica in cereals. In Advanced Techniques in Soil Microbiology, A. Varma and R. Oelmüller, eds (Springer Berlin Heidelberg), pp. 343-354.
Waller, F., Achatz, B., Baltruschat, H., Fodor, J., Becker, K., Fischer, M., Heier, T., Huckelhoven, R., Neumann, C., von Wettstein, D., Franken, P., and Kogel, K.H. (2005). The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. Proc. Natl. Acad. Sci. U. S. A. 102: 13386-13391.
Weiß, M., Waller, F., Zuccaro, A., & Selosse, M. A. (2016). Sebacinales–one thousand and one interactions with land plants. New Phytol. 211: 20-40.
Weiss, M., Selosse, M.-A., Rexer, K.-H., Urban, A., and Oberwinkler, F. (2004). Sebacinales: a hitherto overlooked cosm of heterobasidiomycetes with a broad mycorrhizal potential. Mycol. Res. 108: 1003-1010.
Willats, W. G., & Knox, J. P. (1996). A role for arabinogalactan‐proteins in plant cell expansion: evidence from studies on the interaction of β‐glucosyl Yariv reagent with seedlings of Arabidopsis thaliana. Plant J. 9: 919-925.
Win, J., Chaparro-Garcia, A., Belhaj, K., Saunders, D.G., Yoshida, K., Dong, S., Schornack, S., Zipfel, C., Robatzek, S., Hogenhout, S.A., and Kamoun, S. (2012). Effector biology of plant-associated organisms: concepts and perspectives. Cold Spring Harb. Symp. Quant. Biol. 77: 235-247.
Wu, H. M., Wang, H., & Cheung, A. Y. (1995). A pollen tube growth stimulatory glycoprotein is deglycosylated by pollen tubes and displays a glycosylation gradient in the flower. Cell 82: 395-403.
Yadav, V., Kumar, M., Deep, D.K., Kumar, H., Sharma, R., Tripathi, T., Tuteja, N., Saxena, A.K., and Johri, A.K. (2010). A phosphate transporter from the root endophytic fungus Piriformospora indica plays a role in phosphate transport to the host plant. J. Biol. Chem. 285: 26532-26544.
Yang. (2016). Isolation and characterization of effector genes during symbiotic interaction between Chinese cabbage and Piriformospora indica. (Graduate Institute of Plant Biology College of Life Science National Taiwan University Master Thesis).
Yu, C.S., Lin, C.J., and Hwang, J.K. (2004). Predicting subcellular localization of proteins for Gram-negative bacteria by support vector machines based on n-peptide compositions. Protein Sci. 13: 1402-1406.
Zamioudis, C., and Pieterse, C.M.J. (2011). Modulation of host immunity by beneficial microbes. Mol. Plant Microbe Interact. 25: 139-150.
Zhou, J.M., and Chai, J. (2008). Plant pathogenic bacterial type III effectors subdue host responses. Curr. Opin. Microbiol. 11: 179-185.
Zuccaro, A., Lahrmann, U., Guldener, U., Langen, G., Pfiffi, S., Biedenkopf, D., Wong, P., Samans, B., Grimm, C., Basiewicz, M., Murat, C., Martin, F., and Kogel, K.H. (2011). Endophytic life strategies decoded by genome and transcriptome analyses of the mutualistic root symbiont Piriformospora indica. PLoS Pathog. 7: e1002290.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71072-
dc.description.abstract印度梨形孢真菌(Piriformospora indica)為一宿主範圍極廣且具農業應用價值的共生真菌。共生性微生物能產生效應蛋白(effector protein)進而調控植物的生理機制,促進建立與宿主之共生關係。鑑於P. indica廣大的宿主範圍,對P. indica效應蛋白的研究有助於建立內共生菌(endophyte)與植物間共生機制的模型。本研究著重於進行效應蛋白的功能鑑定,根據實驗室過去研究成果,已由生物資訊方法篩選出兩個P. indica效應蛋白基因PIIN_09643與PIIN_11103,本研究利用建立小白菜轉殖毛狀根、小白菜葉部農桿菌注射的短暫過量表現與轉殖阿拉伯芥的方式,驗證水楊酸路徑指標基因PR-1之表現顯著下降。為闡明效應蛋白候選基因在共生階段的功能,本研究藉由酵母菌雙雜合篩選實驗得到與效應蛋白PIIN_11103互相作用的小白菜阿拉伯半乳聚醣蛋白Arabinogalactan protein 4 (AGP4) 。阿拉伯半乳聚醣蛋白為高度醣基化的醣蛋白,多分佈於植物細胞膜上,參與細胞增生、程序性細胞凋亡、花粉管生長、體胚再生等各種功能。本研究發現BrAGP4位於細胞膜與葉綠體的被膜,利用雙分子螢光互補實驗也證實PIIN_11103與BrAGP4可以交互作用,並且坐落於葉綠體被膜。以處理AGPs抑制劑的方式了解AGPs能夠影響生長素相關基因之表現、抑制根毛的發育,推論AGPs對於P. indica與小白菜建立共生之過程中也扮演著重要角色。zh_TW
dc.description.abstractPiriformospora indica is a mutualistic endophyte with a broad host range and application potential in agriculture. Mutualistic microbes are able to produce effector proteins to interfere plant physiology for faciliting symbiosis with plants. In consideration of P. indica’s broad host-range, studies of P. indica effector proteins can establish a model for endophyte symbiosis with plants. This study focuses on functional characterization of effector proteins. According to lab’s previous studies, we already screen out two P. indica’s effector genes, PIIN_09643 and PIIN_11103 by bioinformatics approaches. We established overexpression lines of Chinese cabbage hairy root system and transgenic Arabidopsis thaliana. We also do agroinfiltrantion for transient overespression in Chinese cabbage leaves to confirm suppression of salicylic acid signal transduction. To investigate effectors function, we establish cDNA library to undertake yeast two-hybrid screening experiment. We found B. rapa’s Arabinogalactan protein 4 (AGP4) would interact with PIIN_11103. Arabinogalactan proteins are highy glycosylated glycoproteins mostly localized on plasma membrane, involved in cell proliferation, programmed cell death, pollen-tube development and somatic embryogenesis. This study found that BrAGP4 localized on plasma membrane and chloroplast envelope, and confirmed interaction of BrAGP4 and PIIN_11103 by BiFC. To characterize BrAGP4, we treated Chinese cabbage with AGPs inhibitor, found the inhibitory effects on root hair development but up-regulateing of auxin-relaed gene expressions. We also found that AGPs play a critical role in symbiosis process of P. indica and Chinese cabbage.en
dc.description.provenanceMade available in DSpace on 2021-06-17T04:51:33Z (GMT). No. of bitstreams: 1
ntu-107-R04b42002-1.pdf: 3185720 bytes, checksum: 2c74bd56a26b5b1c45d8ccb99dd99453 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents目錄
口試委員會審定書 i
致謝 ii
中文摘要 iii
Abstract iv
目錄 v
第一章 前言 1
第一節 印度梨形孢真菌 (Piriformospora indica)簡介 1
1.1.1 發現、型態與分類學 1
1.1.2 Piriformospora indica與植物之交互作用與影響 2
第二節 植物與微生物間之交互作用與防禦反應 3
第三節 效應蛋白 (effector proteins) 4
1.3.1 共生真菌的效應蛋白 4
1.3.2 Piriformospora indica的效應蛋白 5
第四節 阿拉伯半乳聚醣蛋白(Arabinogalactan protein, AGP) 6
第五節 研究目的 7
第二章 材料與方法 8
第一節 實驗材料 8
第二節 P. indica與小白菜之共生 8
2.2.1 小白菜在培養基上的無菌栽培 8
2.2.3 AGP抑制劑處理 9
2.2.4 P. indica 繼代培養 9
2.2.5 P. indica 與小白菜共培養 10
第三節 小白菜根部染色 10
第四節 基因表現量測定 11
2.4.1 總體RNA萃取 11
2.4.2 RNA 膠體電泳 11
2.4.3合成第一股cDNA 12
2.4.4 反轉錄聚合酶連鎖反應 (RT-PCR) 鑑定基因表現量 12
2.4.5 即時定量聚合酶連鎖反應 (Real-Time quantitative PCR, qPCR) 13
第五節 全長基因序列選殖 13
2.5.1 製備欲構築之DNA片段 13
2.5.2 DNA膠體純化 14
2.5.3 酵母菌雜合、次細胞定位螢光蛋白表現之載體構築 15
2.5.4大腸桿菌之勝任細胞的轉型(transformation)與DNA定序 16
2.5.5 質體抽取 17
2.5.6農桿菌轉型 17
2.5.7農根菌轉型 18
第六節 阿拉伯芥基因轉殖與分析 19
2.6.1 阿拉伯芥栽種 19
2.6.2農桿菌轉殖前處理 19
2.6.3阿拉伯芥之農桿菌轉殖 20
2.6.4阿拉伯芥之轉殖株篩選 20
第七節 阿拉伯芥原生質體細胞次定位分析 (subcellular localization) 21
2.7.1阿拉伯芥葉肉原生質體之分離與轉形 21
2.7.2 次細胞定位載體構築 22
2.7.3 阿拉伯芥原生質體轉形與影像分析 23
第八節 以農根菌A4品系產生小白菜轉殖毛狀根 23
2.8.1轉殖毛狀根系使用載體構築 23
2.8.2轉殖毛狀根系之建立與鑑定 23
第九節 酵母菌轉型 24
2.9.1酵母菌勝任細胞備製 24
2.9.2酵母菌轉型 25
第十節 真菌共生量測定 26
第十一節 農桿菌注射短暫表現實驗 27
第十二節 酵母菌雙雜合篩選實驗 27
2.12.1 建立cDNA library 27
2.12.2 酵母菌雙雜合實驗 29
第三章 結果 31
第一節 P. indica效應蛋白功能探討 31
3.1.1 建立小白菜毛狀根株系的轉殖系統 31
3.1.2利用小白菜轉殖毛狀根轉殖株,以分析效應蛋白之功能 31
3.1.3利用農桿菌注射(agroinfiltration)之短暫過量表現(transient overexpression)法以驗證效應蛋白PIIN_11103功能 32
第二節 轉殖阿拉伯芥以分析效應蛋白之功能 32
第三節 以酵母菌雙雜合篩選(yeast two-hybrid screening)實驗找尋效應蛋白在共生階段的交互作用蛋白(interacting protein) 33
第四節 小白菜之 arabinogalactan protein 4 (BrAGP4)的胺基酸序列分析以及親緣關係樹(phylogeny tree) 34
第五節 交互作用蛋白BrAGP4的基因表現樣態 35
第六節 BrAGP4於植物細胞中之次細胞定位 (subcellular localization) 35
第七節 以雙分子螢光互補實驗驗證BrAGP4與PIIN_11103交互作用 35
第八節 處理AGP生合成抑制劑3,4-dehydro-L-proline探討BrAGP4的生理功能 36
第四章 討論 38
第一節 效應蛋白PIIN_09643與PIIN_11103之功能 38
第二節 小白菜BrAGP4的功能 39
第三節 PIIN_11103與BrAGP4的交互作用 40
第四節 AGPs對於P. indica與小白菜共生效率的影響 41
第五節 BrAGP4在小白菜與P. indica共生時交互作用可能的生理意義 41
第六節 未來展望 42
參考文獻 43
dc.language.isozh-TW
dc.title印度梨形孢真菌與小白菜共生時之效應蛋白功能性探討zh_TW
dc.titleFunctional characterization of the putative effector proteins of Piriformospora indica in symbiotic interaction with Chinese cabbageen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee鄭秋萍(Chiu-Ping Cheng),王淑珍(Shu-Jen Wang),詹明才(Mimg-Tsair Chan),夏凱(Kai Xia)
dc.subject.keyword印度梨型孢真菌,效應蛋白,阿拉伯半乳聚醣蛋白,共生,zh_TW
dc.subject.keywordPiriformospora indica,Effector protein,Arabinogalactan protein,Mycorrhizal symbiosis,en
dc.relation.page80
dc.identifier.doi10.6342/NTU201802198
dc.rights.note有償授權
dc.date.accepted2018-07-31
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept植物科學研究所zh_TW
顯示於系所單位:植物科學研究所

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  目前未授權公開取用
3.11 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved