請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71033完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林?輝(Feng-Huei Lin) | |
| dc.contributor.author | Chia-Ying Hsieh | en |
| dc.contributor.author | 謝佳穎 | zh_TW |
| dc.date.accessioned | 2021-06-17T04:49:28Z | - |
| dc.date.available | 2023-08-03 | |
| dc.date.copyright | 2018-08-03 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-07-31 | |
| dc.identifier.citation | 1. Langer, R. and J.P. Vacanti, Tissue Engineering. Science, 1993. 260(5110): p. 920-926.
2. Langer, R., et al., Tissue engineering: biomedical applications. Tissue Eng, 1995. 1(2): p. 151-61. 3. Einhorn, T.A., Enhancement of Fracture-Healing. Journal of Bone and Joint Surgery-American Volume, 1995. 77a(6): p. 940-956. 4. Sauer, H.D. and H. Schoettle, The stability of osteosyntheses bridging defects. Arch Orthop Trauma Surg, 1979. 95(1-2): p. 27-30. 5. Calori, G.M., et al., The use of bone-graft substitutes in large bone defects: Any specific needs? Injury-International Journal of the Care of the Injured, 2011. 42: p. S56-S63. 6. Weiner, S. and W. Traub, Bone-Structure - from Angstroms to Microns. Faseb Journal, 1992. 6(3): p. 879-885. 7. Weiner, S., W. Traub, and H.D. Wagner, Lamellar bone: Structure-function relations. Journal of Structural Biology, 1999. 126(3): p. 241-255. 8. Weiner, S. and H.D. Wagner, The material bone: Structure mechanical function relations. Annual Review of Materials Science, 1998. 28: p. 271-298. 9. Bigham-Sadegh, A. and A. Oryan, Basic concepts regarding fracture healing and the current options and future directions in managing bone fractures. International Wound Journal, 2015. 12(3): p. 238-247. 10. Gentili, C. and R. Cancedda, Cartilage and Bone Extracellular Matrix. Current Pharmaceutical Design, 2009. 15(12): p. 1334-1348. 11. Gaharwar, A.K., et al., 3D Biomaterial Microarrays for Regenerative Medicine: Current State-of-the-Art, Emerging Directions and Future Trends. Adv Mater, 2016. 28(4): p. 771-81. 12. Dhillon, M.S. and S.S. Dhatt, First Aid and Emergency Management in Orthopedic Injuries. 2012. 13. Einhorn, T.A. and L.C. Gerstenfeld, Fracture healing: mechanisms and interventions. Nature Reviews Rheumatology, 2015. 11(1): p. 45-54. 14. Marsell, R. and T.A. Einhorn, The biology of fracture healing. Injury-International Journal of the Care of the Injured, 2011. 42(6): p. 551-555. 15. Helfet, D.L., et al., AO philosophy and principles of fracture management - Its evolution and evaluation. Journal of Bone and Joint Surgery-American Volume, 2003. 85a(6): p. 1156-1160. 16. Pape, H.C., A. Evans, and P. Kobbe, Autologous Bone Graft: Properties and Techniques. Journal of Orthopaedic Trauma, 2010. 24: p. S36-S40. 17. Minamide, A., et al., The use of sintered bone in spinal surgery. European Spine Journal, 2001. 10: p. S185-S188. 18. Hollinger, J.O., et al., Role of bone substitutes. Clinical Orthopaedics and Related Research, 1996(324): p. 55-65. 19. Fu, R., et al., Effectiveness and harms of recombinant human bone morphogenetic protein-2 in spine fusion: a systematic review and meta-analysis. Ann Intern Med, 2013. 158(12): p. 890-902. 20. Pardali, E. and P. ten Dijke, Transforming growth factor-beta signaling and tumor angiogenesis. Front Biosci (Landmark Ed), 2009. 14: p. 4848-61. 21. Pryor, L.S., et al., Review of bone substitutes. Craniomaxillofac Trauma Reconstr, 2009. 2(3): p. 151-60. 22. Kohn, J., W.J. Welsh, and D. Knight, A new approach to the rationale discovery of polymeric biomaterials. Biomaterials, 2007. 28(29): p. 4171-4177. 23. Laurencin, C.T., et al., Tissue engineering: Orthopedic applications. Annual Review of Biomedical Engineering, 1999. 1: p. 19-46. 24. Kang, H.W., Y. Tabata, and Y. Ikada, Fabrication of porous gelatin scaffolds for tissue engineering. Biomaterials, 1999. 20(14): p. 1339-1344. 25. Olsen, D., et al., Recombinant collagen and gelatin for drug delivery. Advanced Drug Delivery Reviews, 2003. 55(12): p. 1547-1567. 26. Choi, Y.S., et al., Studies on gelatin-containing artificial skin: II. Preparation and characterization of cross-linked gelatin-hyaluronate sponge. J Biomed Mater Res, 1999. 48(5): p. 631-9. 27. Chen, W.Y.J. and G. Abatangelo, Functions of hyaluronan in wound repair. Wound Repair and Regeneration, 1999. 7(2): p. 79-89. 28. Day, A.J. and C.A. de la Motte, Hyaluronan cross-linking: a protective mechanism in inflammation? Trends in Immunology, 2005. 26(12): p. 637-643. 29. West, D.C., et al., Angiogenesis Induced by Degradation Products of Hyaluronic-Acid. Science, 1985. 228(4705): p. 1324-1326. 30. De Boulle, K., et al., A review of the metabolism of 1,4-butanediol diglycidyl ether-crosslinked hyaluronic acid dermal fillers. Dermatol Surg, 2013. 39(12): p. 1758-66. 31. Holmes, R., et al., A Coralline Hydroxyapatite Bone-Graft Substitute - Preliminary-Report. Clinical Orthopaedics and Related Research, 1984(188): p. 252-262. 32. Weller, M., et al., Inorganic Chemistry. 6 ed. 2014. 33. Segers, V.F.M., et al., Local delivery of protease-resistant stromal cell derived factor-1 for stem cell recruitment after myocardial infarction. Circulation, 2007. 116(15): p. 1683-1692. 34. Lin, W.P., et al., Mesenchymal stem cells homing to improve bone healing. Journal of Orthopaedic Translation, 2017. 9: p. 19-27. 35. Otsuru, S., et al., Circulating bone marrow-derived osteoblast progenitor cells are recruited to the bone-forming site by the CXCR4/stromal cell-derived factor-1 pathway. Stem Cells, 2008. 26(1): p. 223-234. 36. Akao, M., H. Aoki, and K. Kato, Mechanical-Properties of Sintered Hydroxyapatite for Prosthetic Applications. Journal of Materials Science, 1981. 16(3): p. 809-812. 37. Shyong, Y.J., et al., Mesoporous hydroxyapatite as a carrier of olanzapine for long-acting antidepression treatment in rats with induced depression. J Control Release, 2017. 255: p. 62-72. 38. Linh, N.T.B., Y.K. Min, and B.T. Lee, Fabrication and in vitro evaluations with osteoblast-like MG-63 cells of porous hyaluronic acid-gelatin blend scaffold for bone tissue engineering applications. Journal of Materials Science, 2013. 48(12): p. 4233-4242. 39. Choi, Y.S., et al., Studies on gelatin-containing artificial skin: II. Preparation and characterization of cross-linked gelatin-hyaluronate sponge. Journal of Biomedical Materials Research, 1999. 48(5): p. 631-639. 40. Park, M.V., et al., The effect of particle size on the cytotoxicity, inflammation, developmental toxicity and genotoxicity of silver nanoparticles. Biomaterials, 2011. 32(36): p. 9810-7. 41. TAKARA, Premix WST-1 cell proliferation assay system. 42. Hung, C.J., et al., Establishment of immortalized mesenchymal stromal cells with red fluorescence protein expression for in vivo transplantation and tracing in the rat model with traumatic brain injury. Cytotherapy, 2010. 12(4): p. 455-465. 43. Schmitz, J.P. and J.O. Hollinger, The Critical Size Defect as an Experimental-Model for Craniomandibulofacial Nonunions. Clinical Orthopaedics and Related Research, 1986(205): p. 299-308. 44. Hollinger, J.O. and J.C. Kleinschmidt, The critical size defect as an experimental model to test bone repair materials. Journal of Craniofacial Surgery, 1990. 1(1): p. 60-68. 45. Kondo, N., et al., Bone formation and resorption of highly purified beta-tricalcium phosphate in the rat femoral condyle. Biomaterials, 2005. 26(28): p. 5600-5608. 46. Li, Y., et al., Bone defect animal models for testing efficacy of bone substitute biomaterials. Journal of Orthopaedic Translation, 2015. 3(3): p. 95-104. 47. Thavarajah, R., et al., Chemical and physical basics of routine formaldehyde fixation. J Oral Maxillofac Pathol, 2012. 16(3): p. 400-5. 48. Saintemarie, G., A Paraffin Embedding Technique for Studies Employing Immunofluorescence. Journal of Histochemistry & Cytochemistry, 1962. 10(3): p. 250-&. 49. Lillie, R.D., P. Pizzolato, and P.T. Donaldson, Nuclear Stains with Soluble Metachrome Metal Mordant Dye Lakes - Effect of Chemical End-Group Blocking Reactions and Artificial Introduction of Acid Groups into Tissues. Histochemistry, 1976. 49(1): p. 23-35. 50. Llewellyn, B.D., Nuclear staining with alum hematoxylin. Biotechnic & Histochemistry, 2009. 84(4): p. 159-177. 51. Gruber, H.E., Adaptations of Goldner's Masson trichrome stain for the study of undecalcified plastic embedded bone. Biotech Histochem, 1992. 67(1): p. 30-4. 52. Pena, C., et al., Enhancing water repellence and mechanical properties of gelatin films by tannin addition. Bioresource Technology, 2010. 101(17): p. 6836-6842. 53. Yakimets, I., et al., Mechanical properties with respect to water content of gelatin films in glassy state. Polymer, 2005. 46(26): p. 12577-12585. 54. Bang, S., et al., Evaluation of MC3T3 Cells Proliferation and Drug Release Study from Sodium Hyaluronate-1,4-butanediol Diglycidyl Ether Patterned Gel. Nanomaterials, 2017. 7(10). 55. Sun, J., et al., Controlled release of collagen-binding SDF-1alpha from the collagen scaffold promoted tendon regeneration in a rat Achilles tendon defect model. Biomaterials, 2018. 162: p. 22-33. 56. Sun, J., et al., Controlled Release of Collagen-Binding SDF-1alpha Improves Cardiac Function after Myocardial Infarction by Recruiting Endogenous Stem Cells. Sci Rep, 2016. 6: p. 26683. 57. Wang, W., et al., Localized SDF-1alpha gene release mediated by collagen substrate induces CD117 stem cells homing. J Cell Mol Med, 2010. 14(1-2): p. 392-402. 58. Bianco, P., P.G. Robey, and P.J. Simmons, Mesenchymal stem cells: Revisiting history, concepts, and assays. Cell Stem Cell, 2008. 2(4): p. 313-319. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71033 | - |
| dc.description.abstract | 根據估計,每年大約執行八十萬件的骨缺損重建手術。因此,骨缺損在骨折治療上一向為臨床醫師的一大挑戰。臨床上對於骨折合併骨缺損的病人,多於進行開放性復位內固定手術時,於骨缺損處填補骨填充物,以利後續的骨癒合。傳統上常用的骨填充物為無機鹽類陶瓷,主要提供骨傳導之作用,但臨床使用上仍有若干缺點,包括身體吸收不易且不具骨誘導作用。透明質酸 (hyaluronic acid, HA)水膠具良好之生物相容性,且易被生物體所吸收,臨床上已有應用於皮下組織之填充。明膠 (gelatin, Gel) 具有良好之生物相容性,是細胞貼附的重要基質,價格低廉,亦被美國食品藥物管理局列為安全的生醫材料。氫氧基磷灰石 (hydroxyapatite, HAP) 擁有與骨相似之鈣磷比,是穩定的鈣磷酸鹽類,亦具有良好之生物相容性及骨傳導性。而先前研究發現基質細胞衍生因子-1 (stromal cell-derived factor-1, SDF-1) 具有骨誘導能力,可促進骨骼之發育及生成。本實驗製備添加SDF-1之明膠/透明質酸複合材料並混合氫氧基磷灰石之複合材料,經由X光繞射分析儀證明材料含有氫氧基磷灰石且與骨組成類似;經由傅立葉紅外線光譜儀證明成功交聯明膠與透明質酸;依據ISO 10993規範,由 WST-1測試,證明本研究複合材料具有良好生物相容性;經由骨誘導測試,證明本研究複合材料具有吸引間質幹細胞之作用;於動物實驗方面,證明本研究復合材料具有促進骨再生之能力。預期本研究製備之複合材料同時具有骨誘導性及骨傳導性,搭配高生物相容特性及可塑性,於骨癒合有促進之效果,希望能應用於骨缺損之臨床治療。 | zh_TW |
| dc.description.abstract | Bone defect remains a challenge in clinical practice, especially in fracture fixation for orthopedic surgery. Large bone defect may not only cause difficulties in fracture reduction and fixation, but also compromise bone healing and eventually lead to delayed union or non-union of bone. Such kind of complications will largely endanger activity level and physical function of these patients. There are huge social and economic cost due to serial hospital stay, sequential operations and clinic follow-ups in order to treat delayed or non-union of bone. When treating a fracture combined with bone defect, most surgeons will try to fill certain kinds of bone substitute to facilitate bone healing. Traditionally, widely used bone substitutes include calcium sulfate, calcium phosphate and hydroxyapatite. These kinds of ceramics mainly act as macro-porous scaffolds to facilitate the in-growth of osteocyte, which so-called osteoconductive effect in bone healing. However, some limitations need to be dealt with, such as slow resorption rate and non-osteoinductive nature. Autografts and allografts are also treatments of choice in large bone defect. But donor site complications in autografts including pain, fracture or wound infection and undiscovered contagious disease in allografts remain unsolved problems. Hyaluronic acid (HA), one of the main components of extracellular matrix, is highly biocompatible, biodegradable and commonly used as clinical application including subdermal filling. Gelatin (Gel) is biocompatible and inexpensive, and it is a good matrix for cell adherent. Hydroxyapatite (HAp) is one of the components of bone, and it is also biocompatible and osteoconductive. Stromal cell-derived factor-1 (SDF-1) has been found capable of recruiting mesenchymal stem cells (MSCs) toward defect site, which can be considered to have a certain degree of osteoinductive effect, resulting in enhancing bone growth and new bone formation. Gelatin/Hyaluronic acid composite mixed with hydroxyapatite (Gel-HA/HAp) in corporation with SDF-1 may possess both osteoinductive and osteoconductive properties. Act in concert with its nature of high biocompatibility, this osteoinductive composite can be applied to clinical treatment for bone defect. The main purpose of this study is to prepare osteoinductive gelatin /hyaluronic acid-based composite and try to prove its potential in enhancement of bone healing via serial material tests, cellular examinations and animal experiments. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T04:49:28Z (GMT). No. of bitstreams: 1 ntu-107-R05548068-1.pdf: 4702634 bytes, checksum: 5997dce65ddb275fa85f2f5c7db67812 (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 口試委員會審定書 #
誌謝 2 中文摘要 i ABSTRACT ii CONTENTS iv 圖目錄 viii 表目錄 x 公式目錄 xi 縮寫目錄 xii Chapter 1 緒論 1 1.1 前言 1 1.2 骨組織 1 1.2.1 結構 1 1.2.2 骨成分 2 1.3 骨缺損成因 4 (1) 外傷 4 (2) 疲勞 4 (3) 疾病 4 1.4 骨癒合 5 1.5 骨移植材料 7 1.5.1 自體骨 (Autografts) 7 1.5.2 異體骨 (Allografts) 7 1.5.3 人工骨填補物 (Artificial bone substitute) 7 1.5.4 含生長因子之骨填補材料 (Growth factor-based bone graft) 8 1.5.5 理想之骨移植材料 8 1.6 研究目的 9 Chapter 2 文獻回顧 10 2.1 組織工程 10 2.2 明膠 Gelatin 10 2.3 透明質酸 Hyaluronic acid 11 2.4 1,4-丁二醇縮水甘油醚 1,4-Butanediol diglycidyl ether (BDDE) 11 2.5 氫氧基磷灰石 Hydroxyapatite 12 2.6 基質細胞衍生因子-1 Stromal cell-derived factor-1 12 Chapter 3 實驗方法 13 3.1 實驗儀器 13 3.2 實驗藥品 14 3.3 實驗架構 15 3.4 材料製備 16 3.4.1 氫氧基磷灰石製備方式 16 3.4.2 Gel-HA/HAp/SDF-1複合材料製備方式 16 3.5 材料分析 17 3.5.1 X光繞射分析儀 (X-ray diffraction, XRD) 17 3.5.2 傅立葉紅外線光譜儀 (FTIR) 17 3.5.3 膨脹率 (Swelling ratio) 17 3.5.4 降解速率 (Degradation rate) 18 3.5.5 SDF-1釋放速率 (SDF-1 release profile) 18 3.6 生物相容性測試 19 3.6.1 細胞株培養 19 3.6.2 材料萃取液製備 19 3.6.3 WST-1細胞活性測試 20 3.7 In vitro體外實驗 21 3.7.1 細胞株培養 21 3.7.2 WST-1細胞活性測試 21 3.7.3 骨誘導測試 21 3.8 In vivo動物實驗 21 3.8.1 骨缺損大小之選擇 21 3.8.2 手術方法 22 3.8.3 微電腦斷層掃描造影 (Micro computed tomography, Micro-CT) 22 3.8.4 組織固定、脫鈣 22 3.8.5 石蠟包埋、切片 22 3.8.6 蘇木紫-伊紅染色 (H&E stain) 22 3.8.7 梅生三色染色 (Masson trichrome stain) 22 3.8.8 血液分析 23 3.9 統計分析 23 Chapter 4 結果與討論 24 4.1 材料性質分析 24 4.1.1 X光繞射分析 24 4.1.2 傅立葉轉換紅外線分析 26 4.1.3 材料膨潤率分析 28 4.1.4 材料降解分析 29 4.1.5 SDF-1釋放曲線 31 4.2 生物相容性分析 33 4.3 In vitro體外實驗 34 4.3.1 WST-1細胞活性測試 34 4.3.2 骨誘導測試 35 4.4 In vivo動物實驗 37 4.4.1 手術方法 37 4.4.2 微電腦斷層掃描 (Micro-CT) 38 4.4.3 組織學分析 43 4.4.4 血液分析 51 Chapter 5 結論 55 參考文獻 56 | |
| dc.language.iso | zh-TW | |
| dc.subject | 骨缺損 | zh_TW |
| dc.subject | 透明質酸 | zh_TW |
| dc.subject | 明膠 | zh_TW |
| dc.subject | 基質細胞衍生因子-1 | zh_TW |
| dc.subject | 氫氧基磷灰石 | zh_TW |
| dc.subject | 骨誘導性 | zh_TW |
| dc.subject | osteoinduction | en |
| dc.subject | hyaluronic acid | en |
| dc.subject | bone defect | en |
| dc.subject | gelatin | en |
| dc.subject | stromal cell-derived factor-1 | en |
| dc.subject | hydroxyapatite | en |
| dc.title | 添加基質細胞衍生因子-1 之明膠/透明質酸水膠混合氫氧基磷灰石用於骨再生之研究 | zh_TW |
| dc.title | The Development of Gelatin/Hyaluronate Copolymer Mixed with Hydroxyapatite and Stromal Cell-Derived Factor-1 to Attract Mesenchymal Stem Cells for Bone Regeneration | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳克紹(Ko-Shao Chen),孫瑞昇(Jui-Sheng Sun),柯承志(Cherng-Jyh Ke) | |
| dc.subject.keyword | 骨缺損,透明質酸,明膠,基質細胞衍生因子-1,氫氧基磷灰石,骨誘導性, | zh_TW |
| dc.subject.keyword | bone defect,hyaluronic acid,gelatin,stromal cell-derived factor-1,hydroxyapatite,osteoinduction, | en |
| dc.relation.page | 58 | |
| dc.identifier.doi | 10.6342/NTU201802189 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2018-07-31 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf 未授權公開取用 | 4.59 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
