Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71039
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張建成(Chien-Cheng Chang)
dc.contributor.authorWei-Ling Linen
dc.contributor.author林韋伶zh_TW
dc.date.accessioned2021-06-17T04:49:52Z-
dc.date.available2023-08-02
dc.date.copyright2018-08-02
dc.date.issued2018
dc.date.submitted2018-07-31
dc.identifier.citation[1] Moulas, D., Shafiee, M., & Mehmanparast, A. 2017 Damage analysis of ship collisions with offshore wind turbine foundations. Ocean Engineering. 143, 149-162.
[2] IEC 61400-1. 2005 Wind turbines part 1: Design requirements. International Electrotech- nical Commission.
[3] IEC 61400-3. 2009 Design requirements for offshore wind turbines. International Elec- trotechnical Commission.
[4] Leu, T. S., Yo, J. M., Tsai, Y. T., Miau, J. J., Wang, T. C. & Tseng, C. C. 2014 Assessment of IEC 61400-1 normal turbulence model for wind conditions in Taiwan west coast areas. in International Journal of Modern Physics: Conference Series. World Scientific.
[5] Chen, J. Y., Tsai, H. Y., Leu, T. S. & Miau, J. J. 2016 Wind Characteristics Studies of Fuhai Offshore Wind Mast of Taiwan Generations Corporation and its Comparison with Normal Wind Conditions in IEC 61400. Taiwan Wind Energy Association, National Taiwan Ocean University. Taiwan Wind Energy Association.
[6] Chen, C. T., Chang, C. C. & Kuo, C. Y. 2016 Application of the Weather Prediction Model and the Wind Statistics in Wind Farm Development. Institute of Applied Mechanics College of Engineering National Taiwan University.
[7] Tuan, M. Y., Chang, C. C. & Kuo, C. Y. 2017 An Application of Extreme Wind Regimes and Wake Dynamical Analysis in Wind Farm Developments. Institute of Applied Mechanics College of Engineering National Taiwan University.
[8] Carvalho, D., Rocha, A., Gómez-Gesteira, M. & Santos, C. 2012 A sensitivity study of the WRF model in wind simulation for an area of high wind energy. Environmental Modelling & Software. 33, 23-34.
[9] Fitch ,A. C., Olson, J. B., Lundquist, J. K., Dudhia, J., Gupta, A. K., Michalakes, J. & Barstad, I. 2012 Local and mesoscale impacts of wind farms as parameterized in a mesoscale NWP model. Monthly Weather Review. 140(9), 3017 3038.
[10] Lee, J. C. & Lundquist, J. K. 2017 Evaluation of the wind farm parameterization in the Weather Research and Forecasting model (version 3.8. 1) with meteorological and turbine power data. Geoscientific Model Development (Online). 10(NREL/JA-500070672).
[11] Kaimal, J. C., Wyngaard, J. C., Izumi, Y. & Cote, O. R. 1972 Spectral characteristics of surface‐layer turbulence. Quarterly Journal of the Royal Meteorological Society. 98(417), 563-589.
[12] Kelley, N. 2011 Turbulence‐turbine interaction: the basis for the development of the TurbSim stochastic simulator. Contract. 303, 275-300.
[13] Jonkman, J., Butterfield, S., Musial, W. & Scott, G. 2009 Definition of a 5-MW reference wind turbine for offshore system development. National Renewable Energy Laboratory, Golden, CO, Technical Report No. NREL/TP-500 38060.
[14] Skamarock, W. C., Klemp, J. B. & Dudhia, J. 2001 Prototypes for the WRF (Weather Research and Forecasting) model. in Preprints, Ninth Conf. Mesoscale Processes, J11–J15, Amer. Meteorol. Soc., Fort Lauderdale, FL.
[15] Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D. M., Wang, W. & Powers, J. G. 2005 A description of the advanced research WRF version 2. 2005, National Center For Atmospheric Research Boulder Co Mesoscale and Microscale Meteorology Div.
[16] Nakanishi, M. & Niino H. 2009 Development of an improved turbulence closure model for the atmospheric boundary layer. Journal of the Meteorological Society of Japan. Ser. II. 87(5), 895-912.
[17] Tao, W. K., Simpson, J. & McCumber, M. 1989 An ice water saturation adjustment. Monthly Weather Review. 117(1), 231-235.
[18] Iacono, M. J., Delamere, J. S., Mlawer, E. J., Shephard, M. W., Clough, S. A. & Collins ,W. D. 2008 Radiative forcing by long‐lived greenhouse gases: Calculations with the AER radiative transfer models. Journal of Geophysical Research: Atmospheres. 113(D13).
[19] Monin, A. & Obukhov, A. 1954 Basic laws of turbulent mixing in the surface layer of the atmosphere. Contrib. Geophys. Inst. Acad. Sci. USSR. 24(151), 163-187
[20] Janjić, Z. I. 1994 The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Monthly Weather Review. 122(5), 927-945.
[21] Janić, Z. I. 2001 Nonsingular implementation of the Mellor-Yamada level 2.5 scheme in the NCEP Meso model. US Department of Commerce, National Oceanic and Atmospheric Administration, National Weather Service, National Centers for Environmental Prediction.
[22] Tewari, M., Boulder, C. O., Chen, F., Wang, W., Dudhia, J., LeMone, M. A., Mitchell, K., Ek, M., Gayno G., Wegiel J. & Cuenca, R. H. 2004 Implementation and verification of the unified NOAH land surface model in the WRF model (Formerly Paper Number 17.5). in 20th Conference on Weather Analysis and Forecasting/16th Conference on Numerical Weather Prediction.
[23] Kain, J. S. & Fritsch, J. M. 1993 Convective parameterization for mesoscale models: The Kain-Fritsch scheme, in The representation of cumulus convection in numerical models. Springer. 165-170.
[24] Jonkman, J. & Kilcher, L. 2012 TurbSim User’s Guide: Version 1.06. 00, National Renewable Energy Laboratory. Technical Report. Draft available at: https://wind. nrel. gov/designcodes/preprocessors/turbsim/TurbSim. pdf.
[25] Beaupuits, J. P., Otárola, A., Rantakyrö, F. T., Rivera, R. C., Radford, J. E. & Nyman, L. Å. 2004 Analysis of wind data gathered at Chajnantor. ALMA Memo 497, National Radio Astronomy Observatory.
[26] Jonkman, B. & Jonkman, J. 2016 FAST v8. 16.00 a–bjj. National Renewable Energy Laboratory.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71039-
dc.description.abstract再生能源一直是目前大家所關注的議題,在台灣,風能目前是最有發展潛力的再生能源,由於台灣西部為數一數二的最佳風場,近幾年也有許多發展風能強盛的國家來台投資。雖然高風速會得到風能效益高,但風機之間產生的紊流擾動,使得產生功率反而減小,並且造成風機損壞,尤其在風機葉片上。
本研究有中尺度及微尺度模擬資料做討論。中尺度資料由數值天氣預報系統 (WRF 模式) 以2015年9月東北季風剛發生時,進行福海地區風況重建,以GFS-FNL作為初始資料預測各個風機輸出功率,願能適時減少碳排放,並模擬紊流動能分布,觀察加入風場後,整個風場對於紊流動能的影響及趨勢,屬於大氣尺度的觀察;微尺度以頻譜模型為基礎,由中尺度WRF模擬結果中幾個重要變數(輪軸高度上的風速、風切值及紊流強度)作為微尺度TurbSim輸入參數,模擬出相似實際天氣狀況之風機紊流入流場,再以微尺度FAST將此入流場與風機模塊結合,模擬此入流場對風機的影響,在本文研究上以風機葉片為研究主軸,並將數據分析其頻譜分布,更清楚瞭解其意義,屬於工程尺度的觀察。
總結,希望藉由本文研究呈現風機架設在福海地區預測風輸出功率及風況紊流特徵,並專注研究在紊流對風機葉片根部的影響,由大氣尺度到工程尺度並結合,達到一貫化風能模擬,願能提供未來福海地區架設風機時的依據,並再加以討論,如何達到風機受紊流損害最小。
zh_TW
dc.description.abstractSustainable energy has always been an issue of concern to everyone. In Taiwan, wind energy is currently the most renewable energy source with potential for development. Since Taiwan Strait is one of the best wind farms in the world, there are also many countries that have developed wind power strongly want to invest in Taiwan in recent years. Although high wind speeds will result in high wind energy efficiency, the turbulence disturbances generated between the wind turbines will result in a reduction in power generation and cause wind turbine in damage, especially on the blades.
There are mesoscale and microscale simulation data for discussion in this study.
The mesoscale simulation by conducting the Weather Research and Forecast model (WRF model). The reconstruction of wind conditions in the Fuhai area was performed during September 2015 when the northeast monsoon occurred, and GFS-FNL was used as the initial data to forecast the output power of the wind turbines.
The micro-scale simulation by conducting TurbSim which is a kind of statistical based on Kaimal model. In order to make relation between two different scale simulator, several important variables (wind speed, turbulent intensity at the hubheight, and wind shear ) from the mesoscale WRF simulation results are used as micro-scale TurbSim input parameters to simulate the wind turbulence that is similar to the actual weather conditions. The turbulent inflow field combine with wind turbine module by conducting FAST to simulate the effect of this inflow field on the wind turbine. In this report, the main study is on the blades of wind turbine, is a small scale observation, and make the data to spectrum distribution for understanding its meaning more clearly.
In conclusion, it is hoped that this report will forecast wind power output in the Fuhai area and study the wind turbulence characteristics and focus on the impact of turbulence on root of blades. From the atmospheric scale to the engineering scale and combined to achieve consistent wind energy simulation. Furthermore, attempting to provide the basis for installation of wind turbines, and further discuss how to achieve the minimum wind turbine damage caused by turbulence.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T04:49:52Z (GMT). No. of bitstreams: 1
ntu-107-R05543078-1.pdf: 11869572 bytes, checksum: a8f72deb801c01e69acee46454d652d8 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents目錄

誌謝 .................................................................................................................. II
中文摘要 ............................................................................................................ III
Abstract ............................................................................................................. IV
目錄 ................................................................................................................ VI 圖目錄 .............................................................................................................. VIII 表目錄 ............................................................................................................. XII
第一章 緒論 ...................................................................................................... 1
1.1 背景介紹 & 文獻回顧 ............................................................................. 1
1.2 研究動機 .................................................................................................... 6
1.3 論文架構 .................................................................................................... 6
1.4 貢獻摘要 .................................................................................................... 7
第二章 模擬方法與理論 ...................................................................................... 8
2.1 WRF 模式 ............................................................................................ 10
2.1.1 WRF 模式介紹 ..................................................................................... 10
2.1.2 WRF 模式 ...................................................................................... 11
2.1.3 WRF 模式設定與方法 ............................................................................. 13
2.1.3.1 GFS-FNL 初始資料設定 ....................................................................... 13
2.1.3.2 參數設定 .................................................................................. 15
2.1.3.3 編譯 WRF 代碼 ................................................................................... 16
2.1.4 紊流方程式 .................................................................................. 18
2.1.5 風機參數 .................................................................................... 19
2.2 NREL-TurbSim ...................................................................................... 22
2.2.1 TurbSim 模型介紹 .............................................................................. 22
2.2.2 TurbSim 模型設定與方法 .................................................................... 23
2.2.2.1 Kaimal Model .................................................................................. 27
2.3 NREL-FAST .......................................................................................... 30
2.3.1 FAST 模式介紹 ........................................................................................ 30
2.3.2 FAST 模式設定與方法 .......................................................................... 31
2.3.3 FAST 風機模塊 ............................................................................... 33
2.3.3.1 功率推力係數 .............................................................................. 34
2.3.3.2 尖端風速比 ............................................................................... 36
第三章 中尺度模擬結果 .................................................................................... 38
3.1 預測風機功率 .......................................................................................... 38
3.2 微尺度輸入參數 ...................................................................................... 49
第四章 微尺度模擬結果 .................................................................................... 54
4.1 實際狀況 .................................................................................................. 54
4.1.1 速度分析 ....................................................................................... 55
4.1.2 葉片受力分析 ....................................................................................... 57
4.2 風切值以 IEC 為定 .................................................................................... 65
4.2.1 速度分析 ....................................................................................... 66
4.2.2 受力分析 ............................................................................................ 68
4.3 高紊流強度 .............................................................................................. 75
4.3.1 速度分析 ....................................................................................... 76
4.3.2 受力分析 ....................................................................................... 79
第五章 結論與未來展望 .................................................................................... 86
5.1 中尺度模擬結果 ...................................................................................... 86
5.2 微尺度模擬結果 ...................................................................................... 87
5.3 未來展望 .................................................................................................. 88
參考文獻 ................................................................................................. 89
dc.language.isozh-TW
dc.subject風機輸出功率zh_TW
dc.subject風切值zh_TW
dc.subject紊流動能zh_TW
dc.subject大氣尺度zh_TW
dc.subjectTurbSimzh_TW
dc.subject紊流強度zh_TW
dc.subjectFASTzh_TW
dc.subject工程尺度zh_TW
dc.subject風機葉片根部zh_TW
dc.subject頻譜分布zh_TW
dc.subject東北季風zh_TW
dc.subjectWRF模式zh_TW
dc.subject台灣福海zh_TW
dc.subjectTurbSimen
dc.subjectWRF modelen
dc.subjectnortheast monsoonen
dc.subjectwind turbine power outputen
dc.subjectwind shearen
dc.subjectturbulent kinetic energyen
dc.subjectatmospheric scaleen
dc.subjectFuahai areaen
dc.subjectturbulent intensityen
dc.subjectFASTen
dc.subjectengineering scaleen
dc.subjectroot of bladeen
dc.subjectspectrum distributionen
dc.title初探大氣紊流模式與風機性能之評估zh_TW
dc.titleA preliminary study of weather turbulence model on the performance of wind turbinesen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.coadvisor郭志禹(Chih-Yu Kuo)
dc.contributor.oralexamcommittee朱錦洲(Chin-Chou Chu),周逸儒(Yi-Ju Chou),吳健銘
dc.subject.keyword台灣福海,WRF模式,東北季風,風機輸出功率,風切值,紊流動能,大氣尺度,TurbSim,紊流強度,FAST,工程尺度,風機葉片根部,頻譜分布,zh_TW
dc.subject.keywordFuahai area,WRF model,northeast monsoon,wind turbine power output,wind shear,turbulent kinetic energy,atmospheric scale,TurbSim,turbulent intensity,FAST,engineering scale,root of blade,spectrum distribution,en
dc.relation.page92
dc.identifier.doi10.6342/NTU201802226
dc.rights.note有償授權
dc.date.accepted2018-07-31
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept應用力學研究所zh_TW
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
11.59 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved