請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71051完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 楊志忠 | |
| dc.contributor.author | Wei-Hsiang Hua | en |
| dc.contributor.author | 花偉翔 | zh_TW |
| dc.date.accessioned | 2021-06-17T04:50:29Z | - |
| dc.date.available | 2018-08-01 | |
| dc.date.copyright | 2018-08-01 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-07-31 | |
| dc.identifier.citation | [1] X. H. Huang, P. K. Jain, I. H. El-Sayed and M. A. El-Sayed, “Plasmonic photothermal therapy (PPTT) using gold nanoparticles,” Lasers Med. Sci. 23(3), 217-228 (2008).
[2] B. Jang, J. Y. Park, C. H. Tung, I. H Kim, and Y. D. Choi, “Gold nanorod− photosensitizer complex for near-infrared fluorescence imaging and photodynamic/photothermal therapy in vivo,” ACS nano 5(2), 1086-1094 (2011). [3] J. L. Lv, Y. H. Yiab, G. Q. Wu and W. J. Liu, “Gold nanotriangles: Green synthesis and PDT & PTT effect,” Mater. Lett. 187(15), 148-150 (2017). [4] Y. L. Liu, X. Zhi, M. Yang, J. P. Zhang, L. N. Lin, X. Zhao, W. X. Hou, C. L. Zhang, Q. Zhang, F. Pan, G. Alfranca, Y. M. Yang, J. M. Fuente, J. Ni and D. X. Cui, “Tumor-triggered drug release from calcium carbonate-encapsulated gold nanostars for near-infrared photodynamic/photothermal combination antitumor therapy,’’ Theranostics 7(6), 1650-1662 (2017). [5] W. S. Kuo, Y. T. Chang, K. C. Cho, K. C. Chiu, C. H. Lien, C. S. Yeh and S. J. Chen, “Gold nanomaterials conjugated with indocyanine green for dual-modality photodynamic and photothermal therapy,” Biomaterials 33(11), 3270-3278 (2012). [6] R. R. Xing, K. Liu, T. Jiao, N. Zhang, K. Ma, R. Y. Zhang, Q. N. Zou, G. H. Ma and X. H. Yan, “An Injectable Self‐Assembling Collagen–Gold Hybrid Hydrogel for Combinatorial Antitumor Photothermal/Photodynamic Therapy,” Adv. Mater. 28(19), 3369-3676 (2016). [7] Z. X. Zhang, S. J. Wang, H. Xu, B. Wang and C. P. Yao, “Role of 5-aminolevulinic acid-conjugated gold nanoparticles for photodynamic therapy of cancer,” J. Biomed. Opt. 20(5), 051043 (2015). [8] C. P. Yao, L. W. Zhang, J. Wang, Y. L. He, J. Xin, S. J. Wang, H. Xu, and Z. X. Zhang, “Gold nanoparticle mediated phototherapy for cancer,” J. Nanomater. 2016, 5497136 (2016). [9] V. Zielasek, B. Jürgens, C. Schulz, J. Biener, M. M. Biener, A. V. Hamza and M. Bäumer, “Gold catalysts: nanoporous gold foams,” Angew. Chem. Int. Ed. 45(48), 8241-8244 (2006). [10] A. Wittstock1, V. Zielasek, J. Biener, C. M. Friend and M. Bäumer, “Nanoporous gold catalysts for selective gas-phase oxidative coupling of methanol at low temperature,” Science 327, 319-322 (2010). [11] G. M. Santos, F. S. Zhao, J. B. Zenga and W. C. Shih, “Characterization of nanoporous gold disks for photothermal light harvesting and light-gated molecular release,” Nanoscale 6(11), 5718-5724 (2014). [12] F. S. Zhao, J. B. Zeng, M. P. Arnob, P. Sun, J. Qi, P. Motwani, M. Gheewala, C. H. Li, A. Paterson, U. Strych, B. Raja, R. C. Willson, J. C. Wolfe, T. R. Leeb and W. C. Shih, “Monolithic NPG nanoparticles with large surface area, tunable plasmonics, and high-density internal hot-spots,” Nanoscale 6(14), 8199-8207 (2014). [13] J. B. Zeng, F. S. Zhao, M. Li, C. H. Li, T. R. Leeb and W. C. Shih, “Morphological control and plasmonic tuning of nanoporous gold disks by surface modifications,” J. Mater. Chem. C 3(2), 247-252 (2015). [14] J. Patel, L. Radhakrishnan, B. Zhao, B. Uppalapati, R. C. Daniels, K. R. Ward and M. M. Collinson, “Electrochemical Properties of Nanostructured Porous Gold Electrodes in Biofouling Solutions,” Anal. Chem. 2013(85), 11610-11618 (2013). [15] S. Parida1, D. Kramer, C. A. Volkert1, H. Rösner, J. Erlebacher, and J. Weissmüller, “Volume change during the formation of nanoporous gold by dealloying,” Phys. Rev. Lett. 97(3), 035504 (2006). [16] K. Liu, Y. C. Bai, L. Zhang, Z. B. Yang, Q. K. Fan, H. Q. Zheng, Y. D. Yin, and C. B. Gao, “Porous Au–Ag nanospheres with high-density and highly accessible hotspots for SERS analysis,” Nano Lett. 16(6), 3675-3681 (2016). [17] S. Pedireddy, H. K. Lee, W. W. Tjiu, I. Y. Phang, H. R. Tan, S. Q. Chua, C. Troadec and X. Y. Ling, “One-step synthesis of zero-dimensional hollow nanoporous gold nanoparticles with enhanced methanol electrooxidation performance,” Nature Communications 5, 4947 (2014). [18] Y. W. Lee, N. H. Kim, K. Y. Lee, K. Y. Kwon, M. J. Kim and S. W. Han, “Synthesis and characterization of flower-shaped porous Au-Pd alloy nanoparticles,” J. Mater. Chem. C 112(17), 6717-6722 (2008). [19] X. L. Yan, F. H. Meng, Y. Xie, J. G. Liu and Y. Ding, “Direct N2H4/H2O2 fuel cells powered by nanoporous gold leaves,” Sci. Rep. 2, 941 (2012). [20] G. W. Nyce, J. R. Hayes, A. V. Hamza, and J. H. Satcher, “Synthesis and characterization of hierarchical porous gold materials, ” Chem. Mater. 19(3), 344-346 (2007). [21] D. Wang and P. Schaaf, “Nanoporous gold nanoparticles,” J. Mater. Chem. 22(12), 5344-5348 (2012). [22] H. Wang and N. J. Halas, “Mesoscopic Au “meatball” particles,” Adv. Mater. 20(4), 820-825 (2008). [23] Q. F. Zhang, N. Large, P. Nordlander, and H. Wang, “Porous Au nanoparticles with tunable plasmon resonances and intense field enhancements for single-particle SERS,” J. Phys. Chem. Lett. 5(2), 370-374 (2014). [24] C. J. Murphy, A. M. Gole, J. W. Stone, P. N. Sisco, A. M. Alkilany, E. C. Goldsmith and S. C. Baxter, “Gold nanoparticles in biology: beyond toxicity to cellular imaging,” Acc. Chem. Res. 41(12), 1721-1730 (2008). [25] E. E. Connor, J. Mwamuka, A. Gole, C. J. Murphy and M. D. Wyatt, “Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity,” Small 1(3), 325-327 (2005). [26] X. D. Zhang, D. Wu, X. Shen, P. X. Liu, N. Yang, B. Zhao, H. Zhang, Y. M. Sun, L. A. Zhang, and F. Y. Fan, “Size-dependent in vivo toxicity of PEG-coated gold nanoparticles,” Int. J. Nanomedicine 6, 2071-2081 (2011). [27] W. S. Cho, M. J. Cho, J. Y. Jeong, M. Choi, H. Y. Cho, B. S. Han, S. H. Kima, H. O. Kim, Y. T Lim, B. H. Chung and J. Y. Jeonga, “Acute toxicity and pharmacokinetics of 13 nm-sized PEG-coated gold nanoparticles,” Toxicol. Appl. Pharmacol. 236(1), 16-24 (2009). [28] E. B. Dickerson, E. C. Dreaden, X. H. Huang, I. H. El-Sayed, H. H. Chu, S. Pushpanketh, J. F.McDonald and M. A. El-Sayed, “Gold nanorod assisted near-infrared plasmonic photothermal therapy (PPTT) of squamous cell carcinoma in mice,” Cancer Lett. 269(1), 57-66 (2008). [29] H. Y. Tseng, W. F. Chen, C. K. Chu, W. Y. Chang, Y. Kuo, Y. W. Kiang and C. C. Yang, “On-substrate fabrication of a bio-conjugated Au nanoring solution for photothermal therapy application,” Nanotechnology 24(6), 065102 (2013). [30] C. K. Chu, Y. C. Tu, Y. W. Chang, C. K. Chu, S. Y. Chen, T. T. Chi, Y. W. Kiang and C. C. Yang, “Cancer cell uptake behavior of Au nanoring and its localized surface plasmon resonance induced cell inactivation,” Nanotechnology 26(7), 075102 (2015). [31] C. K. Chu, Y. C. Tu, J. H. Hsiao, J. H. Yu, C. K. Yu, S. Y. Chen, P. H. Tseng, S. Chen, Y. W. Kiang, and C. C. Yang, “Combination of photothermal and photodynamic inactivation of cancer cells through surface plasmon resonance of a gold nanoring,” Nanotechnology 27(11), 115102 (2016). [32] S. J. Wang, P. Huang, L. Nie, R. J. Xing, D. B. Liu, Z. Wang, J. Lin, S. H. Chen, G. Niu, G. M. Lu and X. Y. Chen, “Single continuous wave laser induced photodynamic/plasmonic photothermal therapy using photosensitizer‐functionalized gold nanostars,” Adv. Mater. 25(22), 3055-3061 (2013). [33] S. P. McIlroy, E. Clo, L. Nikolajsen, P. K. Frederiksen, C. B. Nielsen, K. V. Mikkelsen, K. V. Gothelf, and P. R. Ogilby, “Two-Photon Absorption Properties of Proquinoidal D-A-D and A-D-A Quadrupolar Chromophores, ” J. Org. Chem. 70(4), 1134-1146 (2005). [34] A. Karotki, M. Drobizhev, M. Kruk, C. Spangler, E. Nickel, N. Mamardashvili, and A. Rebane, “Enhancement of two-photon absorption in tetrapyrrolic compounds,” J. Opt. Soc. Am. B 20(2), 321-332 (2003). [35] N. S. Makarov, M. Drobizhev, and A. Rebane, “Two-photon absorption standards in the 550-1600 nm excitation wavelength range,” Opt. Express 16(6), 4029-4047 (2001). [36] W. G. Fisher, W. P. Partridge, C. Dees, and E. A. Wachter, “Simultaneous Two‐Photon Activation of Type‐I Photodynamic Therapy Agents,” Photochem. Photobio. 66(2), 141-155 (1997). [37] S. Wang, P. Huang, L. Nie, R. Xing, D. Liu, Z. Wang, J. Lin, S. Chen, G. Niu, G. Lu, and X. Chen, “Triphase Interface Synthesis of Plasmonic Gold Bellflowers as Near-Infrared Light Mediated Acoustic and Thermal Theranostics,” J. Am. Chem. Soc. 136(23), 8307-8313 (2014). [38] K. Jia, X. Zhou, L. Pan, L. Yuan, P. Wang, C. Wu, Y. Huang and Xiaobo Liu, “Plasmon enhanced fluorescence of a bisphthalonitrile-based dye via a dopamine mediated interfacial crosslinking reaction on silver nanoparticles,” RSC Adv. 5(88), 71652-71657 (2015). [39] T. Zhao, K. Yu, L. Li, T. Zhang, Z. Guan, N. Gao, P. Yuan, S. Li, S. Q. Yao, Q. H. Xu, and G. Q. Xu, “Gold nanorod enhanced two-photon excitation fluorescence of photosensitizers for two-photon imaging and photodynamic therapy,” ACS Appl. Mater. 6(4), 2700-2708 (2014). [40] G. Majno, and I. Joris, “Apoptosis, oncosis, and necrosis. An overview of cell death,” Am. J. Pathol. 146(1), 3-15 (1995) [41] B. F. Trump, I. K. Berezesky, S. H. Chang, and P. C. Phelps, “Studies on the mechanisms and kinetics of apoptosis induced by microinjection of cytochrome c in rat kidney tubule epithelial cells,” Am. J. Pathol. 156(2), 637-349 (2000) [42] D. R. Green, and J. C. Reed, “Mitochondria and apoptosis,” Science 281, 1309-1312 (1998) | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71051 | - |
| dc.description.abstract | 我們結合奈米壓印技術及形成金銀合金技術,再利用硝酸將銀蝕刻的方法製作具孔洞金奈米顆粒。估算孔洞金奈米顆粒的孔洞率可達到大約59%。我們比較不同金銀比例所製作出來的孔洞金奈米顆粒,發現金佔的比例越小,所製作出來的孔洞會比較大,而表面電漿子共振的波長也會隨之藍移。此外,經由感應耦合電漿質譜儀的量測,顯示金銀比例為3:7時所製作出來的孔洞金奈米顆粒所攜帶的光敏劑磺化鋁酞菁之數量最高。由細胞實驗我們得到相同的結果,藉由金銀體積比例為3:7製作出來的金孔洞奈米顆粒攜帶光敏劑進入細胞內後照射波長660 nm
連續波雷射,產生光動力療法顯示出來的細胞死亡區域也是最大。外,我們也比較經由不同退火溫度所製作的奈米顆粒之不同孔洞結構,不同熱退火溫度所製成的金孔洞奈米顆粒有不同的攜帶藥物或光敏劑的能力,特別是當以不同分子量大小的生物連接劑PEG為連接光敏劑及金孔洞奈米顆粒時,一般來說,連接分子量較大的PEG的能力比較差,表示金奈米孔洞顆粒內部的孔洞會限制較大分子量的PEG進入其內部,導致較差的攜帶能力。 | zh_TW |
| dc.description.abstract | We first demonstrate the procedures for fabricating uniform porous gold nanoparticles (PGNPs) based on nano-imprint lithography, Au/Ag alloying, and Ag etching techniques. The porosity of the fabricated PGNP can reach ~59 %. In comparing the results among different samples with different Au/Ag volume ratios in fabrication, a smaller Au/Ag volume ratio leads to larger pores and a shorter localized surface plasmon (LSP) resonance peak wavelength. The inductively coupled plasma mass spectroscopy study provides us with the result that the PGNP fabricated with 3:7 in Au/Ag volume ratio can link with the highest photosensitizer molecule number. In other words, among different PGNP samples, the one fabricated with 3:7 in Au/Ag volume ratio can deliver most photosensitizers into cancer cells for the most efficient photodynamic effect that is also demonstrated in cancer cell damage experiment. We also compare the pore structures of PGNPs fabricated with different annealing temperatures and hence different alloying nanostructures. Among the PGNPs fabricated with the Au/Ag volume ratio fixed at 3:7, the variation of annealing temperature also results in different linkage capabilities, particularly when biolinkers (PEGs) of different molecule weights are used for linking photosensitizer and PGNP. The generally lower linkage capability of PEG of a larger molecule weight indicates that the pores in a PGNP can limit the access of a large molecule. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T04:50:29Z (GMT). No. of bitstreams: 1 ntu-107-R04941083-1.pdf: 3220604 bytes, checksum: 2a71ec0900338e8d7f7ccb16ef436cca (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 致謝 i
中文摘要 ii Abstract iii Contents iv Chapter 1 Introduction 1 1.1 Gold nanoparticles for photothermal and photodynamic therapies 1 1.2 Photothermal therapy 2 1.3 Photodynamic therapy 3 1.4 Pathways of cell death 4 1.5 Research motivations 5 1.6 Thesis structure 6 Chapter 2 Porous Gold Nanoparticle Fabrication and Characterizations 7 2.1 Fabrication procedures of porous gold nanoparticle 7 2.2 Characteristics of porous gold nanoparticle 9 Chapter 3 Dependence of Pore Structure in Porous Gold Nanoparticle on the Au/Ag Composition in the Fabrication Process 20 3.1 Comparison between different gold compositions in fabrication process 20 3.2 Comparison of cell damage efficiency 22 Chapter 4 Dependence of Pore Structure in Porous Gold Nanoparticle on Alloying Condition 31 4.1 Fabrications of porous gold nanoparticles with different annealing temperatures 31 4.2 Comparison of porous gold nanoparticle structures fabricated with different annealing temperatures 33 4.3 Discussions 35 Chapter 5 Conclusions 47 References 48 | |
| dc.language.iso | en | |
| dc.subject | 孔洞金奈米顆粒 | zh_TW |
| dc.subject | Porous Gold Nanoparticles | en |
| dc.title | 供生物醫學應用具孔洞金奈米顆粒的製作與特性分析 | zh_TW |
| dc.title | Fabrication and Characterization of Porous Gold Nanoparticles for Biomedical Application | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 李翔傑,蔡孟燦,孫家偉,江衍偉 | |
| dc.subject.keyword | 孔洞金奈米顆粒, | zh_TW |
| dc.subject.keyword | Porous Gold Nanoparticles, | en |
| dc.relation.page | 53 | |
| dc.identifier.doi | 10.6342/NTU201802256 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2018-07-31 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf 未授權公開取用 | 3.15 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
