Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71006
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor諶玉真(Yu-Jane Sheng)
dc.contributor.authorYi-Jun Chenen
dc.contributor.author陳奕君zh_TW
dc.date.accessioned2021-06-17T04:48:08Z-
dc.date.available2018-08-14
dc.date.copyright2018-08-14
dc.date.issued2018
dc.date.submitted2018-08-01
dc.identifier.citation1. Balazs, D. A., & Godbey, W. (2011). Liposomes for Use in Gene Delivery. Journal of Drug Delivery, 2011, 326497. http://doi.org/10.1155/2011/326497
2. Israelachvili, J. N.; Mitchell, D. J.; Ninham, B. W.; J. Chem. Soc., Faraday Trans. 2 1976, 72, 1525; Biochim. Biophys. Acta 1977, 470, 185.
3. Losos, J., Mason, K., Singer, S., Raven, P. and Johnson, G. (2008). Biology. Boston: McGraw-Hill Higher Education.
4. Huang, Jing & Turner, S. (2017). Recent advances in alternating copolymers: The synthesis, modification, and applications of precision polymers. Polymer. 116. 572-586. 10.1016/j.polymer.2017.01.020.
5. Adhikari, R.; Michler, G. H.; Huy, T. A.; Ivankova, E.; Godehardt, R.; Lebek, W.; Knoll, K. Correlation between molecular architecture. Morphology and deformation behavior of styrene/butadiene block copolymers Macromol. Chem. Phys. 2003, 204, 488– 499
6. Discher B. M., Y.Y Won, Ege D. S., Lee J. C. M., Bates F.S., Discher D. E., Hammer D. A., Science, 1999, 284(5417), 1143.
7. Bermudez H, Brannan A. K., Hammer D. A., Bates F. S., Discher D. E., Macromolecules, 2002, 35(21), 8203-8208.
8. Discher D. E., Eisenberg A, Science, 2002, 297(5583), 967.
9. Ruzette A.-V., L. Leibler, Nature Materials, 2005, 4(1), 19-31.
10. Blanazs, A, Armes, S. P., Ryan A. J., Macromolecular Rapid Communications, 2009, 30(4-5), 267-277.
11. Holder S. J., N. A. J. M. Sommerdijk, Polymer Chemistry, 2011, 2(5), 1018-1028.
12. Ward, M. A., T. K. Georgiou, Polymers, 2011, 3, 1215-1242.
13. A.D. Bangham, M.M. Standish, J.C. Watkins, Diffusion of univalent ions across the lamellae of swollen phospholipids, J. Mol. Biol. 13 (1965), 238-IN227
14. Bitounis, Dimitrios & Fanciullino, Raphaelle & Iliadis, Athanassios & Ciccolini, Joseph. (2012). Optimizing Druggability through Liposomal Formulations: New Approaches to an Old Concept. ISRN pharmaceutics. 2012. 738432. 10.5402/2012/738432.
15. Choi H.-J., D. C. Montemagno, Materials, 2013, 6(12), 5821-5856.
16. Klermund, Ludwig & Castiglione, Kathrin. (2018). Polymersomes as nanoreactors for preparative biocatalytic applications: current challenges and future perspectives. Bioprocess and Biosystems Engineering. 10.1007/s00449-018-1953-9.
17. Kim, J. K., Lee, E., Lim, Y. B. & Lee, M. Supramolecular capsules with gated pores from an amphiphilic rod assembly. Angew. Chem. Int. Ed. 47, 4662–4666 (2008).
18. D. J. Griffiths, Introduction to quantum mechanics, Pearson Education India, 2005.
19. M. Hirvensalo, Quantum computing, Springer, 2013.
20. R. Shankar, Principles of quantum mechanics, Springer Science & Business Media, 2012
21. 'The Nobel Prize in Chemistry 2013'. Nobelprize.org. Nobel Media AB 2014. Web. 16 Jun 2018.
22. Ingólfsson, Helgi & Arnarez, Clément & Periole, Xavier & Marrink, Siewert. (2016). Computational 'microscopy of cellular membranes. Journal of Cell Science. 129. 10.1242/jcs.176040.
23. M. P. Allen and D. J. Tildesley, Computer simulation of liquids, Oxford university press, 1989.
24. D. Frenkel and B. Smit, Understanding molecular simulation: from algorithms to applications, Academic press, 2001.
25. A. R. Leach, Molecular modelling: principles and applications, Pearson education, 2001.
26. Creton, Benjamin et al. “Prediction of Surfactants ’ Properties using Multiscale Molecular Modeling Tools : A Review.” (2013).
27. H. J. Berendsen, D. van der Spoel and R. van Drunen, Computer Physics Communications, 1995, 91, 43-56.
28. P. Hoogerbrugge and J. Koelman, EPL (Europhysics Letters), 1992, 19, 155.
29. R. D. Groot and P. B. Warren, Journal of Chemical Physics, 1997, 107, 4423.
30. Reif, F., Fundamentals of Statistical and Thermal Physics, McGraw Hill, pp.48-49(1985)
31. S. O. Nielsen, C. F. Lopez, G. Srinivas and M. L. Klein, Journal of Physics: Condensed Matter, 2004, 16, R481.
32. P. Español and P. Warren, EPL (Europhysics Letters), 1995, 30, 191.
33. Feller S. E., Y.H. Zhang, Pastor R. W., Brooks, B. R., The Journal of Chemical Physics, 1995, 103 (11), 4613-4621.
34. Jakobsen A. F., The Journal of Chemical Physics, 2005, 122(12), 124901.
35. T. Smart, H. Lomas, M. Massignani, M.V. Flores-Merino, L.R. Perez, G. Battaglia, Block copolymer nanostructures, Nano Today, 3 (2008), pp. 38-46
36. Y.-L. Yang, M.-Y. Chen, H.-K. Tsao, Y.-J. Sheng, Dynamics of bridge–loop transformation in a membrane with mixed monolayer/bilayer structures, Phys. Chem. Chem. Phys., 2018,20, 6582-6590
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71006-
dc.description.abstract智慧型薄膜指的是能夠因應環境變化,自發地調控薄膜性質,選擇性地開闔孔洞的一種新穎材料,在生醫工程中相當具有發展潛力。本研究透過耗散粒子動力學(DPD),模擬ABA雙親性三段鏈共聚高分子(Amphiphilic ABA Triblock Copolymer)的成膜性質,並且透過在A3B14A3高分子疏水鏈段施加角度為π的鍵角力,模擬高分子疏水鏈段的軟硬程度,來研究不同硬度下高分子在自組裝薄膜時的行為與生成的效應。
在研究中,我們發現具有不同硬度的ABA高分子,薄膜構型會有所不同,甚至發現到在特定硬度區間,薄膜會出現漏斗型的孔洞通道而形成穿孔薄膜。除了觀察薄膜上的微孔性質以外,我們也觀察洞口附近的高分子形態。透過研究穿孔薄膜與封閉薄膜內部構型的相異之處,我們發現到高分子硬度會影響薄膜內部高分子構型的轉變與排列,並認為其排列的凌亂度以及發生形變的容易度對於薄膜生成孔洞有所影響,當高分子難以排列整齊,又難以彎折改變形態時,在薄膜自組裝過程中就會形成孔洞。
以此孔洞生成機制為基礎,我們嘗試改變ABA高分子的結構或是作用力,研究其對於穿孔薄膜形成的影響,發現到在雙親性高分子所形成的薄膜中,親水粒子端能保護多大的疏水粒子層表面積,對於破洞面積有很大的影響。除了能夠以不同高分子結構、選擇不同溶劑、改變粒子間不同作用力來製造孔洞以外,我們也測試薄膜的混合效應,透過混摻不同比例的不同高分子的方式製作穿孔薄膜,為智慧型薄膜的孔洞調控找到了另一種方法。
zh_TW
dc.description.abstractSmart membrane is a novel material which can spontaneously change its properties and selectively form funnel-like pores in response to environmental changes. The material has significant potential for applications in biomedical engineering. In this study, dissipative particle dynamics (DPD) was used to study the membrane properties formed by amphiphilic ABA triblock copolymers. We investigate the effects of chain stiffness, compatibility of A block and B block, and chain length on the behavior of the self-assembled membrane.
It is found that the ABA polymers with distinct stiffness can exhibit various equilibrium conformations. Within a certain interval of stiffness, funnel-shaped channels will form and the membrane contains many perforated pores. By observing the configuration of the polymers near the pore, it is found that the stiffness affects the structure and arrangement of the polymer chain and thus is the essential factor influencing the formation of a pore. If it is difficult for the polymers to arrange themselves in an ordered formation, perforated holes will form during the self-assembly process.
We have also investigated the effects of chain length and interaction parameter on the pore-forming ability of the ABA membrane. As the incompatibility of A blocks and B blocks increases, the pore size increases. On the other hand, as the A and B blocks become more solvophobic, the pore size declines accordingly. The block lengths of A and B are found to enhance and deteriorate the magnitude of the pore size, respectively. We have also found that the pore size can be regulated by mixing triblock copolymers of different pore-forming ability. The mixing ratio has great impact on the pore size distribution.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T04:48:08Z (GMT). No. of bitstreams: 1
ntu-107-R05524007-1.pdf: 4866297 bytes, checksum: a11a3e39632f3bfb437605fb296999eb (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents委員審定書 I
致謝 II
摘要 III
Abstract IV
目錄 VI
圖目錄 IX
表目錄 XIII
Chapter 1 緒論 1
1-1 簡介 1
1-2 自組裝特性(Self-assembly) 2
1-3 生物細胞膜 4
1-4 段鏈共聚高分子 5
1-4-1 ABA雙親性三段鏈共聚高分子 7
1-4-2 薄膜組成與構型 10
1-5 研究目標 12
Chapter 2 實驗原理及方法 13
2-1 分子模擬簡介 13
2-2 耗散粒子動力學法(Dissipative Particle Dynamics; DPD) 14
2-2-1 DPD計算原理 17
2-2-2 DPD位置與速度演算法 20
2-2-3 'NPγT' 系統 21
2-3 DPD參數設定 24
2-3-1 無因次群之計算 24
2-3-2 週期性邊界條件 24
2-4 作用力參數與Flory-Huggins Theory 26
2-5 其他附加於DPD粒子的作用力 31
2-6 系統參數設定 32
2-6-1 初始薄膜系統建立 32
2-6-2 作用力參數之設定 34
2-6-3 模擬與真實系統對照 35
2-7 模擬分析方法 35
2-7-1 疏水鏈段末端距離 (Ree) 35
2-7-2 U型高分子於薄膜的比例 (fu) 36
2-7-3 薄膜厚度 Thickness 37
2-7-4 薄膜傾斜角度 Inclination Angle 38
2-7-5 破洞面積 Void Area 38
Chapter 3 高分子硬度效應 40
3-1 薄膜平衡構型 40
3-2 疏水鏈段硬度對成膜之效應 44
3-2-1 薄膜平衡時U型高分子比例 45
3-2-2 平衡疏水鏈段末端距離 47
3-2-3 薄膜厚度 49
3-3 疏水鏈段硬度對微觀薄膜之效應 52
3-3-1 穿孔薄膜孔洞周圍構型 53
3-3-2 薄膜孔洞性質 56
3-3-3 孔洞生成機制 59
Chapter 4 智慧型薄膜 66
4-1 利用參數調控薄膜破洞 66
4-1-1 作用力參數效應 66
4-1-2 親水鏈段長度效應 70
4-1-3 疏水鏈端長度效應 71
4-2 利用混合參數調控薄膜破洞 72
4-2-1 混合高分子硬度效應 73
4-2-2 混合作用力參數效應 74
4-2-3 混合親水鏈端長度效應 76
4-2-4 混合疏水鏈端長度效應 77
Chapter 5 結論 79
Chapter 6 參考文獻 82
dc.language.isozh-TW
dc.subject高分子囊胞zh_TW
dc.subject自組裝zh_TW
dc.subject分子模擬zh_TW
dc.subject耗散粒子動力學zh_TW
dc.subject穿孔薄膜zh_TW
dc.subject段鏈高分子zh_TW
dc.subject藥物釋放zh_TW
dc.subjectMolecular simulationen
dc.subjectPerforated Membraneen
dc.subjectPolymersomesen
dc.subjectSelf-assemblyen
dc.subjectDrug deliveryen
dc.subjectDissipative Particle Dynamicsen
dc.subjectBlock copolymersen
dc.title雙親性ABA三段鏈共聚高分子物理性質於自組裝穿孔薄膜的影響zh_TW
dc.titleThe Influence of the Physical Properties of Amphiphilic ABA Triblock Copolymer on Self-Assembled Perforated Membraneen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee曹恆光(Heng-Kwong Tsao),謝之真(Chih-Chen Hsieh),游琇?(Hsiu-Yu Yu)
dc.subject.keyword段鏈高分子,穿孔薄膜,高分子囊胞,自組裝,藥物釋放,耗散粒子動力學,分子模擬,zh_TW
dc.subject.keywordBlock copolymers,Perforated Membrane,Polymersomes,Self-assembly,Drug delivery,Dissipative Particle Dynamics,Molecular simulation,en
dc.relation.page85
dc.identifier.doi10.6342/NTU201802261
dc.rights.note有償授權
dc.date.accepted2018-08-01
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
4.75 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved