請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71050完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳炳宇(Bing-Yu Chen) | |
| dc.contributor.author | Jo-Yu Lo | en |
| dc.contributor.author | 駱若瑀 | zh_TW |
| dc.date.accessioned | 2021-06-17T04:50:26Z | - |
| dc.date.available | 2019-08-01 | |
| dc.date.copyright | 2018-08-01 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-07-31 | |
| dc.identifier.citation | [1] M. Amberg, F. Giraud, B. Semail, P. Olivo, G. Casiez, and N. Roussel. Stimtac: a tactile input device with programmable friction. In Proceedings of the 24th annual ACM symposium adjunct on User interface software and technology, pages 7–8. ACM, 2011.
[2] O. Bau, I. Poupyrev, A. Israr, and C. Harrison. Teslatouch: Electrovibration for touch surfaces. In Proceedings of the 23Nd Annual ACM Symposium on UserInterface Software and Technology, UIST ’10, pages 283–292, New York, NY, USA, 2010. ACM. [3] H. Benko, C. Holz, M. Sinclair, and E. Ofek. Normaltouch and texturetouch: High-fidelity 3d haptic shape rendering on handheld virtual reality controllers. In Proceedings of the 29th Annual Symposium on User Interface Software andTechnology, UIST ’16, pages 717–728, New York, NY, USA, 2016. ACM. [4] M. Bianchi. A fabric-based approach for wearable haptics. Electronics, 5(3):44, 2016. [5] M. Biet, F. Giraud, and B. Lemaire-Semail. Squeeze film effect for the design of an ultrasonic tactile plate. IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 54(12), 2007. [6] I.Bortone,D.Leonardis,M.Solazzi,C.Procopio,A.Crecchi,L.Briscese,P.Andre, L. Bonfiglio, and A. Frisoli. Serious game and wearable haptic devices for neuro motor rehabilitation of children with cerebral palsy. In Converging Clinical and Engineering Research on Neurorehabilitation II, pages 443–447. Springer, 2017. [7] M. Bouzit, G. Burdea, G. Popescu, and R. Boian. The rutgers master ii-new design force-feedback glove. IEEE/ASME Transactions on mechatronics, 7(2):256–263, 2002. [8] C. J. Cascio and K. Sathian. Temporal cues contribute to tactile perception of rough- ness. Journal of Neuroscience, 21(14):5289–5296, 2001. [9] G. Casiez, N. Roussel, R. Vanbelleghem, and F. Giraud. Surfpad: riding towards tar- gets on a squeeze film effect. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pages 2491–2500. ACM, 2011. [10] I. Choi, H. Culbertson, M. R. Miller, A. Olwal, and S. Follmer. Grabity: A wearable haptic interface for simulating weight and grasping in virtual reality. In Proceedings of the 30th Annual ACM Symposium on User Interface Software and Technology, UIST ’17, pages 119–130, New York, NY, USA, 2017. ACM. [11] I. Choi, E. W. Hawkes, D. L. Christensen, C. J. Ploch, and S. Follmer. Wolverine: A wearable haptic interface for grasping in virtual reality. In Intelligent Robots and Systems (IROS), 2016 IEEE/RSJ International Conference on, pages 986–993. IEEE, 2016. [12] I. Choi, E. Ofek, H. Benko, M. Sinclair, and C. Holz. Claw: A multifunctional handheld haptic controller for grasping, touching, and triggering in virtual reality. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, CHI ’18. ACM, April 2018. [13] M. Choi and G. J. Kim. Touchball: A design and evaluation of a hand-held trackball based touch-haptic interface. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI ’09, pages 1535–1538, New York, NY, USA, 2009. ACM. [14] H. Culbertson, S. B. Schorr, and A. M. Okamura. Haptics: The present and future of artificial touch sensation. Annual Review of Control, Robotics, and Autonomous Systems, 1(1):null, 2018. [15] H. Culbertson, J. Unwin, and K. J. Kuchenbecker. Modeling and rendering realistic textures from unconstrained tool-surface interactions. IEEE transactions on haptics, 7(3):381–393, 2014. [16] H. Culbertson, J. M. Walker, and A. M. Okamura. Modeling and design of asym- metric vibrations to induce ungrounded pulling sensation through asymmetric skin displacement. In Haptics Symposium (HAPTICS), 2016 IEEE, pages 27–33. IEEE, 2016. [17] H. Culbertson, J. M. Walker, M. Raitor, and A. M. Okamura. Waves: A wearable asymmetric vibration excitation system for presenting three-dimensional translation and rotation cues. In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems, CHI ’17, pages 4972–4982, New York, NY, USA, 2017. ACM. [18] D. Escobar-Castillejos, J. Noguez, L. Neri, A. Magana, and B. Benes. A review of simulators with haptic devices for medical training. Journal of medical systems, 40(4):104, 2016. [19] S. Follmer, D. Leithinger, A. Olwal, A. Hogge, and H. Ishii. inform: Dynamic phys- ical affordances and constraints through shape and object actuation. In Proceedings of the 26th Annual ACM Symposium on User Interface Software and Technology, UIST ’13, pages 417–426, New York, NY, USA, 2013. ACM. [20] G. Frediani, D. Mazzei, D. E. De Rossi, and F. Carpi. Wearable wireless tactile display for virtual interactions with soft bodies. Frontiers in Bioengineering and Biotechnology, 2:31, 2014. [21] M. Gabardi, M. Solazzi, D. Leonardis, and A. Frisoli. A new wearable fingertip haptic interface for the rendering of virtual shapes and surface features. In Haptics Symposium (HAPTICS), 2016 IEEE, pages 140–146. IEEE, 2016. [22] F. Giraud, M. Amberg, B. Lemaire-Semail, et al. Design of a transparent tactile stimulator. In Haptics Symposium (HAPTICS), 2012 IEEE, pages 485–489. IEEE, 2012. [23] B. T. Gleeson, S. K. Horschel, and W. R. Provancher. Design of a fingertip-mounted tactile display with tangential skin displacement feedback. IEEE Transactions on Haptics, 3(4):297–301, 2010. [24] C. Glove. Cyberglove systems inc, 2016. [25] X. Gu, Y. Zhang, W. Sun, Y. Bian, D. Zhou, and P. O. Kristensson. Dexmo: An inexpensive and lightweight mechanical exoskeleton for motion capture and force feedback in vr. In Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems, CHI ’16, pages 1991–1995, New York, NY, USA, 2016. ACM. [26] S. Gupta, T. Campbell, J. R. Hightower, and S. N. Patel. Squeezeblock: Using virtual springs in mobile devices for eyes-free interaction. In Proceedings of the 23Nd Annual ACM Symposium on User Interface Software and Technology, UIST ’10, pages 101–104, New York, NY, USA, 2010. ACM. [27] T. Hachisu, G. Cirio, M. Marchal, A. Lécuyer, and H. Kajimoto. Pseudo-haptic feedback augmented with visual and tactile vibrations. In VR Innovation (ISVRI), 2011 IEEE International Symposium on, pages 327–328. IEEE, 2011. [28] V. Hayward and M. Cruz-Hernandez. Tactile display device using distributed lateral skin stretch. In Proceedings of the haptic interfaces for virtual environment and teleoperator systems symposium, volume 69, pages 1309–1314. ASME, 2000. [29] M. Holliins, R. Faldowski, S. Rao, and F. Young. Perceptual dimensions of tactile surface texture: A multidimensional scaling analysis. Perception & psychophysics, 54(6):697–705, 1993. [30] H. Honda, S. Hirai, et al. Development of a novel slip haptic display device based on the localized displacement phenomenon. IEEE Robotics and Automation Letters, 1(1):585–592, 2016. [31] A. Imaizumi, S. Okamoto, and Y. Yamada. Friction sensation produced by laterally asymmetric vibrotactile stimulus. In International Conference on Human Haptic Sensing and Touch Enabled Computer Applications, pages 11–18. Springer, 2014. [32] A. Ion, E. J. Wang, and P. Baudisch. Skin drag displays: Dragging a physical tac- tor across the user’s skin produces a stronger tactile stimulus than vibrotactile. In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, CHI ’15, pages 2501–2504, New York, NY, USA, 2015. ACM. [33] H. Iwata, H. Yano, F. Nakaizumi, and R. Kawamura. Project feelex: Adding haptic surface to graphics. In Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ’01, pages 469–476, New York, NY, USA, 2001. ACM. [34] R. Johansson and G. Westling. Roles of glabrous skin receptors and sensorimotor memory in automatic control of precision grip when lifting rougher or more slippery objects. Experimental brain research, 56(3):550–564, 1984. [35] J. Kildal. 3d-press: Haptic illusion of compliance when pressing on a rigid surface. In International Conference on Multimodal Interfaces and the Workshop on Machine Learning for Multimodal Interaction, ICMI-MLMI ’10, pages 21:1–21:8, New York, NY, USA, 2010. ACM. [36] S.-C. Kim, A. Israr, and I. Poupyrev. Tactile rendering of 3d features on touch surfaces. In Proceedings of the 26th Annual ACM Symposium on User Interface Software and Technology, UIST ’13, pages 531–538, New York, NY, USA, 2013. ACM. [37] R.L.Klatzky,S.J.Lederman,C.Hamilton,M.Grindley,andR.H.Swendsen.Feel- ing textures through a probe: Effects of probe and surface geometry and exploratory factors. Perception & Psychophysics, 65(4):613–631, 2003. [38] K. J. Kuchenbecker, J. Fiene, and G. Niemeyer. Improving contact realism through event-based haptic feedback. IEEE transactions on visualization and computer graphics, 12(2):219–230, 2006. [39] S. Lederman, R. Klatzky, C. Hamilton, and G. Ramsay. Perceiving roughness via a rigid probe: Psychophysical e ects of exploration speed and mode of touch.(1999). 1999. [40] D. Leithinger, S. Follmer, A. Olwal, and H. Ishii. Physical telepresence: Shape capture and display for embodied, computer-mediated remote collaboration. In Proceedings of the 27th Annual ACM Symposium on User Interface Software and Technology, UIST ’14, pages 461–470, New York, NY, USA, 2014. ACM. [41] V.Levesque,L.Oram,K.MacLean,A.Cockburn,N.D.Marchuk,D.Johnson,J.E. Colgate, and M. A. Peshkin. Enhancing physicality in touch interaction with pro- grammable friction. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pages 2481–2490. ACM, 2011. [42] N. D. Marchuk, J. E. Colgate, and M. A. Peshkin. Friction measurements on a large area tpad. In Haptics Symposium, 2010 IEEE, pages 317–320. IEEE, 2010. [43] T. H. Massie, J. K. Salisbury, et al. The phantom haptic interface: A device for prob- ing virtual objects. In Proceedings of the ASME winter annual meeting, symposium on haptic interfaces for virtual environment and teleoperator systems, volume 55, pages 295–300. Citeseer, 1994. [44] K. Minamizawa, S. Fukamachi, H. Kajimoto, N. Kawakami, and S. Tachi. Grav- ity grabber: Wearable haptic display to present virtual mass sensation. In ACM SIGGRAPH 2007 Emerging Technologies, SIGGRAPH ’07, New York, NY, USA, 2007. ACM. [45] G. Moy, C. Wagner, and R. S. Fearing. A compliant tactile display for teletac- tion. In Robotics and Automation, 2000. Proceedings. ICRA’00. IEEE International Conference on, volume 4, pages 3409–3415. IEEE, 2000. [46] J. Mullenbach, D. Johnson, J. E. Colgate, and M. A. Peshkin. Activepad surface haptic device. In Haptics Symposium (HAPTICS), 2012 IEEE, pages 407–414. IEEE, 2012. [47] S. Okamoto, H. Nagano, and Y. Yamada. Psychophysical dimensions of tactile perception of textures. IEEE Transactions on Haptics, 6(1):81–93, 2013. [48] A. M. Okamura, J. T. Dennerlein, and R. D. Howe. Vibration feedback models for virtual environments. In Robotics and Automation, 1998. Proceedings. 1998 IEEE International Conference on, volume 1, pages 674–679. IEEE, 1998. [49] A. M. Okamura, R. J. Webster, J. T. Nolin, K. Johnson, and H. Jafry. The hap- tic scissors: Cutting in virtual environments. In Robotics and Automation, 2003. Proceedings. ICRA’03. IEEE International Conference on, volume 1, pages 828–833. IEEE, 2003. [50] C. Pacchierotti, G. Salvietti, I. Hussain, L. Meli, and D. Prattichizzo. The hring: A wearable haptic device to avoid occlusions in hand tracking. In Haptics Symposium(HAPTICS), 2016 IEEE, pages 134–139. IEEE, 2016. [51] C. Pacchierotti, S. Sinclair, M. Solazzi, A. Frisoli, V. Hayward, and D. Prattichizzo. Wearable haptic systems for the fingertip and the hand: Taxonomy, review, and perspectives. IEEE transactions on haptics, 10(4):580–600, 2017. [52] J. Pasquero and V. Hayward. Stress: A practical tactile display system with one millimeter spatial resolution and 700 hz refresh rate. In Proc. Eurohaptics, volume 2003, pages 94–110, 2003. [53] R. L. Peiris, W. Peng, Z. Chen, L. Chan, and K. Minamizawa. Thermovr: Exploring integrated thermal haptic feedback with head mounted displays. In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems, CHI ’17, pages 5452–5456, New York, NY, USA, 2017. ACM. [54] C. J. Ploch, J. H. Bae, W. Ju, and M. Cutkosky. Haptic skin stretch on a steering wheel for displaying preview information in autonomous cars. In Intelligent Robots and Systems (IROS), 2016 IEEE/RSJ International Conference on, pages 60–65. IEEE, 2016. [55] I. Poupyrev, T. Nashida, and M. Okabe. Actuation and tangible user interfaces: The vaucanson duck, robots, and shape displays. In Proceedings of the 1st International Conference on Tangible and Embedded Interaction, TEI ’07, pages 205–212, New York, NY, USA, 2007. ACM. [56] W. Provancher. Creating greater vr immersion by emulating force feedback with ungrounded tactile feedback. IQT Quarterly, 6(2):18–21, 2014. [57] W. R. Provancher and N. D. Sylvester. Fingerpad skin stretch increases the percep- tion of virtual friction. IEEE Transactions on Haptics, 2(4):212–223, 2009. [58] Z. F. Quek, S. B. Schorr, I. Nisky, W. R. Provancher, and A. M. Okamura. Sensory substitution and augmentation using 3-degree-of-freedom skin deformation feed- back. IEEE transactions on haptics, 8(2):209–221, 2015. [59] N. Ranasinghe, P. Jain, D. Tolley, S. Karwita, S. Yilei, and E. Y.-L. Do. Ambio- therm: Simulating ambient temperatures and wind conditions in vr environments. In Proceedings of the 29th Annual Symposium on User Interface Software and Technology, UIST ’16 Adjunct, pages 85–86, New York, NY, USA, 2016. ACM. [60] J. Rekimoto. Traxion: A tactile interaction device with virtual force sensation. In Proceedings of the 26th Annual ACM Symposium on User Interface Software and Technology, UIST ’13, pages 427–432, New York, NY, USA, 2013. ACM. [61] J. M. Romano and K. J. Kuchenbecker. Creating realistic virtual textures from con- tact acceleration data. IEEE Transactions on Haptics, 5(2):109–119, 2012. [62] S. Saga and R. Raskar. Feel through window: Simultaneous geometry and texture display based on lateral force. In SIGGRAPH Asia 2012 Emerging Technologies, page 8. ACM, 2012. [63] S. Saga and R. Raskar. Simultaneous geometry and texture display based on lateral force for touchscreen. In World Haptics Conference (WHC), 2013, pages 437–442. IEEE, 2013. [64] M. Salada, J. E. Colgate, M. Lee, and P. Vishton. Fingertip haptics: A novel direc- tion in haptic display. In Proceedings of the 8th mechatronics forum international conference, pages 1211–1220. University of Twente, 2002. [65] M. Salada, J. E. Colgate, P. Vishton, and E. Frankel. An experiment on tracking surface features with the sensation of slip. In Eurohaptics Conference, 2005 and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, 2005. World Haptics 2005. First Joint, pages 132–137. IEEE, 2005. [66] M. Salada, P. Vishton, J. E. Colgate, and E. Frankel. Two experiments on the perception of slip at the fingertip. In Haptic Interfaces for Virtual Environment and Teleoperator Systems, 2004. HAPTICS’04. Proceedings. 12th International Symposium on, pages 146–153. IEEE, 2004. [67] M. A. Salada, J. E. Colgate, M. V. Lee, and P. M. Vishton. Validating a novel approach to rendering fingertip contact sensations. In Haptic Interfaces for Virtual Environment and Teleoperator Systems, 2002. HAPTICS 2002. Proceedings. 10th Symposium on, pages 217–224. IEEE, 2002. [68] I. Sarakoglou, N. G. Tsagarakis, and D. G. Caldwell. A compact tactile display suitable for integration in vr and teleoperation. In Robotics and Automation (ICRA), 2012 IEEE International Conference on, pages 1018–1024. IEEE, 2012. [69] S. B. Schorr and A. M. Okamura. Fingertip tactile devices for virtual object ma- nipulation and exploration. In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems, CHI ’17, pages 3115–3119, New York, NY, USA, 2017. ACM. [70] A. F. Siu, E. J. Gonzalez, S. Yuan, J. Ginsberg, A. Zhao, and S. Follmer. shapeshift: A mobile tabletop shape display for tangible and haptic interaction. In Adjunct Publication of the 30th Annual ACM Symposium on User Interface Software and Technology, UIST ’17, pages 77–79, New York, NY, USA, 2017. ACM. [71] M. Solazzi, W. R. Provancher, A. Frisoli, and M. Bergamasco. Design of a sma actuated 2-dof tactile device for displaying tangential skin displacement. In World Haptics Conference (WHC), 2011 IEEE, pages 31–36. IEEE, 2011. [72] E. Strasnick, C. Holz, E. Ofek, M. Sinclair, and H. Benko. Haptic links: Bimanual haptics for virtual reality using variable stiffness actuation. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, CHI ’18, pages 644:1–644:12, New York, NY, USA, 2018. ACM. [73] P. Strohmeier and K. Hornbæk. Generating haptic textures with a vibrotactile actu- ator. In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems, CHI ’17, pages 4994–5005, New York, NY, USA, 2017. ACM. [74] I. R. Summers, C. M. Chanter, A. L. Southall, and A. C. Brady. Results from a tactile array on the fingertip. In Proceedings of Eurohaptics, volume 2001, 2001. [75] Y. Takeuchi, S. Kamuro, K. Minamizawa, and S. Tachi. Haptic duplicator. In Proceedings of the 2012 Virtual Reality International Conference, page 30. ACM, 2012. [76] H. W. Tappeiner, R. L. Klatzky, B. Unger, and R. Hollis. Good vibrations: Asym- metric vibrations for directional haptic cues. In EuroHaptics conference, 2009 and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems. World Haptics 2009. Third Joint, pages 285–289. IEEE, 2009. [77] N. Technologies, 2018. [78] N. G. Tsagarakis, T. Horne, and D. G. Caldwell. Slip aestheasis: A portable 2d slip/skin stretch display for the fingertip. In Eurohaptics Conference, 2005 and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, 2005. World Haptics 2005. First Joint, pages 214–219. IEEE, 2005. [79] R. Velazquez, E. E. Pissaloux, M. Hafez, and J. Szewczyk. Tactile rendering with shape-memory-alloy pin-matrix. IEEE Transactions on Instrumentation and Measurement, 57(5):1051–1057, 2008. [80] Y. Visell, J. R. Cooperstock, B. L. Giordano, K. Franinovic, A. Law, S. McAdams, K. Jathal, and F. Fontana. A vibrotactile device for display of virtual ground mate- rials in walking. In International Conference on Human Haptic Sensing and Touch Enabled Computer Applications, pages 420–426. Springer, 2008. [81] R. J. Webster, III, T. E. Murphy, L. N. Verner, and A. M. Okamura. A novel two- dimensional tactile slip display: Design, kinematics and perceptual experiments. ACM Trans. Appl. Percept., 2(2):150–165, Apr. 2005. [82] E. Whitmire, H. Benko, C. Holz, E. Ofek, and M. Sinclair. Haptic revolver: Touch, shear, texture, and shape rendering on a reconfigurable virtual reality controller. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, CHI ’18. ACM, April 2018. [83] L. Winfield, J. Glassmire, J. E. Colgate, and M. Peshkin. T-pad: Tactile pattern display through variable friction reduction. In EuroHaptics Conference, 2007 and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems. World Haptics 2007. Second Joint, pages 421–426. IEEE, 2007. [84] K.WolfandT.Bäder.Illusionofsurfacechangesinducedbytactileandvisualtouch feedback. In Proceedings of the 33rd Annual ACM Conference Extended Abstracts on Human Factors in Computing Systems, CHI EA ’15, pages 1355–1360, New York, NY, USA, 2015. ACM. [85] J. Wu, N. Li, W. Liu, G. Song, and J. Zhang. Experimental study on the perception characteristics of haptic texture by multidimensional scaling. IEEE transactions on haptics, 8(4):410–420, 2015. [86] V. Yem, R. Okazaki, and H. Kajimoto. Fingar: Combination of electrical and me- chanical stimulation for high-fidelity tactile presentation. In ACM SIGGRAPH 2016 Emerging Technologies, SIGGRAPH ’16, pages 7:1–7:2, New York, NY, USA, 2016. ACM. [87] V. Yem, M. Shibahara, K. Sato, and H. Kajimoto. Expression of 2dof fingertip trac- tion with 1dof lateral skin stretch. In International AsiaHaptics conference, pages 21–25. Springer, 2016. [88] A. Zenner and A. Kruger. Shifty: A weight-shifting dynamic passive haptic proxy to enhance object perception in virtual reality. IEEE Transactions on Visualization and Computer Graphics, 23(4):1285–1294, Apr. 2017. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71050 | - |
| dc.description.abstract | 本篇論文提出 RollingStone,在虛擬實境控制器上利用單一滾球產生手指撫摸表面的滑動感及材質。當使用者在虛擬表面上移動控制器,為了模擬手指撫摸表面的感受,我們製造與移動方向相反的滑動,同時調整滾球的速度來改變施予手指上的橫向力。透過對應手的移動速度給予不同的橫向力,能創造出不同材質的感受。RollingStone 是一個以滾球滑動裝置為實作基礎的虛擬實境控制器,由兩顆馬達驅動滾球,產生二維空間的轉動。能夠同時提供短暫與連續性的滑動。透過第一個實驗,我們確認了調整手指與滾球的相對速度可以改變使用者對表面材質的感受。在後續的兩個心理學實驗中,我們分別測試使用者對滑動速度與角度差值的感知極限,並以實驗結果作為觸覺回饋及應用程式的設計考量。最終的評估實驗顯示,使用者同意且認為 RollingStone 能擴增使用虛擬實境控制器的體驗。 | zh_TW |
| dc.description.abstract | We propose using a single slip tactile pixel on virtual reality controllers to produce sensations of finger sliding and textures. When a user moves the controller on a virtual surface, we add a slip opposite to the movement, creating an illusion of a finger that is sliding on the surface, while varying the slip feedback changes lateral forces on fingertip. When coupled with hand motion the lateral forces can be used to create perceptions of artificial textures. RollingStone has been implemented as a prototype VR controller consisting of a ball-based slip display positioned under the user's fingertip. Within the slip display, a pair of motors actuates the ball, which is capable of generating both short- and long-term two-degree-of-freedom slip feedback. An exploratory study was conducted to ensure that changing the relative motion between the finger and the ball could alter the perceptions conveying the properties of a texture. The following two perception-based studies examined the minimum changes in speed of slip and angle of slip that are detectable by users. The results help us to design haptic patterns as well as our prototype applications. Finally, our preliminary user evaluation indicated that participants welcomed RollingStone as a useful addition to the range of VR controllers. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T04:50:26Z (GMT). No. of bitstreams: 1 ntu-107-R04922071-1.pdf: 10661461 bytes, checksum: 5a7badf52bf2263dbce066d5a9499199 (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 口試委員會審定書iii
致謝v 摘要vii Abstract ix 1 Introduction 1 2 Related Work 5 2.1 Body-Grounded Haptic Devices for Virtual Reality . . . . . . . . . . . . 5 2.1.1 Wearable Devices . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1.2 Handheld Devices . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.2 Studies on Slip Feedback and Slip Displays . . . . . . . . . . . . . . . . 7 2.2.1 Short-term Slip . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.2.2 Long-term Slip . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.3 Rendering Artificial Surface . . . . . . . . . . . . . . . . . . . . . . . . 9 2.3.1 Shape-changing Display . . . . . . . . . . . . . . . . . . . . . . 9 2.3.2 Vibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.3.3 Variable Friction Surface . . . . . . . . . . . . . . . . . . . . . . 11 2.3.4 Skin Lateral Force . . . . . . . . . . . . . . . . . . . . . . . . . 11 3 RollingStone Implementation 13 3.1 Mechanical Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.2 Software Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 4 Study Overview 17 5 STUDY1: Explorative Study 19 5.1 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 5.2 Procedure and Task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 5.3 Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 5.4 Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 6 STUDY2: Discrimination Threshold of Slip Speed 27 6.1 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 6.2 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 6.3 Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 6.4 Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 7 STUDY3: Discrimination Threshold of Angle 33 7.1 Design and Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 7.2 Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 7.3 Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 8 Demo Application and Testing 37 8.1 Application Implementation . . . . . . . . . . . . . . . . . . . . . . . . 37 8.1.1 Penetration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 8.1.2 Slip Speed and Angle . . . . . . . . . . . . . . . . . . . . . . . . 39 8.1.3 Slip Profile Design . . . . . . . . . . . . . . . . . . . . . . . . . 40 8.2 Decorating the Room . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 8.3 Escaping from the Room . . . . . . . . . . . . . . . . . . . . . . . . . . 43 8.4 Ninja Survival . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 8.5 Preliminary User Evaluation Study . . . . . . . . . . . . . . . . . . . . . 46 8.5.1 Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 8.5.2 Experimental Design and Procedure . . . . . . . . . . . . . . . . 46 8.5.3 Result and Discussion . . . . . . . . . . . . . . . . . . . . . . . 47 9 Discussion and Limitations 51 9.1 Limitations of Psychophysical Studies . . . . . . . . . . . . . . . . . . . 51 9.2 User Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 9.3 Comfort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 9.4 Future Iteration of device . . . . . . . . . . . . . . . . . . . . . . . . . . 52 9.5 Texture Rendering Algorithm. . . . . . . . . . . . . . . . . . . . . . . . 52 9.6 Switchable Slip Taxels. . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 10 Conclusion 55 Bibliography 57 | |
| dc.language.iso | en | |
| dc.subject | 虛擬實境 | zh_TW |
| dc.subject | 滑動裝置 | zh_TW |
| dc.subject | 觸覺顯示器 | zh_TW |
| dc.subject | 控制器設計 | zh_TW |
| dc.subject | 觸覺 | zh_TW |
| dc.subject | Virtual Reality | en |
| dc.subject | Slip Display | en |
| dc.subject | Haptics | en |
| dc.subject | Tactile Display | en |
| dc.subject | Controller Design | en |
| dc.title | 利用單一滾球滑動裝置擴增虛擬實境控制器之主動式觸覺探索體驗 | zh_TW |
| dc.title | RollingStone: Using Single Slip Taxel for Enhancing Active Finger Exploration with a Virtual Reality Controller | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 余能豪(Neng-Hao Yu),詹力韋(Li-Wei Chan),黃大源(Da-Yuan Huang) | |
| dc.subject.keyword | 觸覺,控制器設計,觸覺顯示器,滑動裝置,虛擬實境, | zh_TW |
| dc.subject.keyword | Haptics,Controller Design,Tactile Display,Slip Display,Virtual Reality, | en |
| dc.relation.page | 68 | |
| dc.identifier.doi | 10.6342/NTU201801183 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2018-07-31 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 資訊工程學研究所 | zh_TW |
| 顯示於系所單位: | 資訊工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf 未授權公開取用 | 10.41 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
