Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 植物病理與微生物學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71005
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor沈偉強(Wei-Chiang Shen)
dc.contributor.authorShan-Syuan Fangen
dc.contributor.author方善玄zh_TW
dc.date.accessioned2021-06-17T04:48:05Z-
dc.date.available2025-08-19
dc.date.copyright2020-08-21
dc.date.issued2020
dc.date.submitted2020-08-20
dc.identifier.citation洪聖峰(1997)。應用RAPD技術於茭白品種及其黑穗菌系鑑別之研究。未出版之碩士論文,國立臺灣大學園藝學研究所,台北市。
洪聖峰、陳舜英(2000)。茭白之演化、利用與育種方向。行政院農委會農政與農情。
蔡正宏(2014)。茭白與黑穗菌的相互關係。行政院農委會農學報導。63。
Basse, C.W., Lottspeich, F., Steglich, W., Kahmann, R., 1996. Two potential indole-3-acetaldehyde dehydrogenases in the phytopathogenic fungus Ustilago maydis. Eur. J. Biochem. 242, 648-656.
Cao, X., Yang, H., Shang, C., Ma, S., Liu, L., Cheng, J., 2019. The roles of auxin biosynthesis YUCCA gene family in plants. Int. J. Mol. Sci. 20, 6343.
Chung, K.R., Tzeng, D.D., 2004. Biosynthesis of indole-3-acetic acid by the gall-inducing fungus Ustilago esculenta. J. Biol. Sci. 4, 744-750.
Enders, T.A., Strader, L.C., 2015. Auxin activity: past, present, and future. Am. J. Bot. 102, 180-196.
Gordon, S., Weber, R., 1951. Colorimetric estimation of indole acetic acid. Plant Physiol. 26, 192-195.
Guevara, F., Valverde, M.E., Paredes-López, O., 2000. Is pathogenicity of Ustilago maydis (huitlacoche)strains on maize related to in vitro production of indole-3-acetic acid? World J. Microbiol. Biotechnol. 16, 481-490.
Jose, R.C., Goyari, S., Louis, B., Waikhom, S.D., Handique, P.J., Talukdar, N.C., 2016. Investigation on the biotrophic interaction of Ustilago esculenta on Zizania latifolia found in the Indo-Burma biodiversity hotspot. Microb. Pathog. 98, 6-15.
Kohlen, W., Ng, J.L.P., Deinum, E.E., Mathesius, U., 2018. Auxin transport, metabolism, and signalling during nodule initiation: indeterminate and determinate nodules. J. Exp. Bot. 69, 229-244.
Korasick, D.A., Enders, T.A., Strader, L.C., 2013. Auxin biosynthesis and storage forms. J. Exp. Bot. 64, 2541-2555.
Lanver, D., Tollot, M., Schweizer, G., Lo, Presti L., Reissmann, S., Ma, L.S., Schuster, M., Tanaka, S., Liang, L., Ludwig, N., Kahmann, R., 2017. Ustilago maydis effectors and their impact on virulence. Nat. Rev. Microbiol. 15, 409-421.
Liang, S.W., Huang, Y.H., Chiu, J.Y., Tseng, H.W., Huang, J.H., Shen, W.C., 2019. The smut fungus Ustilago esculenta has a bipolar mating system with three idiomorphs larger than 500 kb. Fungal Genet. Biol. 126, 61-74.
Mano, Y., Nemoto, K., 2012. The pathway of auxin biosynthesis in plants. J. Exp. Bot. 63, 2853-2872.
Olatunji, D., Geelen, D., Verstraeten, I., 2017. Control of endogenous auxin levels in plant root development. Int. J. Mol. Sci. 18, 2587.
Reineke, G., Heinze, B., Schirawski, J., Buettner, H., Kahmann, R., Basse, C.W., 2008. Indole-3-acetic acid biosynthesis in the smut fungus Ustilago maydis and its relevance for increased IAA levels in infected tissue and host tumour formation. Mol. Plant Pathol. 9, 339-355.
Romasi, E.F., Lee, J., 2013. Development of indole-3-acetic acid-producing Escherichia coli by functional expression of ipdc, aspc, and iad1. J. Microbiol. Biotechnol. 23, 1726-1736.
Saini, S., Sharma, I., Kaur, N., Pati, P. K., 2013. Auxin: a master regulator in plant root development. Plant Cell Rep. 32, 741-757.
Sardar, P., Kempken, F., 2018. Characterization of indole-3-pyruvic acid pathway-mediated biosynthesis of auxin in Neurospora crassa. Plos one. 13:e0192293.
Tu, Z., Yamada, S., Hu, D., Ito, Y., Iwasaki, T., Yamaguchi, A., 2019. Microbial diversity in the edible gall on white bamboo formed by the interaction between Ustilago esculenta and Zizania latifolia. Curr. Microb. 76, 824-834.
Turian, G., Hamilton, R.H., 1960. Chemical detection of 3-indolylacetic acid in Ustilago zeae tumors. Biochim. Biophys. Acta. 41, 148-150.
Wang, Z.D., Yan, N., Wang, Z.H., Zhang, X.H., Zhang, J.Z., Xue, H.M., Wang, L.X., Zhan, Q., Xu, Y.P., Guo, D.P., 2017. RNA-seq analysis provides insight into reprogramming of culm development in Zizania latifolia induced by Ustilago esculenta. Plant Mol. Biol. 95, 533-554
Wang, Z.H., Yan, N., Luo, X., Guo, S., Xue, S., Liu, J., Zhang, j., Guo, D.P., 2020. Gene expression in the smut fungus Ustilago esculenta governs swollen gall metamorphosis in Zizania latifolia. Microb. Pathog. 143, 104-107.
Ye, Z., Pan, Y., Zhang, Y., Cui, H., Jin, G., McHardy, A.C, Fan, F., Yu, X., 2017. Comparative whole-genome analysis reveals artificial selection effects on Ustilago esculenta genome. DNA Res. 24, 635-648.
You, W., Liu, Q., Zou, K., Yu, X., Cui, H., Ye, Z., 2011. Morphological and molecular differences in two strains of Ustilago esculenta. Curr. Microbiol. 62, 44-54.
Yu, J., Zhang, Y., Cui, H., Hu, P., Yu, X., Ye, Z., 2015. An efficient genetic manipulation protocol for Ustilago esculenta. FEMS Microbiol. Lett. 362, fnv087.
Zhang, Y., Yin, Y., Hu, P., Yu, J., Xia, W., Ge, Q., Cao, Q., Cui, H., Yu, X., Ye, Z., 2019. Mating-type loci of Ustilago esculenta are essential for mating and development. Fungal Genet. Biol. 125, 60-70.
Zhao, Y., 2012. Auxin biosynthesis: a simple two-step pathway converts tryptophan to indole-3-acetic acid in plants. Mol. Plant. 5, 334-338.
Zhao, Y., 2010. Auxin biosynthesis and its role in plant development. Annu. Rev. Plant Biol. 61, 49-64.
Zhao, Y., 2018. Essential roles of local auxin biosynthesis in plant development and in adaption to environmental changes. Annu. Rev. Plant Biol. 69, 417-435.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/71005-
dc.description.abstract茭白,為禾本科(Gramineae)菰屬(Zizania)多年生宿根性草本植物。茭白黑穗菌,為黑穗菌(smut fungi)的一員,感染茭白後,導致茭白植株無法正常結穗,並在莖基部產生膨大的菌癭,經由農民留種無性繁殖,成為鮮嫩可口的茭白筍。茭白的膨大結筍,普遍認為是因植物賀爾蒙的改變,進而誘發組織膨大所致,唯其機制仍不甚清楚。本研究的目的,在探討茭白黑穗菌生合成的吲哚乙酸(IAA)是否為茭白結筍的重要因子。首先,根據真菌IAA生合成路徑相關基因資訊,利用生物資訊學的方式,於茭白黑穗菌基因體資料庫中進行分析比對,鑑定IAA主要生合成路徑「IPA pathway」及次要生合成路徑「TAM pathway」生合成相關基因。其中,發現茭白黑穗菌Ueipdc(indole-pyruvate decarboxylase)基因,為IPA pathway中間步驟單一調控基因,故本研究以IPA pathway及Ueipdc基因為主要研究對象。為了進一步探討茭白黑穗菌IAA的生合成,利用split-marker突變技術及基因槍轉殖法進行Ueipdc基因的剔除,分析突變株IAA生合成能力發現與野生型菌株並無差異,比較ΔUeipdc突變株與野生株間IAA pathway生合成之基因,發現IPA pathway Ueiad1基因及TAM pathway Uegdc3與Uenit2二基因表現有所變化,推測Ueipdc基因的突變可能促使茭白黑穗菌使用旁支路徑TAM pathway回復IAA生合成的能力,此現象值得進一步剖析驗證。針對結筍樣品轉錄體及real time qRT-PCR基因表現分析,可偵測到茭白黑穗菌IAA生合成基因於結筍初期的表現,而後期階段則觀察到茭白ZlYUCCA基因有明顯持續上升的現象。進一步地,將野生株及ΔUeipdc突變株配對接種於公株誘導結筍,結果顯示突變株感染及誘導結筍能力皆與野生株相似,無明顯差別。綜合本研究結果顯示,茭白黑穗菌具有多重路徑進行IAA的生合成,茭白黑穗菌合成的IAA可能在茭白結筍並非扮演主要角色,未來可能需建構不同路徑的多重突變株,方能更明確闡明茭白黑穗菌IAA與茭白結筍的關係。zh_TW
dc.description.abstractZizania latifolia is a perennial herbaceous wild rice species and belongs to Gramineae. Ustilago esculenta is a member of smut fungi, which infects Zizania latifolia, blocks ear production and induces gall formation at the basal part of the stem. The galls are edible with good flavor and texture and infected plants have been vegetatively propagated by farmers and become a favorable vegetable, so-called Jiaobai or water bamboo. Gall formation depends on the interaction between Z. latifolia and U. esculenta and phytohormone such as IAA has been implied to involve in the process. However, the detailed mechanisms are largely unknown. In this study, we aim to determine whether IAA produced by U. esculenta plays a major role in gall formation.
According to the literature described IAA biosynthetic pathway in fungi, we conducted bioinformatic search to identify candidate genes in U. esculenta genome database and the putative homologues involved in IPA pathway and TAM pathway were identified. The Ueipdc gene, a single copy gene involved in the conversion of indole-3-pyruvic acid to indole-3-acetaldehyde in the IPA pathway, was selected for further characterization. To study IAA biosynthesis in U. esculenta, we generated Ueipdc knockout strains by split-maker strategy and biolistic transformation. However, ΔUeipdc mutants retained IAA biosynthetic ability similarly like the wild type strain. Gene expression study revealed that the expression pattern of Ueiad1 in IPA pathway and Uegdc3 and Uenit2 in TAM pathway was changed in the ΔUeipdc mutants, indicating Ueipdc deletion may compensate IAA biosynthesis via alternate TAM pathway. According to transcriptomic and real time qRT-PCR studies of gall materials collected from different stages in the fields, U. esculenta genes in IPA pathway were differentially expressed at early stage and plant ZlYUCCA gene instead was upregulated in later stage of galling materials. Furthermore, the wild type strains and ΔUeipdc mutants were respectively paired and inoculated onto uninfected plants to induce gall formation. The results revealed that the infection and gall-inducing abilities of mutants remained intact like wild type strains. In conclusion, this study reveal that more than one IAA synthetic pathways are functional and used for IAA biosynthesis in U. esculenta. IAA synthesized by U. esculenta may not play a major role in gall formation. However, further experiments such as construction of mutants carrying multiple defects in these pathways will help to further clarify the relation of U. esculenta IAA and gall formation.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T04:48:05Z (GMT). No. of bitstreams: 1
U0001-1908202016292900.pdf: 7289584 bytes, checksum: 76f49b3b36a3ecd99899bf3a16c7891b (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents口試委員會審訂書 i
中文摘要 ii
Abstract iv
目錄 vi
表目錄 viii
圖目錄 ix
第一章、 研究背景及動機 1
第二章、 前人研究 2
2.1 茭白(Zizania latifolia)與茭白筍 2
2.2 茭白黑穗菌(Ustilago esculenta) 3
2.3 茭白筍種類 3
2.4 IAA(Indole-3-actate)生合成基因 4
2.5 茭白黑穗菌IAA生合成路徑分析 4
2.6 真菌IAA生合成基因之突變研究及生合成路徑之參照 4
2.7 茭白筍基因體及轉錄體分析 5
第三章、 材料與方法 8
3.1 茭白黑穗菌菌株、繼代及菌株培養條件 8
3.2 筍體樣品採集及保存 8
3.3 RNA萃取、cDNA製備及基因表現分析 8
3.4 RNA定序(RNA sequencing)及分析 10
3.5 茭白黑穗菌IAA基因過量表現株及ΔUeipdc突變質體之建構、轉殖及篩選 11
3.6 茭白黑穗菌突變株表現型分析 13
3.7 IAA誘導試驗 (IAA induction experiment) 14
3.8 IPA餵養試驗(IPA feeding test) 15
3.9 茭白黑穗菌之接種及結筍誘導 16
3.10 結筍特徵之比較 17
3.11 接種結筍樣品菌株之再分離 17
第四章、 結果 18
4.1 茭白黑菌IAA(Indole-3-acetate)生合成的基因搜尋及比對分析 18
4.2 茭白黑穗菌Ueipdc基因的剔除、生長能力及有性生殖能力分析 19
4.3 人工培養基誘導茭白黑穗菌IAA生合成 20
4.4 茭白黑穗菌IAA生合成主要路徑-IPA pathway基因表現分析 21
4.5 茭白黑穗菌IAA生合成旁支路徑-TAM pathway基因表現分析 22
4.6 不同結筍階段茭白黑穗菌及茭白IAA生合成基因的表現分析 23
4.7 茭白黑穗菌野生型及Ueipdc突變株接種結果 24
第五章、 討論 25
5.1 茭白黑穗菌IAA生合成路徑分析 25
5.2 茭白筍IAA累積之可能原因 25
5.3 茭白黑穗菌IAA生合成路徑分析 26
5.4 茭白黑穗菌野生型菌株及ΔUeipdc突變株接種分析 27
第六章、 參考文獻 28
第七章、 表 32
第八章、 圖 35
附錄 96
dc.language.isozh-TW
dc.title植物賀爾蒙吲哚乙酸參與茭白結筍機制之探討zh_TW
dc.titleDissection of the role of phytohormone IAA in the gall formation of water bambooen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳昭瑩(Chao-Ying Chen),張皓巽(Hao-Xun Chang)
dc.subject.keyword茭白,茭白黑穗菌,茭白筍,結筍,吲哚乙酸,IPA pathway,Ueipdc 基因,zh_TW
dc.subject.keywordZizania latifolia,Ustilago esculenta,water bamboo,gall formation,IAA,IPA pathway,Ueipdc gene,en
dc.relation.page98
dc.identifier.doi10.6342/NTU202004093
dc.rights.note有償授權
dc.date.accepted2020-08-20
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept植物病理與微生物學研究所zh_TW
顯示於系所單位:植物病理與微生物學系

文件中的檔案:
檔案 大小格式 
U0001-1908202016292900.pdf
  目前未授權公開取用
7.12 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved