請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71038完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 薛博仁(Po-Ren Hsueh) | |
| dc.contributor.author | Yen-Hung Liu | en |
| dc.contributor.author | 劉彥宏 | zh_TW |
| dc.date.accessioned | 2021-06-17T04:49:49Z | - |
| dc.date.available | 2022-08-22 | |
| dc.date.copyright | 2020-08-27 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-08-21 | |
| dc.identifier.citation | Clinical and Laboratory Standards Institute, Document M100-S27 Performance standards for antimicrobial susceptibility testing; twenty-seventh informational supplement. Wayne, PA: CLSI; 2017. European Committee on Antimicrobial Susceptibility Testing. Breakpoint tables for interpretation of MICs and zone diameters, version 7.1; 2017. http://www.eucast.org/clinical breakpoints/ [accessed 03.10.17]. Taiwan CDC Disease Surveillance Express http://www.cdc.gov.tw/professional/report.aspx?v=D3C5BBCF8E60CF3D treeid=3f10b85436188d nowtreeid=F78C19E5D2014555. WHO Sexually transmitted infections (STIs) http://www.who.int/mediacentre/factsheets/fs110/en/. Allen, V.G., Seah, C., Martin, I., and Melano, R.G. (2014). Azithromycin resistance is coevolving with reduced susceptibility to cephalosporins in Neisseria gonorrhoeae in Ontario, Canada. Antimicrob Agents Chemother 58(5), 2528-2534. doi: 10.1128/AAC.02608-13. Ameyama, S., Onodera, S., Takahata, M., Minami, S., Maki, N., Endo, K., et al. (2002). Mosaic-like structure of penicillin-binding protein 2 Gene (penA) in clinical isolates of Neisseria gonorrhoeae with reduced susceptibility to cefixime. Antimicrob Agents Chemother 46(12), 3744-3749. Baeten, J.M., Donnell, D., Ndase, P., Mugo, N.R., Campbell, J.D., Wangisi, J., et al. (2012). Antiretroviral prophylaxis for HIV prevention in heterosexual men and women. N Engl J Med 367(5), 399-410. doi: 10.1056/NEJMoa1108524. Belkacem, A., Jacquier, H., Goubard, A., Mougari, F., La Ruche, G., Patey, O., et al. (2016). Molecular epidemiology and mechanisms of resistance of azithromycin-resistant Neisseria gonorrhoeae isolated in France during 2013-14. J Antimicrob Chemother 71(9), 2471-2478. doi: 10.1093/jac/dkw182. Bignell, C., Fitzgerald, M., Guideline Development, G., British Association for Sexual, H., and Hiv, U.K. (2011). UK national guideline for the management of gonorrhoea in adults, 2011. Int J STD AIDS 22(10), 541-547. doi: 10.1258/ijsa.2011.011267. Bignell, C., Unemo, M., and European, S.T.I.G.E.B. (2013). 2012 European guideline on the diagnosis and treatment of gonorrhoea in adults. Int J STD AIDS 24(2), 85-92. doi: 10.1177/0956462412472837. Camara, J., Serra, J., Ayats, J., Bastida, T., Carnicer-Pont, D., Andreu, A., et al. (2012). Molecular characterization of two high-level ceftriaxone-resistant Neisseria gonorrhoeae isolates detected in Catalonia, Spain. J Antimicrob Chemother 67(8), 1858-1860. doi: 10.1093/jac/dks162. Centers for Disease, C., and Prevention (2012). Update to CDC's Sexually transmitted diseases treatment guidelines, 2010: oral cephalosporins no longer a recommended treatment for gonococcal infections. MMWR Morb Mortal Wkly Rep 61(31), 590-594. Centers for Disease, C., and Prevention (2014). Recommendations for the laboratory-based detection of Chlamydia trachomatis and Neisseria gonorrhoeae--2014. MMWR Recomm Rep 63(RR-02), 1-19. Chan, P.A., Robinette, A., Montgomery, M., Almonte, A., Cu-Uvin, S., Lonks, J.R., et al. (2016). Extragenital Infections Caused by Chlamydia trachomatis and Neisseria gonorrhoeae: A Review of the Literature. Infect Dis Obstet Gynecol 2016, 5758387. doi: 10.1155/2016/5758387. Chen, S.C., Yin, Y.P., Dai, X.Q., Unemo, M., and Chen, X.S. (2014). Antimicrobial resistance, genetic resistance determinants for ceftriaxone and molecular epidemiology of Neisseria gonorrhoeae isolates in Nanjing, China. J Antimicrob Chemother 69(11), 2959-2965. doi: 10.1093/jac/dku245. Chen, S.C., Yin, Y.P., Dai, X.Q., Unemo, M., and Chen, X.S. (2016). First nationwide study regarding ceftriaxone resistance and molecular epidemiology of Neisseria gonorrhoeae in China. J Antimicrob Chemother 71(1), 92-99. doi: 10.1093/jac/dkv321. Chisholm, S.A., Dave, J., and Ison, C.A. (2010a). High-level azithromycin resistance occurs in Neisseria gonorrhoeae as a result of a single point mutation in the 23S rRNA genes. Antimicrob Agents Chemother 54(9), 3812-3816. doi: 10.1128/AAC.00309-10. Chisholm, S.A., Mouton, J.W., Lewis, D.A., Nichols, T., Ison, C.A., and Livermore, D.M. (2010b). Cephalosporin MIC creep among gonococci: time for a pharmacodynamic rethink? J Antimicrob Chemother 65(10), 2141-2148. doi: 10.1093/jac/dkq289. Chisholm, S.A., Unemo, M., Quaye, N., Johansson, E., Cole, M.J., Ison, C.A., et al. (2013). Molecular epidemiological typing within the European Gonococcal Antimicrobial Resistance Surveillance Programme reveals predominance of a multidrug-resistant clone. Euro Surveill 18(3). Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing: 29th ed. CLSI supplement M100. CLSI, W., PA, USA, 2019. . Cohen, M.S., Chen, Y.Q., McCauley, M., Gamble, T., Hosseinipour, M.C., Kumarasamy, N., et al. (2011). Prevention of HIV-1 infection with early antiretroviral therapy. N Engl J Med 365(6), 493-505. doi: 10.1056/NEJMoa1105243. Cole, J.G., Fulcher, N.B., and Jerse, A.E. (2010). Opacity proteins increase Neisseria gonorrhoeae fitness in the female genital tract due to a factor under ovarian control. Infect Immun 78(4), 1629-1641. doi: 10.1128/IAI.00996-09. Demczuk, W., Martin, I., Peterson, S., Bharat, A., Van Domselaar, G., Graham, M., et al. (2016). Genomic epidemiology and molecular resistance mechanisms of azithromycin-resistant Neisseria gonorrhoeae in Canada from 1997 to 2014. J Clin Microbiol 54(5), 1304-1313. doi: 10.1128/JCM.03195-15. Edwards, J.L., and Apicella, M.A. (2004). The molecular mechanisms used by Neisseria gonorrhoeae to initiate infection differ between men and women. Clin Microbiol Rev 17(4), 965-981, table of contents. doi: 10.1128/CMR.17.4.965-981.2004. Edwards, J.L., and Butler, E.K. (2011). The pathobiology of Neisseria gonorrhoeae lower female genital tract infection. Front Microbiol 2, 102. doi: 10.3389/fmicb.2011.00102. Eyre, D.W., Sanderson, N.D., Lord, E., Regisford-Reimmer, N., Chau, K., Barker, L., et al. (2018). Gonorrhoea treatment failure caused by a Neisseria gonorrhoeae strain with combined ceftriaxone and high-level azithromycin resistance, England, February 2018. Euro Surveill 23(27). doi: 10.2807/1560-7917.ES.2018.23.27.1800323. Fichorova, R.N., Desai, P.J., Gibson, F.C., 3rd, and Genco, C.A. (2001). Distinct proinflammatory host responses to Neisseria gonorrhoeae infection in immortalized human cervical and vaginal epithelial cells. Infect Immun 69(9), 5840-5848. doi: 10.1128/iai.69.9.5840-5848.2001. Fifer, H., Cole, M., Hughes, G., Padfield, S., Smolarchuk, C., Woodford, N., et al. (2018). Sustained transmission of high-level azithromycin-resistant Neisseria gonorrhoeae in England: an observational study. Lancet Infect Dis 18(5), 573-581. doi: 10.1016/S1473-3099(18)30122-1. Galarza, P.G., Alcala, B., Salcedo, C., Canigia, L.F., Buscemi, L., Pagano, I., et al. (2009). Emergence of high level azithromycin-resistant Neisseria gonorrhoeae strain isolated in Argentina. Sex Transm Dis 36(12), 787-788. doi: 10.1097/OLQ.0b013e3181b61bb1. Galimand, M., Gerbaud, G., and Courvalin, P. (2000). Spectinomycin resistance in Neisseria spp. due to mutations in 16S rRNA. Antimicrob Agents Chemother 44(5), 1365-1366. doi: 10.1128/aac.44.5.1365-1366.2000. Gaydos, C.A., Van Der Pol, B., Jett-Goheen, M., Barnes, M., Quinn, N., Clark, C., et al. (2013). Performance of the Cepheid CT/NG Xpert Rapid PCR Test for Detection of Chlamydia trachomatis and Neisseria gonorrhoeae. J Clin Microbiol 51(6), 1666-1672. doi: 10.1128/JCM.03461-12. Goire, N., Lahra, M.M., Chen, M., Donovan, B., Fairley, C.K., Guy, R., et al. (2014). Molecular approaches to enhance surveillance of gonococcal antimicrobial resistance. Nat Rev Microbiol 12(3), 223-229. doi: 10.1038/nrmicro3217. Golparian, D., Hellmark, B., Fredlund, H., and Unemo, M. (2010). Emergence, spread and characteristics of Neisseria gonorrhoeae isolates with in vitro decreased susceptibility and resistance to extended-spectrum cephalosporins in Sweden. Sex Transm Infect 86(6), 454-460. doi: 10.1136/sti.2010.045377. Grad, Y.H., Harris, S.R., Kirkcaldy, R.D., Green, A.G., Marks, D.S., Bentley, S.D., et al. (2016). Genomic epidemiology of gonococcal resistance to extended-spectrum cephalosporins, macrolides, and fluoroquinolones in the United States, 2000-2013. J Infect Dis 214(10), 1579-1587. doi: 10.1093/infdis/jiw420. Grant, R.M., Lama, J.R., Anderson, P.L., McMahan, V., Liu, A.Y., Vargas, L., et al. (2010). Preexposure chemoprophylaxis for HIV prevention in men who have sex with men. N Engl J Med 363(27), 2587-2599. doi: 10.1056/NEJMoa1011205. Hagman, K.E., Pan, W., Spratt, B.G., Balthazar, J.T., Judd, R.C., and Shafer, W.M. (1995). Resistance of Neisseria gonorrhoeae to antimicrobial hydrophobic agents is modulated by the mtrRCDE efflux system. Microbiology 141 ( Pt 3), 611-622. doi: 10.1099/13500872-141-3-611. Hauser, C., Hirzberger, L., Unemo, M., Furrer, H., and Endimiani, A. (2015). In vitro activity of fosfomycin alone and in combination with ceftriaxone or azithromycin against clinical Neisseria gonorrhoeae isolates. Antimicrob Agents Chemother 59(3), 1605-1611. doi: 10.1128/AAC.04536-14. Hedges, S.R., Mayo, M.S., Mestecky, J., Hook, E.W., 3rd, and Russell, M.W. (1999). Limited local and systemic antibody responses to Neisseria gonorrhoeae during uncomplicated genital infections. Infect Immun 67(8), 3937-3946. Helen Fifer, J.S., Suneeta Soni, S Tariq Sadiq, Mark FitzGerald (2019). British Association for Sexual Health and HIV national guideline for the management of infection with Neisseria gonorrhoeae, https://www.bashh.org/guidelines. Infectious Diseases Society of, T., Taiwan Aids Society, T.U.A., Taiwan Association of, O., Gynecology, Medical Foundation in Memory of Dr. Deh-Lin, C., Foundation of Professor Wei-Chuan Hsieh for Infectious Diseases, R., et al. (2010). Guideline on antimicrobial therapy of sexually transmitted diseases in Taiwan. J Microbiol Immunol Infect 43(1), 81-83. doi: 10.1016/S1684-1182(10)60013-8. Jacobsson, S., Golparian, D., Cole, M., Spiteri, G., Martin, I., Bergheim, T., et al. (2016). WGS analysis and molecular resistance mechanisms of azithromycin-resistant (MIC >2 mg/L) Neisseria gonorrhoeae isolates in Europe from 2009 to 2014. J Antimicrob Chemother 71(11), 3109-3116. doi: 10.1093/jac/dkw279. Jolley, K.A. (2001). Multi-locus sequence typing. Methods Mol Med 67, 173-186. doi: 10.1385/1-59259-149-3:173. Kane, B.G., Guillaume, A.W.D., Evans, E.M., Goyke, T.E., Eygnor, J.K., Semler, L., et al. (2017). Gender Differences in CDC Guideline Compliance for STIs in Emergency Departments. West J Emerg Med 18(3), 390-397. doi: 10.5811/westjem.2016.12.32440. Katz, A.R., Komeya, A.Y., Soge, O.O., Kiaha, M.I., Lee, M.V., Wasserman, G.M., et al. (2012). Neisseria gonorrhoeae with high-level resistance to azithromycin: case report of the first isolate identified in the United States. Clin Infect Dis 54(6), 841-843. doi: 10.1093/cid/cir929. La Ruche, G., Goubard, A., Bercot, B., Cambau, E., Semaille, C., and Sednaoui, P. (2014). Gonococcal infections and emergence of gonococcal decreased susceptibility to cephalosporins in France, 2001 to 2012. Euro Surveill 19(34). doi: 10.2807/1560-7917.es2014.19.34.20885. Lahra, M.M., Lo, Y.R., and Whiley, D.M. (2013). Gonococcal antimicrobial resistance in the Western Pacific Region. Sex Transm Infect 89 Suppl 4, iv19-23. doi: 10.1136/sextrans-2012-050906. Lahra, M.M., Martin, I., Demczuk, W., Jennison, A.V., Lee, K.I., Nakayama, S.I., et al. (2018). Cooperative Recognition of Internationally Disseminated Ceftriaxone-Resistant Neisseria gonorrhoeae Strain. Emerg Infect Dis 24(4). doi: 10.3201/eid2404.171873. Lahra, M.M., Pacific, W.H.O.W., and South East Asian Gonococcal Antimicrobial Surveillance, P. (2012). Surveillance of antibiotic resistance in Neisseria gonorrhoeae in the WHO Western Pacific and South East Asian Regions, 2010. Commun Dis Intell Q Rep 36(1), 95-100. Lee, E.H., and Shafer, W.M. (1999). The farAB-encoded efflux pump mediates resistance of gonococci to long-chained antibacterial fatty acids. Mol Microbiol 33(4), 839-845. doi: 10.1046/j.1365-2958.1999.01530.x. Li, S.Y. (2012). Global transmission of multiple-drug resistant Neisseria gonorrhoeae strains refractive to cephalosporin treatment. J Formos Med Assoc 111(9), 463-464. doi: 10.1016/j.jfma.2012.03.004. Liao, C.H., Lai, C.C., Hsu, M.S., Chu, F.Y., Wu, M.Y., Huang, Y.T., et al. (2010). Antimicrobial susceptibility of Neisseria gonorrhoeae isolates determined by the agar dilution, disk diffusion and Etest methods: comparison of results using GC agar and chocolate agar. Int J Antimicrob Agents 35(5), 457-460. doi: 10.1016/j.ijantimicag.2010.01.007. Liao, M., Gu, W.M., Yang, Y., and Dillon, J.A. (2011). Analysis of mutations in multiple loci of Neisseria gonorrhoeae isolates reveals effects of PIB, PBP2 and MtrR on reduced susceptibility to ceftriaxone. J Antimicrob Chemother 66(5), 1016-1023. doi: 10.1093/jac/dkr021. Lo, J.Y., Ho, K.M., Leung, A.O., Tiu, F.S., Tsang, G.K., Lo, A.C., et al. (2008). Ceftibuten resistance and treatment failure of Neisseria gonorrhoeae infection. Antimicrob Agents Chemother 52(10), 3564-3567. doi: 10.1128/AAC.00198-08. Lohani, S., Nazir, S., Tachamo, N., and Patel, N. (2016). Disseminated gonococcal infection: an unusual presentation. J Community Hosp Intern Med Perspect 6(3), 31841. doi: 10.3402/jchimp.v6.31841. M, Y.C., Stevens, K., Tideman, R., Zaia, A., Tomita, T., Fairley, C.K., et al. (2013). Failure of 500 mg of ceftriaxone to eradicate pharyngeal gonorrhoea, Australia. J Antimicrob Chemother 68(6), 1445-1447. doi: 10.1093/jac/dkt017. Magnus Unemo and Susanne Jacobsson, O.r.U.H., Örebro, Sweden, and Michelle Cole and Francesco Tripodo, P.H.E., London, United Kingdom (2016). 'European Centre for Disease Prevention and Control. Gonococcal antimicrobial susceptibility surveillance in Europe, 2014. Stockholm: ECDC; 2016.'.). Mandell, L.A., Wunderink, R.G., Anzueto, A., Bartlett, J.G., Campbell, G.D., Dean, N.C., et al. (2007). Infectious Diseases Society of America/American Thoracic Society consensus guidelines on the management of community-acquired pneumonia in adults. Clin Infect Dis 44 Suppl 2, S27-72. doi: 10.1086/511159. Martin, I., Sawatzky, P., Allen, V., Hoang, L., Lefebvre, B., Mina, N., et al. (2012). Emergence and characterization of Neisseria gonorrhoeae isolates with decreased susceptibilities to ceftriaxone and cefixime in Canada: 2001-2010. Sex Transm Dis 39(4), 316-323. doi: 10.1097/OLQ.0b013e3182401b69. Martin, I.M., Ison, C.A., Aanensen, D.M., Fenton, K.A., and Spratt, B.G. (2004). Rapid sequence-based identification of gonococcal transmission clusters in a large metropolitan area. J Infect Dis 189(8), 1497-1505. doi: 10.1086/383047. Mlynarczyk-Bonikowska, B., Malejczyk, M., Majewski, S., and Unemo, M. (2018). Antibiotic resistance and NG-MAST sequence types of Neisseria gonorrhoeae isolates in Poland compared to the world. Postepy Dermatol Alergol 35(6), 346-551. doi: 10.5114/ada.2018.79780. Molina, J.M., Charreau, I., Chidiac, C., Pialoux, G., Cua, E., Delaugerre, C., et al. (2018). Post-exposure prophylaxis with doxycycline to prevent sexually transmitted infections in men who have sex with men: an open-label randomised substudy of the ANRS IPERGAY trial. Lancet Infect Dis 18(3), 308-317. doi: 10.1016/S1473-3099(17)30725-9. Ndowa, F.J., Francis, J.M., Machiha, A., Faye-Kette, H., and Fonkoua, M.C. (2013). Gonococcal antimicrobial resistance: perspectives from the African region. Sex Transm Infect 89 Suppl 4, iv11-15. doi: 10.1136/sextrans-2012-050907. Ng, L.K., Martin, I., Liu, G., and Bryden, L. (2002). Mutation in 23S rRNA associated with macrolide resistance in Neisseria gonorrhoeae. Antimicrob Agents Chemother 46(9), 3020-3025. Ni, C., Xue, J., Zhang, C., Zhou, H., and van der Veen, S. (2016). High prevalence of Neisseria gonorrhoeae with high-level resistance to azithromycin in Hangzhou, China. J Antimicrob Chemother 71(8), 2355-2357. doi: 10.1093/jac/dkw131. Nicol, M., Whiley, D., Nulsen, M., and Bromhead, C. (2015). Direct detection of markers associated with Neisseria gonorrhoeae antimicrobial resistance in New Zealand using residual DNA from the Cobas 4800 CT/NG NAAT assay. Sex Transm Infect 91(2), 91-93. doi: 10.1136/sextrans-2014-051632. O'Brien, J.P., Goldenberg, D.L., and Rice, P.A. (1983). Disseminated gonococcal infection: a prospective analysis of 49 patients and a review of pathophysiology and immune mechanisms. Medicine (Baltimore) 62(6), 395-406. O'Rourke, M., and Spratt, B.G. (1994). Further evidence for the non-clonal population structure of Neisseria gonorrhoeae: extensive genetic diversity within isolates of the same electrophoretic type. Microbiology 140 ( Pt 6), 1285-1290. doi: 10.1099/00221287-140-6-1285. Odds, F.C. (2003). Synergy, antagonism, and what the chequerboard puts between them. J Antimicrob Chemother 52(1), 1. doi: 10.1093/jac/dkg301. Ohnishi, M., Golparian, D., Shimuta, K., Saika, T., Hoshina, S., Iwasaku, K., et al. (2011). Is Neisseria gonorrhoeae initiating a future era of untreatable gonorrhea?: detailed characterization of the first strain with high-level resistance to ceftriaxone. Antimicrob Agents Chemother 55(7), 3538-3545. doi: 10.1128/AAC.00325-11. Peng, T., Lin, H., Liu, Q., Cao, W., Ding, H., Chen, J., et al. (2017). Ceftriaxone susceptibility and molecular characteristics of Neisseria gonorrhoeae isolates in Changsha, China. J Infect Chemother 23(6), 385-389. doi: 10.1016/j.jiac.2017.03.007. Peterson, S.W., Martin, I., Demczuk, W., Hoang, L., Wylie, J., Lefebvre, B., et al. (2018). A Comparison of Real-Time Polymerase Chain Reaction Assays for the Detection of Antimicrobial Resistance Markers and Sequence Typing From Clinical Nucleic Acid Amplification Test Samples and Matched Neisseria gonorrhoeae Culture. Sex Transm Dis 45(2), 92-95. doi: 10.1097/OLQ.0000000000000707. Petousis-Harris, H., Paynter, J., Morgan, J., Saxton, P., McArdle, B., Goodyear-Smith, F., et al. (2017). Effectiveness of a group B outer membrane vesicle meningococcal vaccine against gonorrhoea in New Zealand: a retrospective case-control study. Lancet 390(10102), 1603-1610. doi: 10.1016/S0140-6736(17)31449-6. Quillin, S.J., and Seifert, H.S. (2018). Neisseria gonorrhoeae host adaptation and pathogenesis. Nat Rev Microbiol 16(4), 226-240. doi: 10.1038/nrmicro.2017.169. Read, P., Abbott, R., Pantelidis, P., Peters, B.S., and White, J.A. (2008). Disseminated gonococcal infection in a homosexual man diagnosed by nucleic acid amplification testing from a skin lesion swab. Sex Transm Infect 84(5), 348-349. doi: 10.1136/sti.2008.030817. Rouquette-Loughlin, C., Dunham, S.A., Kuhn, M., Balthazar, J.T., and Shafer, W.M. (2003). The NorM efflux pump of Neisseria gonorrhoeae and Neisseria meningitidis recognizes antimicrobial cationic compounds. J Bacteriol 185(3), 1101-1106. doi: 10.1128/jb.185.3.1101-1106.2003. Rouquette-Loughlin, C.E., Balthazar, J.T., and Shafer, W.M. (2005). Characterization of the MacA-MacB efflux system in Neisseria gonorrhoeae. J Antimicrob Chemother 56(5), 856-860. doi: 10.1093/jac/dki333. Russell, M.W., Jerse, A.E., and Gray-Owen, S.D. (2019). Progress Toward a Gonococcal Vaccine: The Way Forward. Front Immunol 10, 2417. doi: 10.3389/fimmu.2019.02417. Shimuta, K., Unemo, M., Nakayama, S., Morita-Ishihara, T., Dorin, M., Kawahata, T., et al. (2013). Antimicrobial resistance and molecular typing of Neisseria gonorrhoeae isolates in Kyoto and Osaka, Japan, 2010 to 2012: intensified surveillance after identification of the first strain (H041) with high-level ceftriaxone resistance. Antimicrob Agents Chemother 57(11), 5225-5232. doi: 10.1128/AAC.01295-13. Singh, V., Bala, M., Bhargava, A., Kakran, M., and Bhatnagar, R. (2018). In vitro efficacy of 21 dual antimicrobial combinations comprising novel and currently recommended combinations for treatment of drug resistant gonorrhoea in future era. PLoS One 13(3), e0193678. doi: 10.1371/journal.pone.0193678. Spiteri, G., Cole, M., Unemo, M., Hoffmann, S., Ison, C., and van de Laar, M. (2013). The European Gonococcal Antimicrobial Surveillance Programme (Euro-GASP)--a sentinel approach in the European Union (EU)/European Economic Area (EEA). Sex Transm Infect 89 Suppl 4, iv16-18. doi: 10.1136/sextrans-2013-051117. Steen, R., Chersich, M., Gerbase, A., Neilsen, G., Wendland, A., Ndowa, F., et al. (2012). Periodic presumptive treatment of curable sexually transmitted infections among sex workers: a systematic review. AIDS 26(4), 437-445. doi: 10.1097/QAD.0b013e32834ed991. Stevens, K., Zaia, A., Tawil, S., Bates, J., Hicks, V., Whiley, D., et al. (2015). Neisseria gonorrhoeae isolates with high-level resistance to azithromycin in Australia. J Antimicrob Chemother 70(4), 1267-1268. doi: 10.1093/jac/dku490. The European Committee on Antimicrobial Susceptibility Testing. Breakpoint tables for interpretation of MICs and zone diameters. Version 9.0, h.w.e.o. (2019). The European Committee on Antimicrobial Susceptibility Testing. Breakpoint tables for interpretation of MICs and zone diameters. Version 9.0, 2019. http://www.eucast.org/. Tomberg, J., Unemo, M., Davies, C., and Nicholas, R.A. (2010). Molecular and structural analysis of mosaic variants of penicillin-binding protein 2 conferring decreased susceptibility to expanded-spectrum cephalosporins in Neisseria gonorrhoeae: role of epistatic mutations. Biochemistry 49(37), 8062-8070. doi: 10.1021/bi101167x. Tomberg, J., Unemo, M., Ohnishi, M., Davies, C., and Nicholas, R.A. (2013). Identification of amino acids conferring high-level resistance to expanded-spectrum cephalosporins in the penA gene from Neisseria gonorrhoeae strain H041. Antimicrob Agents Chemother 57(7), 3029-3036. doi: 10.1128/AAC.00093-13. Traeger, M.W., Cornelisse, V.J., Asselin, J., Price, B., Roth, N.J., Willcox, J., et al. (2019). Association of HIV Preexposure Prophylaxis With Incidence of Sexually Transmitted Infections Among Individuals at High Risk of HIV Infection. JAMA 321(14), 1380-1390. doi: 10.1001/jama.2019.2947. Trecker, M.A., Waldner, C., Jolly, A., Liao, M., Gu, W., and Dillon, J.A. (2014). Behavioral and socioeconomic risk factors associated with probable resistance to ceftriaxone and resistance to penicillin and tetracycline in Neisseria gonorrhoeae in Shanghai. PLoS One 9(2), e89458. doi: 10.1371/journal.pone.0089458. Tuttle, C.S., Van Dantzig, T., Brady, S., Ward, J., and Maguire, G. (2015). The epidemiology of gonococcal arthritis in an Indigenous Australian population. Sex Transm Infect 91(7), 497-501. doi: 10.1136/sextrans-2014-051893. Unemo, M. (2015). Current and future antimicrobial treatment of gonorrhoea - the rapidly evolving Neisseria gonorrhoeae continues to challenge. BMC Infect Dis 15, 364. doi: 10.1186/s12879-015-1029-2. Unemo, M., Del Rio, C., and Shafer, W.M. (2016). Antimicrobial Resistance Expressed by Neisseria gonorrhoeae: A Major Global Public Health Problem in the 21st Century. Microbiol Spectr 4(3). doi: 10.1128/microbiolspec.EI10-0009-2015. Unemo, M., Golparian, D., and Hestner, A. (2011). Ceftriaxone treatment failure of pharyngeal gonorrhoea verified by international recommendations, Sweden, July 2010. Euro Surveill 16(6). Unemo, M., Golparian, D., Limnios, A., Whiley, D., Ohnishi, M., Lahra, M.M., et al. (2012a). In vitro activity of ertapenem versus ceftriaxone against Neisseria gonorrhoeae isolates with highly diverse ceftriaxone MIC values and effects of ceftriaxone resistance determinants: ertapenem for treatment of gonorrhea? Antimicrob Agents Chemother 56(7), 3603-3609. doi: 10.1128/AAC.00326-12. Unemo, M., Golparian, D., Nicholas, R., Ohnishi, M., Gallay, A., and Sednaoui, P. (2012b). High-level cefixime- and ceftriaxone-resistant Neisseria gonorrhoeae in France: novel penA mosaic allele in a successful international clone causes treatment failure. Antimicrob Agents Chemother 56(3), 1273-1280. doi: 10.1128/AAC.05760-11. Unemo, M., and Jensen, J.S. (2017). Antimicrobial-resistant sexually transmitted infections: gonorrhoea and Mycoplasma genitalium. Nat Rev Urol 14(3), 139-152. doi: 10.1038/nrurol.2016.268. Unemo, M., and Shafer, W.M. (2011). Antibiotic resistance in Neisseria gonorrhoeae: origin, evolution, and lessons learned for the future. Ann N Y Acad Sci 1230, E19-28. doi: 10.1111/j.1749-6632.2011.06215.x. Unemo, M., and Shafer, W.M. (2014). Antimicrobial resistance in Neisseria gonorrhoeae in the 21st century: past, evolution, and future. Clin Microbiol Rev 27(3), 587-613. doi: 10.1128/CMR.00010-14. Volk, J.E., Marcus, J.L., Phengrasamy, T., Blechinger, D., Nguyen, D.P., Follansbee, S., et al. (2015). No New HIV Infections With Increasing Use of HIV Preexposure Prophylaxis in a Clinical Practice Setting. Clin Infect Dis 61(10), 1601-1603. doi: 10.1093/cid/civ778. Wadsworth, C.B., Arnold, B.J., Sater, M.R.A., and Grad, Y.H. (2018). Azithromycin Resistance through Interspecific Acquisition of an Epistasis-Dependent Efflux Pump Component and Transcriptional Regulator in Neisseria gonorrhoeae. MBio 9(4). doi: 10.1128/mBio.01419-18. Wan, C., Li, Y., Le, W.J., Liu, Y.R., Li, S., Wang, B.X., et al. (2018). Increasing Resistance to Azithromycin in Neisseria gonorrhoeae in Eastern Chinese Cities: Resistance Mechanisms and Genetic Diversity among Isolates from Nanjing. Antimicrob Agents Chemother 62(5). doi: 10.1128/AAC.02499-17. Warner, D.M., Shafer, W.M., and Jerse, A.E. (2008). Clinically relevant mutations that cause derepression of the Neisseria gonorrhoeae MtrC-MtrD-MtrE Efflux pump system confer different levels of antimicrobial resistance and in vivo fitness. Mol Microbiol 70(2), 462-478. doi: 10.1111/j.1365-2958.2008.06424.x. Whiley, D.M., Jennison, A., Pearson, J., and Lahra, M.M. (2018a). Genetic characterisation of Neisseria gonorrhoeae resistant to both ceftriaxone and azithromycin. Lancet Infect Dis 18(7), 717-718. doi: 10.1016/S1473-3099(18)30340-2. Whiley, D.M., Kundu, R.L., Jennison, A.V., Buckley, C., Limnios, A., Hogan, T., et al. (2018b). Azithromycin-resistant Neisseria gonorrhoeae spreading amongst men who have sex with men (MSM) and heterosexuals in New South Wales, Australia, 2017. J Antimicrob Chemother 73(5), 1242-1246. doi: 10.1093/jac/dky017. Wind, C.M., Bruisten, S.M., Schim van der Loeff, M.F., Dierdorp, M., de Vries, H.J.C., and van Dam, A.P. (2017a). A Case-Control Study of Molecular Epidemiology in Relation to Azithromycin Resistance in Neisseria gonorrhoeae Isolates Collected in Amsterdam, the Netherlands, between 2008 and 2015. Antimicrob Agents Chemother 61(6). doi: 10.1128/AAC.02374-16. Wind, C.M., de Vries, E., Schim van der Loeff, M.F., van Rooijen, M.S., van Dam, A.P., Demczuk, W.H.B., et al. (2017b). Decreased Azithromycin Susceptibility of Neisseria gonorrhoeae Isolates in Patients Recently Treated with Azithromycin. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71038 | - |
| dc.description.abstract | 淋病,是由淋病雙球菌引起的感染症,其臨床表現的差異性甚大,從無症狀感染、瘙癢、排尿有刺痛或燒灼感、到尿道有膿性分泌物,皆有可能;如果不及時治療,將引起嚴重的並發症,例如附睾炎和盆腔炎。從感染部位取得檢體,經由培養方式或核酸擴增試驗,證實淋病雙球菌的存在,是主要的診斷的方法。由於缺乏有效的疫苗,抗生素治療仍然是控制淋病感染的主要方法。不幸的是,由於日益嚴重的抗藥性,使得抗生素的療效逐漸喪失。面對這一艱鉅的挑戰,許多國際治療指引建議以合併ceftriaxone及azithromycin的雙重處方為首選的治療藥物,期望能夠延緩抗藥性菌種的產生。各國學者亦著手許多淋病的相關研究,比如分子流行病學的監測及抗藥性機轉的探討。本研究的目的即在描述台灣淋病雙球菌的分子流行病學,同時觀察抗藥性變化的趨勢及探討抗藥性的相關機轉,以期提供臨床醫療人員適當的診治建議。 我們回顧9家台灣醫療機構於2001-2018年的病歷記錄及微生物學實驗室記錄,收集整理淋病患者的資料及其淋病雙球菌菌株。通過瓊脂稀釋法決定各菌株對抗生素的最小抑制濃度,並根據美國臨床暨實驗室標準協會和歐洲抗菌藥敏試驗委員會的標準,來判定各菌株對抗生素的藥敏性。我們使用多基因座序列分型和淋病雙球菌多抗原序列分型確定各菌株的遺傳相關性。對azithromycin高抗藥性(最小抑菌濃度 256 mg/L)的菌株,再進行脈衝場凝膠電泳分析,以決定彼此間的相關性。以聚合酶連鎖反應的方式擴增23S rRNA,mtrR和penA基因的序列,並將基因序列上傳下達到NG-STAR網站上,以決定突變的存在與否。 從2001年至2013年,我們在台大醫院共收集了279株淋病雙球菌菌株,這些菌株對ceftriaxone和cefotaxime沒有抗藥性,對cefixime、spectinomycin、cefpodoxime、ciprofloxacin、penicillin的抗藥性則分別為0.4%、0.4%、13.3%、91.6%和87.6%。對azithromycin產生抗藥性的比例為14.6%(歐洲抗菌藥敏試驗委員會標準),高於各國以往的監測研究。以多基因座序列分型後,三個主要基因型別為ST1901 (14.2%),ST7365 (9.3%),ST1927 (8.0%)。與其他基因型別相比,ST1901菌株對ceftriaxone和azithromycin的最小抑菌濃度相對較高。男女性別的差異對cephalosprin的藥敏性結果沒有影響。基於上述發現,我們再從台灣其他醫療機構收集2014-2018年的372株淋病雙球菌菌株,以了解azithromycin在台灣的抗藥性狀況。我們鑑定出10株azithromycin高抗藥性的淋病雙球菌菌株,基因型別分別為MSLT 12039/10899和NG-MAST 1866/16497。它們都具有非鑲嵌(non-mosaic)的penA基因和相同的azithromycin抗藥性決定因子,包括具有4個A2059G突變的23S rRNA,mtrR基因啟動子區域的-35A缺失和mtrR編碼區域的G45D突變。對10株azithromycin高抗藥性的菌株以脈衝場凝膠電泳分析,可鑑定出4種不同的基因型別(cluster),顯示有azithromycin高抗藥性的淋病雙球菌菌株在台灣的某特定族群間傳染感染。在台灣,ceftriaxone仍是治療淋病的有效選擇。但是,由於發現了azithromycin高抗藥性的淋病雙球菌菌株在台灣傳播,因此我們應監測並仔細重新評估ceftriaxone及azithromycin雙重處方的療效。此外,我們發現A2059G突變的23S rRNA和鑲嵌penA基因,所以我們也要密切關注淋病雙球菌菌株可能通過自發突變和DNA轉化產生對ceftriaxone和azithromcyin的抗藥性。 | zh_TW |
| dc.description.abstract | Neisseria gonorrhoeae (N. gonorrhoeae) infection is a huge burden to human health and can be asymptomatic or present multiple symptoms such as mucopurulent discharge, pruritus, and dysuria. If left untreated, it can cause severe complications, such as epididymitis and pelvic inflammatory disease. Positive results of discharge culture and nucleic acid amplification test (NAAT) are the commonly used methods for diagnosis. Antimicrobial treatment remains the principal method to control N. gonorrhoeae infection. Unfortunately, we have limited options for gonorrhea treatment due to the emergence of antimicrobial resistance. Facing this tough challenge, multifaceted approaches have been taken, such as the recommendation of a dual antimicrobial regimen with ceftriaxone (CRO) and azithromycin (AZM), intensive molecular surveillance, and researches on relevant antimicrobial resistance. The aims of this research are to explore the molecular epidemiology, annual antimicrobial susceptibility trends, and the genetic resistance determinants of N. gonorrhoeae. Patients with N. gonorrhoeae infection were identified through the review of microbiology laboratory records from nine medical institutions in Taiwan during 2001-2018. Minimal inhibitory concentrations (MICs) of the isolates to antimicrobial agents were determined by the agar dilution method. The MIC interpretive breakpoints used to determine susceptibility, intermediate susceptibility, and resistance to the agents tested were in accordance with the guidelines recommended by the Clinical and Laboratory Standards Institute (CLSI) and European Committee on Antimicrobial Susceptibility Testing (EUCAST). Genetic relatedness of the isolates was determined using multilocus sequence typing (MLST) and N. gonorrhoeae multi-antigen sequence typing (NG-MAST). Pulsed-field gel electrophoresis (PFGE) analysis was performed for high-level AZM-resistant (AZM-HLR) isolates. To recognize the presence of mutations, domain V gene sequences of the 23S rRNA, mtrR, and penA genes were amplified and the DNA sequencing data was uploaded to a publicly accessible database on the NG-STAR website. A total of 279 non-duplicate isolates of N. gonorrhoeae were recovered from 279 patients who were treated at NTUH from 2001 to 2013. None of the isolates were resistant to CRO and cefotaxime, and the resistance rates for spectinomycin, cefixime, cefpodoxime, ciprofloxacin, and penicillin were 0.4%, 0.4%, 13.3%, 91.6%, and 87.6%, respectively. The rate of isolates resistant to AZM was 14.6% (EUCAST criteria), which is higher than in previous surveillance studies. The three main sequence types (STs) included ST1901 (14.2%), ST7365 (9.3%), ST1927 (8.0%). ST1901 isolates had relatively higher MIC values for CRO and AZM than those for the other STs. No difference in susceptibility for cephalosporins existed between genders. In addition to the previously mentioned 226 isolates of N. gonorrhoeae recovered from NTUH during 2001-2013, a further 372 N. gonorrhoeae isolates were collected during 2014-2018 from other hospitals in Taiwan. Ten isolates were identified as 10 AZM-HLR isolates. These isolates were sequenced as MSLT 12039/10899 and NG-MAST 1866/16497, respectively. All of them had non-mosaic penA alleles and the same AZM resistance determinants, including 4 mutated 23S rRNA copies with the A2059G mutation, -35A deletion in the promoter region of the mtrR gene, and G45D mutation in the mtrR coding region. PFGE analysis of the 10 AZM-HLR isolates resulted in dendrograms defined four clusters. CRO is an effective drug of choice for managing gonorrhea, but the efficacy of dual therapy, namely CRO plus AZM, should be closely monitored and carefully re-evaluated as the clonal spread of AZM-HLR isolates was found through the sexual network in Taiwan. The A2059G mutated 23S rRNA and mosaic penA alleles were depicted in our study so that we should pay close attention to the possible emergence of N. gonorrhoeae isolates with resistance to both CRO and AZM through spontaneous mutation and DNA transformation. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T04:49:49Z (GMT). No. of bitstreams: 1 U0001-1908202015305700.pdf: 2187621 bytes, checksum: e5bf336b1e09fb9752df0d48bc7b01df (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 口試委員會審定書 i 誌謝 ii 中文摘要 iii Abstract vi Introduction Background 1 N. gonorrhoeae infection and complications 3 Extragenital N. gonorrhoeae infection 4 Diagnosis of N. gonorrhoeae infection 5 Epidemiology of N. gonorrhoeae infection molecular type 6 Treatment regimens and resistance evolution of N. gonorrhoeae infection 9 Genetics of antibiotic resistance in N. gonorrhoeae 12 N. gonorrhoeae as a superbug 19 International responses to the coming era of untreatable gonorrhea 20 Aims of the research 23 Methods and materials Part I. Antimicrobial susceptibilities and molecular typing of N. gonorrhoeae isolates in Taiwan Data collection 24 Bacterial isolates 24 Antimicrobial susceptibility testing 25 DNA extraction 26 Multilocus sequence typing 27 Part II. Emergence and spread of N. gonorrhoeae strains with high-level antibiotics resistance in Taiwan during 2001-2018 Bacterial isolates 28 Data collection 28 Antimicrobial susceptibility testing 28 Determinants of antimicrobial resistance to azithromycin 29 N. gonorrhoeae multi-antigen sequence typing 30 Pulsed-field gel electrophoresis 30 In vitro synergy testing 31 Statistical analysis 32 Result Part I. Antimicrobial susceptibilities and molecular typing of N. gonorrhoeae isolates in Taiwan 33 Part II. Emergence and spread of N. gonorrhoeae strains with high-level antibiotics resistance in Taiwan during 2001-2018 38 Discussion Part I. Antimicrobial susceptibilities and molecular typing of N. gonorrhoeae isolates in Taiwan 44 Part II. Emergence and spread of N. gonorrhoeae strains with high-level antibiotics resistance in Taiwan during 2001-2018 54 Perspective National and international surveillance and whole genome sequencing 62 Extension of surveillance network 63 Vaccination 64 New diagnostic tool 65 Detection of AMR resistance markers 66 Biologic fitness and virulence 67 Antimicrobial agents control 68 Post-exposure prophylaxis with doxycycline 69 Mechanisms of symptomatic or asymptomatic gonococcal infection 71 New treatment options 72 Reference 74 Table 98 Figure 107 Appendix 114 | |
| dc.language.iso | en | |
| dc.subject | mtrR | zh_TW |
| dc.subject | 23S rRNA | zh_TW |
| dc.subject | penA | zh_TW |
| dc.subject | azithromycin | zh_TW |
| dc.subject | ceftriaxone | zh_TW |
| dc.subject | 淋病奈瑟氏球菌多抗原序列分型 | zh_TW |
| dc.subject | 多基因座序列分型 | zh_TW |
| dc.subject | 抗藥性 | zh_TW |
| dc.subject | 淋病雙球菌 | zh_TW |
| dc.subject | mtrR | en |
| dc.subject | Neisseria gonorrhoeae | en |
| dc.subject | ceftriaxone | en |
| dc.subject | azithromycin | en |
| dc.subject | resistance | en |
| dc.subject | MLST | en |
| dc.subject | NG-MAST | en |
| dc.subject | penA | en |
| dc.subject | 23S rRNA | en |
| dc.title | 臺灣淋病雙球菌分子流行病學、抗藥性分析及抗藥性機轉研究 | zh_TW |
| dc.title | Molecular epidemiology, antimicrobial resistance and its mechanism of Neisseria gonorrhoeae in Taiwan | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.coadvisor | 楊偉勛(Wei-Shiung Yang) | |
| dc.contributor.oralexamcommittee | 王復德(Fu-Der Wang),陳德禮(Te-Li Chen),鄧麗珍(Lee-Jene Teng),邱浩傑(Hao-Chieh Chiu) | |
| dc.subject.keyword | 淋病雙球菌,抗藥性,多基因座序列分型,淋病奈瑟氏球菌多抗原序列分型,ceftriaxone,azithromycin,penA,23S rRNA,mtrR, | zh_TW |
| dc.subject.keyword | Neisseria gonorrhoeae,ceftriaxone,azithromycin,resistance,MLST,NG-MAST,penA,23S rRNA,mtrR, | en |
| dc.relation.page | 114 | |
| dc.identifier.doi | 10.6342/NTU202004088 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2020-08-21 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 臨床醫學研究所 | zh_TW |
| 顯示於系所單位: | 臨床醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1908202015305700.pdf 未授權公開取用 | 2.14 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
