請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70992完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林頌然(Sung-Jan Lin) | |
| dc.contributor.author | "Yu-Ting, Tseng" | en |
| dc.contributor.author | 曾妤庭 | zh_TW |
| dc.date.accessioned | 2021-06-17T04:47:24Z | - |
| dc.date.available | 2020-08-15 | |
| dc.date.copyright | 2018-08-15 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-08-01 | |
| dc.identifier.citation | 1. Yamaguchi, Y., M. Brenner, and V.J. Hearing, The regulation of skin pigmentation. J Biol Chem, 2007. 282(38): p. 27557-61.
2. Miot, L.D., et al., [Physiopathology of melasma]. An Bras Dermatol, 2009. 84(6): p. 623-35. 3. Fitzpatrick, T.B. and A.S. Breathnach, [the Epidermal Melanin Unit System]. Dermatol Wochenschr, 1963. 147: p. 481-9. 4. Lee, J.H. and D.E. Fisher, Melanocyte stem cells as potential therapeutics in skin disorders. Expert Opin Biol Ther, 2014. 14(11): p. 1569-79. 5. Plonka, P.M., et al., What are melanocytes really doing all day long...? Exp Dermatol, 2009. 18(9): p. 799-819. 6. Picardo, M., et al., Vitiligo. Nat Rev Dis Primers, 2015. 1: p. 15011. 7. Alonso, L. and E. Fuchs, Stem cells in the skin: waste not, Wnt not. Genes Dev, 2003. 17(10): p. 1189-200. 8. Bandarchi, B., et al., Molecular biology of normal melanocytes and melanoma cells. J Clin Pathol, 2013. 66(8): p. 644-8. 9. Uong, A. and L.I. Zon, Melanocytes in development and cancer. J Cell Physiol, 2010. 222(1): p. 38-41. 10. Huggins, R.H., et al., Melanocyte-keratinocyte transplantation procedure in the treatment of vitiligo: the experience of an academic medical center in the United States. J Am Acad Dermatol, 2012. 66(5): p. 785-93. 11. Mort, R.L., I.J. Jackson, and E.E. Patton, The melanocyte lineage in development and disease. Development, 2015. 142(7): p. 1387. 12. Dupin, E. and N.M. Le Douarin, Development of melanocyte precursors from the vertebrate neural crest. Oncogene, 2003. 22(20): p. 3016-23. 13. Van Neste, D. and D.J. Tobin, Hair cycle and hair pigmentation: dynamic interactions and changes associated with aging. Micron, 2004. 35(3): p. 193-200. 14. Nishimura, E.K., Melanocyte stem cells: a melanocyte reservoir in hair follicles for hair and skin pigmentation. Pigment Cell Melanoma Res, 2011. 24(3): p. 401-10. 15. Hu, D.N., et al., Isolation, purification and cultivation of conjunctival melanocytes. Exp Eye Res, 2007. 84(4): p. 655-62. 16. Lerner, A.B., Vitiligo. J Invest Dermatol, 1959. 32(2, Part 2): p. 285-310. 17. Njoo, M.D. and W. Westerhof, Vitiligo. Pathogenesis and treatment. Am J Clin Dermatol, 2001. 2(3): p. 167-81. 18. Kostovic, K. and A. Pasic, New treatment modalities for vitiligo: focus on topical immunomodulators. Drugs, 2005. 65(4): p. 447-59. 19. Hann, S.K., et al., The classification of segmental vitiligo on the face. Yonsei Med J, 2000. 41(2): p. 209-12. 20. Lommerts, J.E., et al., Focal vitiligo: long-term follow-up of 52 cases. J Eur Acad Dermatol Venereol, 2016. 30(9): p. 1550-4. 21. Ezzedine, K., et al., Revised classification/nomenclature of vitiligo and related issues: the Vitiligo Global Issues Consensus Conference. Pigment Cell Melanoma Res, 2012. 25(3): p. E1-13. 22. Chen, Y.F., et al., Transplant of cultured autologous pure melanocytes after laser-abrasion for the treatment of segmental vitiligo. J Dermatol, 2000. 27(7): p. 434-9. 23. Hann, S.K. and H.J. Lee, Segmental vitiligo: clinical findings in 208 patients. J Am Acad Dermatol, 1996. 35(5 Pt 1): p. 671-4. 24. Speeckaert, R. and N. van Geel, Vitiligo: An Update on Pathophysiology and Treatment Options. Am J Clin Dermatol, 2017. 18(6): p. 733-744. 25. Iannella, G., et al., Vitiligo: Pathogenesis, clinical variants and treatment approaches. Autoimmun Rev, 2016. 15(4): p. 335-43. 26. Roelandts, R., Photo(chemo) therapy for vitiligo. Photodermatol Photoimmunol Photomed, 2003. 19(1): p. 1-4. 27. Shi, Q., et al., Comparison of the 308-nm excimer laser with the 308-nm excimer lamp in the treatment of vitiligo--a randomized bilateral comparison study. Photodermatol Photoimmunol Photomed, 2013. 29(1): p. 27-33. 28. Valkova, S., M. Trashlieva, and P. Christova, Treatment of vitiligo with local khellin and UVA: comparison with systemic PUVA. Clin Exp Dermatol, 2004. 29(2): p. 180-4. 29. Njoo, M.D., et al., Nonsurgical repigmentation therapies in vitiligo. Meta-analysis of the literature. Arch Dermatol, 1998. 134(12): p. 1532-40. 30. Mutalik, S. and A. Ginzburg, Surgical management of stable vitiligo: A review with personal experience. Dermatol Surg, 2000. 26(3): p. 248-54. 31. Parsad, D., S. Dogra, and A.J. Kanwar, Quality of life in patients with vitiligo. Health Qual Life Outcomes, 2003. 1: p. 58. 32. van Geel, N., et al., Long-term results of noncultured epidermal cellular grafting in vitiligo, halo naevi, piebaldism and naevus depigmentosus. Br J Dermatol, 2010. 163(6): p. 1186-93. 33. Malakar, S. and S. Dhar, Treatment of stable and recalcitrant vitiligo by autologous miniature punch grafting: a prospective study of 1,000 patients. Dermatology, 1999. 198(2): p. 133-9. 34. Lahiri, K., Punch grafting in vitiligo. Indian J Dermatol Venereol Leprol, 1998. 64(6): p. 310-1. 35. Koga, M., Epidermal grafting using the tops of suction blisters in the treatment of vitiligo. Arch Dermatol, 1988. 124(11): p. 1656-8. 36. Gupta, S., V.K. Jain, and P.K. Saraswat, Suction blister epidermal grafting versus punch skin grafting in recalcitrant and stable vitiligo. Dermatol Surg, 1999. 25(12): p. 955-8. 37. Njoo, M.D., et al., A systematic review of autologous transplantation methods in vitiligo. Arch Dermatol, 1998. 134(12): p. 1543-9. 38. Krishnan, A. and S. Kar, Smashed skin grafting or smash grafting - a novel method of vitiligo surgery. Int J Dermatol, 2012. 51(10): p. 1242-7. 39. Gauthier, Y. and J.E. Surleve-Bazeille, Autologous grafting with noncultured melanocytes: a simplified method for treatment of depigmented lesions. J Am Acad Dermatol, 1992. 26(2 Pt 1): p. 191-4. 40. van Geel, N., et al., Modified technique of autologous noncultured epidermal cell transplantation for repigmenting vitiligo: a pilot study. Dermatol Surg, 2001. 27(10): p. 873-6. 41. Mulekar, S.V., Long-term follow-up study of segmental and focal vitiligo treated by autologous, noncultured melanocyte-keratinocyte cell transplantation. Arch Dermatol, 2004. 140(10): p. 1211-5. 42. Mysore, V. and T. Salim, Cellular grafts in management of leucoderma. Indian J Dermatol, 2009. 54(2): p. 142-9. 43. Lerner, A.B., et al., Transplantation of human melanocytes. J Invest Dermatol, 1987. 89(3): p. 219-24. 44. David, L.M., et al., Laser abrasion for cosmetic and medical treatment of facial actinic damage. Cutis, 1989. 43(6): p. 583-7. 45. Chen, Y.F., et al., Treatment of vitiligo by transplantation of cultured pure melanocyte suspension: analysis of 120 cases. J Am Acad Dermatol, 2004. 51(1): p. 68-74. 46. Shokeen, D., Management of vitiligo patients with surgical interventions. Cutis, 2016. 97(5): p. E27-9. 47. van Geel, N., et al., Double-blind placebo-controlled study of autologous transplanted epidermal cell suspensions for repigmenting vitiligo. Arch Dermatol, 2004. 140(10): p. 1203-8. 48. Eves, P.C., et al., Simplifying the delivery of melanocytes and keratinocytes for the treatment of vitiligo using a chemically defined carrier dressing. J Invest Dermatol, 2008. 128(6): p. 1554-64. 49. Lee, S.H. and S.C. Tseng, Amniotic membrane transplantation for persistent epithelial defects with ulceration. Am J Ophthalmol, 1997. 123(3): p. 303-12. 50. Redondo, P., et al., Amniotic membrane as a scaffold for melanocyte transplantation in patients with stable vitiligo. Dermatol Res Pract, 2011. 2011: p. 532139. 51. Liu, J.Y., et al., Bioreactor microcarrier cell culture system (Bio-MCCS) for large-scale production of autologous melanocytes. Cell Transplant, 2004. 13(7-8): p. 809-16. 52. Lin, S.J., et al., Formation of melanocyte spheroids on the chitosan-coated surface. Biomaterials, 2005. 26(12): p. 1413-22. 53. Hsiao, W.C. and T.H. Young, Characteristics of melanocyte spheroids formed through different biomaterial-induced processes. J Formos Med Assoc, 2018. 54. Xu, S., et al., Transferable crosslinked chitosan membranes for human melanocyte culture. J Biomed Mater Res A, 2012. 100(3): p. 673-83. 55. Grimes, P.E., New insights and new therapies in vitiligo. JAMA, 2005. 293(6): p. 730-5. 56. Alaluf, S., et al., Ethnic variation in melanin content and composition in photoexposed and photoprotected human skin. Pigment Cell Res, 2002. 15(2): p. 112-8. 57. Horch, R.E., et al., Single-cell suspensions of cultured human keratinocytes in fibrin-glue reconstitute the epidermis. Cell Transplant, 1998. 7(3): p. 309-17. 58. Falabella, R., Vitiligo and the melanocyte reservoir. Indian J Dermatol, 2009. 54(4): p. 313-8. 59. Hearing, V.J., The melanosome: the perfect model for cellular responses to the environment. Pigment Cell Res, 2000. 13 Suppl 8: p. 23-34. 60. Al-Hadidi, N., et al., Role of Recipient-site Preparation Techniques and Post-operative Wound Dressing in the Surgical Management of Vitiligo. J Cutan Aesthet Surg, 2015. 8(2): p. 79-87. 61. Srinivas, C.R., R. Rai, and P.U. Kumar, Meshed split skin graft for extensive vitiligo. Indian J Dermatol Venereol Leprol, 2004. 70(3): p. 165-7. 62. Fan, S.M., et al., Preclinical evaluation of melanocyte transplantation by chitosan-based melanocyte spheroid patch to skin prepared by controlled sunburn blistering. J Biomed Mater Res B Appl Biomater, 2018. 63. Klaus, S.N., Post-transfer digestion of melanosome complexes and saltatory movement of melanin granules within mammalian epidermal cells. J Invest Dermatol, 1969. 53(6): p. 440-4. 64. Mort, R.L., et al., Ex vivo culture of mouse embryonic skin and live-imaging of melanoblast migration. J Vis Exp, 2014(87). 65. Zhang, R.Z., et al., Morphology of cultured human epidermal melanocytes observed by atomic force microscopy. Pigment Cell Res, 2004. 17(1): p. 62-5. 66. Ozdemir, M., et al., Comparison of two surgical approaches for treating vitiligo: a preliminary study. Int J Dermatol, 2002. 41(3): p. 135-8. 67. Gupta, D.K. and S. Devendra, Microskin Grafting for Stable Vitiligo of the Penis and Vulva: Near Total Uniform Pigmentation. J Cutan Med Surg, 2015. 19(5): p. 477-83. 68. Kaufmann, R., et al., Grafting of in vitro cultured melanocytes onto laser-ablated lesions in vitiligo. Acta Derm Venereol, 1998. 78(2): p. 136-8. 69. Hong, W.S., et al., Ratio of size of recipient and donor areas in treatment of vitiligo by autologous cultured melanocyte transplantation. Br J Dermatol, 2011. 165(3): p. 520-5. 70. Lee, J.H., et al., High-throughput, high-content screening for novel pigmentation regulators using a keratinocyte/melanocyte co-culture system. Exp Dermatol, 2014. 23(2): p. 125-9. 71. Njoo, M.D., et al., The development of guidelines for the treatment of vitiligo. Clinical Epidemiology Unit of the Istituto Dermopatico dell'Immacolata-Istituto di Recovero e Cura a Carattere Scientifico (IDI-IRCCS) and the Archives of Dermatology. Arch Dermatol, 1999. 135(12): p. 1514-21. 72. Compton, C.C., G. Warland, and G. Kratz, Melanocytes in cultured epithelial grafts are depleted with serial subcultivation and cryopreservation: implications for clinical outcome. J Burn Care Rehabil, 1998. 19(4): p. 330-6. 73. Wood, J.M., et al., What's the use of generating melanin? Exp Dermatol, 1999. 8(2): p. 153-64. 74. Awad, S.S., Repigmentation of poliosis after epithelial grafting for vitiligo. Dermatol Surg, 2013. 39(3 Pt 1): p. 406-11. 75. Agrawal, K. and A. Agrawal, Vitiligo: repigmentation with dermabrasion and thin split-thickness skin graft. Dermatol Surg, 1995. 21(4): p. 295-300. 76. Kahn, A.M., A. Ostad, and R.L. Moy, Grafting following short-pulse carbon dioxide laser de-epithelialization. Dermatol Surg, 1996. 22(11): p. 965-7; discussion 967-8. 77. Horikawa, T., et al., Melanocyte mitogens induce both melanocyte chemokinesis and chemotaxis. J Invest Dermatol, 1995. 104(2): p. 256-9. 78. Kivinen, P.K., et al., Quantitative digital image analysis applied to demonstrate the stratified distribution of involucrin in organ cultured human skin. Arch Dermatol Res, 1999. 291(4): p. 217-23. 79. Lee, A.Y., et al., Less keratinocyte-derived factors related to more keratinocyte apoptosis in depigmented than normally pigmented suction-blistered epidermis may cause passive melanocyte death in vitiligo. J Invest Dermatol, 2005. 124(5): p. 976-83. 80. Morelli, J.G., et al., Melanocyte movement in vitro: role of matrix proteins and integrin receptors. J Invest Dermatol, 1993. 101(4): p. 605-8. 81. Hirobe, T., Role of keratinocyte-derived factors involved in regulating the proliferation and differentiation of mammalian epidermal melanocytes. Pigment Cell Res, 2005. 18(1): p. 2-12. 82. Archambault, M., M. Yaar, and B.A. Gilchrest, Keratinocytes and fibroblasts in a human skin equivalent model enhance melanocyte survival and melanin synthesis after ultraviolet irradiation. J Invest Dermatol, 1995. 104(5): p. 859-67. 83. Ali, N., et al., Skin equivalents: skin from reconstructions as models to study skin development and diseases. Br J Dermatol, 2015. 173(2): p. 391-403. 84. Barrado-Solis, N., et al., Drug-induced skin pigmentation: 3 cases to report. Journal of the American Academy of Dermatology, 2014. 70(5): p. Ab4-Ab4. 85. Duval, C., et al., Key regulatory role of dermal fibroblasts in pigmentation as demonstrated using a reconstructed skin model: impact of photo-aging. PLoS One, 2014. 9(12): p. e114182. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70992 | - |
| dc.description.abstract | 本實驗是透過裸鼠當模型進行人類黑色素細胞移植,藉以建立一個以PUVA為移植部位準備方法之黑色素細胞移植流程,並測試甲殼素薄膜為載體之黑色素細胞移植之可行性。
本實驗採用週齡八週以上之裸鼠,在身體左右兩側敷上光敏感藥物-美舒沙寧(methoxsalen),並給以劑量8J的UVA照射全身,等待兩天後,以除毛貼片移除表皮。人類之黑色素細胞由頭皮檢體提取,實驗組採用甲殼素薄膜為生醫材料來移植黑色素細胞,對照組是以培養基回溶黑色素細胞並滴於裸鼠真皮上。分別透過照相及顯微鏡觀察黑色素細胞移植後貼附之情形,並且以切片方式分析黑色素細胞移植到皮膚中的位置。結果顯示,我們所建立之裸鼠模型可以作為人類黑色素細胞移植之測試平台。黑色素細胞在移植到裸鼠之真皮上,會被修復的表皮所覆蓋,而且能黑色素細胞可以存活在裸鼠背上長達二十一天。人類之黑色素細胞會與裸鼠之角質細胞作用,使表皮變黑,並且會移動進入裸鼠之毛囊,使裸鼠長出黑色毛髮。 在經由甲殼素薄膜誘導黑色素細胞成球的移植實驗中,有觀察到黑色素細胞有擴散移動的情形,因此希望藉由體外培養的人造表皮模型;觀察黑色素細胞的移動方式,藉以模擬白斑治療過程中,黑色素細胞的移動,希望能夠了解其移動機制,以達到更有效率的移植黑色素細胞。透過人造表皮觀察黑色素細胞的移動模式,黑色素細胞有傾向平均分散的趨勢,並且不同型態之黑色素細胞移動模式不同,以較未分化的黑色素細胞移動能力較好。 總結來說,裸鼠以PUVA移除表皮之模型可作為黑色素細胞移植之臨床前測試;可藉由人造表皮觀察黑色素細胞移動,藉以模擬表皮形成初期黑色素細胞的移動模式,亦可應用於藥物測試誘導黑色素細胞移動。 | zh_TW |
| dc.description.abstract | Vitiligo is a skin disorder characterized by white spot on appearance; and cellular grafting method is an option for vitiligo treatment. However, the success rate is low due to the administration of treatment in the cell suspension form would reduce the cell survive rate. The aim of our experiment is to establish a nude mice model for chitosan-based melanocytes patch transplant. In our experiment, 8 weeks old female nude mice were applied with methoxsalen for 30mins and exposed to 8J ultraviolet A irradiation, as a recipient sites preparation. This PUVA exposure would induce sunburn blisters within two days, and the blister roof can be peeled off by a waxing patch.
Our control group consist of direct transplant of melanocytes suspension. The result showed that melanocytes successfully attached to the dermis within 24 hours; and epidermis coverage was observed within 72 hours with melanocytes stay at the basal layer. In the experimental group transplant by chitosan membrane, melanocytes spheroids were successfully transplanted onto nude mice. Turns out that human melanocytes can survival on nude mice epidermis and migration into hair follicle. In the in vivo setting, melanocytes migration were absent; and hence we constructed a in vitro model to study a melanocytes migration through pigmented epidermis equivalent. Melanocytes were fluorescence labelled and the migration of these cells were captured using time lapse camera for 24 hours. The results revealed that melanocytes would actively migrate toward the regions which consisted of keratinocytes and regions of low melanocytes density. Additionally, dark colored melanin were also successfully transferred to surrounding keratinocytes. In conclusion, the nude mice model were successfully demonstrated as a preclinical model for the melanocyte transplantation based on the chitosan based melanocyte spheroid patch; with the migration process clearly observable in the in vitro model. Potentially, this could lead to a better understanding in the treatment for depigmentation. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T04:47:24Z (GMT). No. of bitstreams: 1 ntu-107-R05548036-1.pdf: 5471875 bytes, checksum: ef27b595295a2f88ec84cc129229b1b1 (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 誌謝 I
中文摘要 II ABSTRACT III 第一章 緒論 1 1-1. 黑色素細胞與皮膚和毛髮的關係 1 1-2. 白斑成因與分類 3 1-3. 白斑的物理治療方法 5 1-4. 白斑的手術治療方法 6 1-5. 黑色素細胞移植之治療方法 8 1-6. 生醫材料做為黑色素細胞移植之載體 9 1-7. 研究動機與目的 11 第二章 實驗材料與方法 13 2-1 實驗動物來源與品系 13 2-2實驗設計 13 2-3 人類黑色素細胞初代培養 14 2-4 人類黑色素細胞之懸浮液體製備 14 2-5 甲殼素薄膜製備 15 2-6 人類黑色素細胞貼片培養 15 2-7 黑色素細胞移植處製備方法-PUVA誘導水泡形成 16 2-8 人類黑色素細胞移植 16 2-9蘇木精─伊紅(hematoxylin & eosin, H&E)染色 16 2-10免疫螢光(immunofluorescence, IF)染色 17 2-11免疫染色法 (whole mount staining) 18 2-12 人類角質細胞初代培養 20 2-13 人造表皮培養 20 2-14 細胞即時影像拍攝 21 2-15 人類纖維母細胞初級培養 21 2-16 人造皮培養 21 第三章 實驗結果 23 3-1黑色素細胞培養之不同代數與型態差異 23 3-2 PUVA誘導光敏水泡移除表皮之方法 26 3-3 黑色素細胞懸浮液體移植之天數與密度差異 28 3-4工研院膠體改善黑色素細胞懸浮液體之流動性 33 3-5黑色素細胞培養於甲殼素薄膜成球之現象 35 3-6甲殼素薄膜作為移植黑色素細胞之載體 38 3-7甲殼素薄膜移植不同密度之黑色素球體與天數差異 41 3-8黑色素球體移植之組織切片分析 45 3-9 甲殼素薄膜與懸浮液體移植黑色素細胞之差異 47 3-10 色素人造表皮培養不同天數之切片分析 51 3-11黑色素細胞移動即時影像分析 54 第四章 討論 60 4-1.PUVA老鼠移除表表皮的模型可用於黑色素移植測試 60 4-2 人類之黑色素細胞移植可以再生黑毛 62 4-3 人造表皮可用於觀察細胞移動 63 4-4人造皮膚可用於藥物測試 65 第五章 結論 67 參考文獻 69 | |
| dc.language.iso | zh-TW | |
| dc.subject | 黑色素移植 | zh_TW |
| dc.subject | 黑色素細胞PUVA | zh_TW |
| dc.subject | 人造表皮 | zh_TW |
| dc.subject | melanocyte transplantation | en |
| dc.subject | chitosan membrane | en |
| dc.subject | PUVA | en |
| dc.subject | epidermis equivalent | en |
| dc.title | 甲殼素薄膜誘導黑色素細胞成球用於黑色素細胞移植之探討 | zh_TW |
| dc.title | The functional study of chitosan-based melanocyte spheroid patch for melanocyte transplantation | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 楊台鴻(Tai-Horng Young),鄭乃禎(Nai-Chen Cheng) | |
| dc.subject.keyword | 黑色素細胞PUVA,黑色素移植,人造表皮, | zh_TW |
| dc.subject.keyword | melanocyte transplantation,chitosan membrane,PUVA,epidermis equivalent, | en |
| dc.relation.page | 74 | |
| dc.identifier.doi | 10.6342/NTU201802282 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2018-08-01 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf 未授權公開取用 | 5.34 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
