Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71017
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李鴻源
dc.contributor.authorShih-Wei Linen
dc.contributor.author林士惟zh_TW
dc.date.accessioned2021-06-17T04:48:41Z-
dc.date.available2023-08-08
dc.date.copyright2018-08-08
dc.date.issued2018
dc.date.submitted2018-07-31
dc.identifier.citation[1] 內政部戶政司. (2018). 民國107年4月戶口統計資料分析
[2] 內政部營建署. (2015). 水環境低衝擊開發設施操作手冊
[3] 中央地質調查所地質倉儲服務平台. http://gis.moeacgs.gov.tw/gwh/gsb97-1/sys8/index.cfm
[4] 何媚華. (2014). 中永和地區都市排洪系統最佳管理措施之探討. 國立台灣大學土木工程學研究所學位論文, 1-95
[5] 徐硯庭. (2014). 低衝擊開發運用在高都市化地區的減洪效益-以新北市中永和地區為例. 國立台灣大學土木工程學研究所學位論文, 1-126
[6] 梁崇淵. (2017). 運用基因演算法探討低衝擊開發之空間配置策略-以台大校園為例. 國立台灣大學土木工程學研究所學位論文, 1-145
[7] 新北市雨水下水道地理資訊系統. http://wrs.ntpc.gov.tw/rwweb/MainPage.aspx
[8] 新北市政府. (2011). 新北市騎樓及無遮簷人行道設置標準
[9] 新北市政府. (2016). 都市計畫法新北市施行細則
[10] 蘋果日報. (2014). 技嘉綠屋頂節電1.8萬度,室內降溫2~5度,復育台灣原生種植物
[11] Adger, W. N. (2006). Vulnerability, Global Environmental Change, 16(3): 268-281.
[12] Albert, M., Marzluff, J. M., Shulenberger, E., Bradley, G., Ryan, C., & Zumbrunnen, C. (2003). Integrating humans into ecology: Opportunities and challenges forstudying urban ecosystems. BioScience, 53(12), 1169–1179.
[13] Andrew Juan, Christina Hughes, Zheng Fang, and Philip Bedient. (2016). Hydrologic performance of watershed-scale low-impact development in a high-intensity rainfall region.
[14] Bach, P.M.; Rauch, W.; Mikkelsen, P.S.; McCarthy, D.T.; Deletic, A. (2014). A critical review of integrated urban water modelling—Urban drainage and beyond.
[15] Barlow, D., Burrill, G., and Nolfi, J. (1977). Research report on developing a community level natural resource inventory system: Center for Studies in Food Self-Sufficiency.
[16] Benedict, M. and McMahon, E. (2006). Green infrastructure - linking landscapes and communities. Vol. Washington, DC: Island Press.
[17] Brenkert, A. L. and Malone, E. L. (2005). Modeling vulnerability and resilience to climate Change: A case study of India and Indian states, Climatic Change, 72: 57-102.
[18] Burian, S. and Edwards, F. (2002). Historical perspectives of urban drainage. In: Proceedings of 9th International Conference on Urban Drainage. Portland, Oregon, USA: American Society of Civil Engineers.
[19] Coaffee. (2008). Risk, resilience, and environmentally sustainable cities.
[20] Cutter, S. L., Barnes, L., Berry, M., Burton, C., Evans, E., Tate, E., et al. (2008). Aplace-based model for understanding community resilience to naturaldisasters. Global Environmental Change, 18(4), 598–606.
[21] David J. Rosa, John C. Clausen, and Michael E. Dietz. (2015). Calibration and verification of SWMM for low impact development.
[22] Duan H.-F., F. Li, H. Yan. (2016). Multi-Objective Optimal Design of Detention Tanks in the Urban Stormwater Drainage System: LID Implementation and Analysis
[23] Eakin, H. and Luers, A. L. (2006). Assessing the vulnerability of social-environmental systems, Annual Review of Environment and Resources, 31: 65–394.
[24] Fletcher, Tim D., William Shuster, William F. Hunt, Richard Ashley, David Butler, Scott Arthur, Sam Trowsdale, Sylvie Barraud, Annette Semadeni-Davies, Jean-Luc Bertrand-Krajewski, Peter Steen Mikkelsen, Gilles Rivard, Mathias Uhl, Danielle Dagenais & Maria Viklander. (2015). SUDS, LID, BMPs, WSUD and more - The evolution and application of terminology surrounding urban drainage.
[25] Folke, C. (2006). Resilience: The emergence of a perspective for social–ecologicalsystems analyses. Global Environmental Change, 16(3), 253–267.
[26] Forman, R.T. (1999). Horizontal processes, roads, suburbs, societal objectives, and landscape ecology. In: Landscape Ecological Analysis. London: Springer, 35–53.
[27] Giacomoni, Marcio H., Emily M. Zechman. (2009). Hydrologic footprint residence: A new metric to assess hydrological alterations due to urbanization.
[28] Giacomoni, Marcio H., Emily M. Zechman, Kelly Brumbelow. (2012). Hydrologic footprint residence environmentally friendly criteria for best management practices.
[29] Giacomoni, Marcio H., John Joseph. (2017). Multi-objective evolutionary optimization and Monte Carlo simulation for placement of low impact development in the catchment scale.
[30] Gunderson, L., & Holling, C. S. (2002). Understanding transformations in human and natural systems. Washington, DC, USA: Island Press.
[31] Guoshun Zhang, James M. Hamlett, Patrick Reed, Yong Tang. (2013). Multi-objective optimization of low impact development designs in an urbanizing watershed.
[32] Holling, C. S. (1973). Resilience and stability of ecological systems. Annual Review ofEcology and Systematics, 4, 1–23.
[33] IPCC. (2001). Climate Change 2001: Impacts, Adaptation, And Vulnerability.
[34] IPCC. (2001). Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press. p. 881.
[35] IPCC. (2007). Climate Change 2007: Impacts, Adaptation and Vulnerability. Summary for Policymakers. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press.
[36] Janssen M.A.,Örjan Bodin, John M. Anderies, Thomas Elmqvist, Henrik Ernstson, Ryan R. J. McAllister, Per Olsson and Paul Ryan. (2006). Toward a Network Perspective of the Study of Resilience in Social-Ecological Systems.
[37] Jayasooriya, V.M.; Ng, A.W.M. (2014). Tools for modeling of stormwater management and Economics of Green Infrastructure practices: A review.
[38] Jung, Y.-W., S.-I. Han, and D. Jo. (2016). Optimal Design of Permeable Pavement Using Harmony Search Algorithm with SWMM.
[39] Klein, R. J. T., Nicholls, R. J., & Thomalla, F. (2003). Resilience to natural hazards: How useful is this concept? Environmental Hazards, 5(1), 35–45.
[40] Kyle Eckart, Zach McPhee, Tirupati Bolisetti. (2018). Multi-objective optimization of low impact development stormwater controls.
[41] Liu Y., L.O. Theller, B.C. Pijanowski, B.A. Engel. (2016). Optimal Selection and Placement of Green Infrastructure to Reduce Impacts of Land Use Change and Climate Change on Hydrology and Water Quality: An Application to the Trail Creek Watershed, Indiana.
[42] Mariani, Luisana. Urban Resilience Hub. http://urbanresiliencehub.org/what-is-urban-resilience/
[43] Marjolein Spaans and BasWaterhout. (2017). Building up resilience in cities worldwide-Rotterdam as participant in the 100 Resilient Cities Programme.
[44] Sara Maria Lerer, Karsten Arnbjerg-Nielsen and Peter Steen Mikkelsen. (2015). A Mapping of tools for informing water sensitive urban design planning decisions - questions, aspects and context sensitivity.
[45] Sara Meerow. (2015). Defining urban resilience: A review.
[46] Timmerman, P. (1981). Vulnerability, Resilience and the Collapse of Society: A Review of Models and Possible Climate Change Applications, University of Toronto, Canada: Institute for Environmental Studies.
[47] UNISDR. (2002). Living with Risk: A Global Review of Disaster Reduction Initiatives, Preliminary version prepared as an interagency effort co-ordinated by the ISDR. Secretariat, Geneva, Switzerland.
[48] US Environmental Protection Agency. (2000). Low Impact Development (LID). A literature review. Washington, DC: United States EPA Office of Water (4203).
[49] US Environmental Protection Agency. (2011a). National pollutant discharge elimination system (NPDES) definitions, 40 C.F.R. § 122.2 (2011a). Washington, DC: United States Environmental Protection Agency.
[50] US Environmental Protection Agency. (2011b). National pollutant discharge elimination system (NPDES) Establishing limitations, standards, and other permit conditions, 40 C.F.R. § 122.4 (2011b). Washington, DC: United States Environmental Protection Agency.
[51] Walker, B., Holling, C. S., Carpenter, S. R., & Kinzig, A. (2004). Resilience, adaptability and transformability in social–eecological systems. Ecology andSociety, 9(2).
[52] Wu, J., & Wu, T. (2013). Ecological resilience as a foundation for urban design andsustainability.
[53] Zhou, Q. (2014). A Review of sustainable urban drainage systems considering the climate change and urbanization impacts.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71017-
dc.description.abstract氣候變遷與人口增加是現代都市發展所共同面臨的文明病,從水利工程的角度來看,高效的雨洪管理應是解決問題的手段之一。面對氣候變遷,雨水管理的觀念也漸有改變,暴雨控制從集中處理轉變為使用就地處理的低衝擊開發(LID),其主要概念是增加集水區的入滲或蓄水空間,直接減少地表逕流。LID除暴雨控制的能力,同時能增加地表綠覆減輕都市熱島效應,有效降低洪水、熱浪等災害脆弱度,提升都市韌性。傳統雨洪管理的評估,暴雨控制成效的因子為洪峰流量,然而洪峰流量僅能代表空間中某個點的水文量,不足以表示暴雨期間的逕流過程。因此本研究的評估除考慮下游整體洪峰流量因子外,也同時考慮能表示逕流過程的水文滯留足跡(HFR)為影響因子。
研究區域以高密度開發的新北市中永和地區為例,使用美國環保署(US EPA)的暴雨管理模式(SWMM),依照該地區的土地利用特性選擇適合的LID設施或是滯洪池,然後以不同重現期及不同延時的降雨進行模擬。結果顯示LID在低重現期、短延時降雨中最能發揮效益,在25年重現期以上的降雨則使用滯洪池的效益較高。此外在空間有限的情況下,應使用雨水收集;而成本有限的情況下,應使用綠屋頂,才能發揮最大效益。
在不同區域設置LID的情境模擬中,預算有限的情況下必須探討空間配置的優先順序。本研究使用多目標基因演算法(MOGA)後得到最佳空間配置下的成本與洪峰、HFR的關係曲線,LID設置達可設置面積的80%即與全部配置的水文效果相同。欲削減洪峰應將LID設置於流入排水主幹中游的支線上游,欲削減HFR則以主幹上游、支線下游的區域優先。最後以蒙地卡羅試驗證明在都市,管線複雜的情況下,不透水率較高的區域應設置較高比例的LID。
zh_TW
dc.description.provenanceMade available in DSpace on 2021-06-17T04:48:41Z (GMT). No. of bitstreams: 1
ntu-107-R05521302-1.pdf: 11467891 bytes, checksum: b9748c0b5bd0ddadf052402489bfbeb2 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents誌謝 I
摘要 II
ABSTRACT III
目錄 V
圖目錄 VIII
表目錄 XI
第一章 緒論 1
1.1 研究目的 1
1.2 研究流程 2
第二章 文獻回顧 4
2.1 都市韌性 4
2.1.1 都市韌性的演進 4
2.1.2 韌性城市的實踐 5
2.2 低衝擊開發 7
2.2.1 低衝擊開發概述 7
2.2.2 低衝擊開發策略相關研究 11
2.2.3 低衝擊開發最佳化研究 13
2.3 水文滯留足跡(Hydrologic footprint residence, HFR) 16
第三章 研究方法 22
3.1 SWMM運算原理 22
3.1.1 降雨逕流模組 22
3.1.2 幹線輸水模組 25
3.1.3 LID元件 30
3.2 多目標基因演算法 35
3.2.1 適應函數(Fitness function) 36
3.2.2 基因(Gene)與個體(Individual) 37
3.2.3 柏拉圖邊界(Pareto frontier) 37
3.2.4 人群與世代(Population and Generation) 38
3.2.5 階級(Rank)與競爭(Tournament) 39
3.2.6 交配(Crossover) 39
3.2.7 突變(Mutation) 40
3.2.8 擁擠距離(Crowding distance) 40
3.2.9 傳播值(Spread) 41
3.2.10 演算過程 41
第四章 模式建立 42
4.1 研究區域概述 42
4.2 SWMM模式建立 46
4.2.1 雨量(rain gage) 46
4.2.2 子集水區(subcatchment) 49
4.2.3 人孔(junction) 51
4.2.4 管線(conduit) 51
4.2.5 LID設置原則 52
4.2.6 LID設置上限 54
第五章 評估LID的降雨條件 55
5.1 模擬情境概述 55
5.1.1 LID策略 55
5.1.2 BMPs策略 55
5.2 不同降雨對於LID與滯洪池削減洪峰效果影響 57
5.3 不同降雨對於LID與滯洪池削減HFR效果影響 60
5.4 不同降雨對於LID元件的效果分析 63
5.4.1 減洪效果比較 64
5.4.2 削減HFR效果比較 66
第六章 評估LID的空間配置 69
6.1 最佳化條件設定 69
6.1.1 最佳化分區 69
6.1.2 LID配置原則 70
6.1.3 設計降雨 71
6.2 LID配置於不同區域對下游整體洪峰流量及HFR的影響 72
6.3 都市LID減洪最佳空間配置 75
6.4 都市LID削減HFR最佳空間配置 81
6.5 蒙地卡羅試驗 87
第七章 結論與建議 93
7.1 結論 93
7.2 建議 94
參考文獻 96
dc.language.isozh-TW
dc.subject水文滯留足跡zh_TW
dc.subject多目標基因演算法zh_TW
dc.subject低衝擊開發zh_TW
dc.subject都市韌性zh_TW
dc.subject暴雨管理模式zh_TW
dc.subjectUrban resilience.en
dc.subjectLow impact development (LID)en
dc.subjectHydrologic footprint residence (HFR)en
dc.subjectMulti-objective genetic algorithm (MOGA)en
dc.subjectStorm Water Management Model (SWMM)en
dc.title多目標基因演算法於韌性城市評估之研究zh_TW
dc.titleApply Multi-Objective Genetic Algorithm To Evaluate Urban Resilience.en
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee何昊哲,葉克家
dc.subject.keyword水文滯留足跡,多目標基因演算法,低衝擊開發,都市韌性,暴雨管理模式,zh_TW
dc.subject.keywordHydrologic footprint residence (HFR),Low impact development (LID),Multi-objective genetic algorithm (MOGA),Storm Water Management Model (SWMM),Urban resilience.,en
dc.relation.page99
dc.identifier.doi10.6342/NTU201802253
dc.rights.note有償授權
dc.date.accepted2018-08-01
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept土木工程學研究所zh_TW
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
11.2 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved