Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70977
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor徐振哲
dc.contributor.authorChieh-Wen Chenen
dc.contributor.author陳玠文zh_TW
dc.date.accessioned2021-06-17T04:46:40Z-
dc.date.available2019-08-24
dc.date.copyright2018-08-24
dc.date.issued2018
dc.date.submitted2018-08-01
dc.identifier.citation1. C. Tendero, C. Tixier, P. Tristant, J. Desmaison, and P. Leprince 'Atmospheric pressure plasmas: A review.' Spectrochimica Acta Part B-Atomic Spectroscopy, 2006. 61(1): 2-30.
2. J. Winter, R. Brandenburg, and K. D. Weltmann, 'Atmospheric pressure plasma jets: an overview of devices and new directions', Plasma Sources Science & Technology, 2015. 24(6): p. 19.
3. U. Kogelschatz, 'Dielectric-barrier discharges: Their history, discharge physics, and industrial applications ', Plasma Chemistry and Plasma Processing, 2003. 23(1): p. 1-46.
4. C. Meyer, S. Muller, E. L. Gurevich and J. Franke, 'Dielectric barrier discharges in analytical chemistry ', Analyst, 2011. 136(12): p. 2427-2440.
5. N. Fritz, H. C. Koo, Z. Wilson, E. Uzunlar, Z. S. Wen, X. Yeow, S. A. B. Allen, P. A. Kohl, 'Electroless Deposition of Copper on Organic and Inorganic Substrates Using a Sn/Ag Catalyst', Journal of the Electrochemical Society, 2012. 159(6): p. D386-D392.
6. J. Mort and F. Jansen (Eds), 'Plasma Deposited Thin Films.' 1986, CRC Press, Boca Raton, FL.
7. D. T. Clark and A, Dilks, J. Polym. Sci, Polym. Chem. 1979 Ed. 17, p. 957-976.
8. O. Auciello and D. L. Flamm (Eds), Plasma Diagnostics. 1989, Academic Press, Boston.
9. M. Hudis and L. E. Prescott, Polym. Lett. 10, 1972, P. 179-183.
10. 義守大學線上學習資源, 'Chapter 7電漿的基礎原理' http://www.isu.edu.tw/upload/81201/43/news/postfile_22984.pdf
11. J Reece Roth, 'Industrial Plasma Engineering.Volume1:Principles.', 1995.
12. D. Pappas, 'Status and potential of atmospheric plasma processing of materials.' Journal of Vacuum Science & Technology A, 2011, 29(2): 17.
13. A. Schutze, J. Y. Jeong, S. E. Babayan, J. Park, G. S. Selwyn and R. F. Hicks, 'The atmospheric-pressure plasma jet: A review and comparison to other plasma sources', IEEE Transactions on Plasma Science, 1998, 26(6): p.1685-1694.
14. Michael A. Lieberman and Allan J. Lichtenberg, 'Principles of Plasma Discharges and Materials Processing', 2005.
15. K. Tachibana, 'Current status of microplasma research', Ieej Transactions on Electrical and Electronic Engineering, 2006, 1(2): 145-155.
16. A. Schutze, J. Y. Jeong, S. E. Babayan, J. Park, G. S. Selwyn and R. F. Hicks, 'The atmospheric-pressure plasma jet: A review and comparison to other plasma sources', IEEE Transactions on Plasma Science, 1998, 26(6): p.1685-1694.
17. Donahue, T. J. and R. Reif, 'Silicon Epitaxy at 650-800-DEGREES-C Using Low-pressure Chemical Vapor Deposition both with and without Plasma Enhancement.' Journal of Applied Physics, 1985. 57(8): p. 2757-2765.
18. J. R. Roth, R. Jozef, D. Xin and M. S. Daniel, 'The physics and phenomenology of one atmosphere uniform glow discharge plasma (OAUGDP (TM)) reactors for surface treatment applications', Journal of Physics D-Applied Physics, 2005. 38(4): p. 555-567.
19. W. Siemens, Poggendorff’s Ann. Phys. Chem. 102, 66(1857)
20. K. N. Kim, S. M. Lee, A. Mishra and G. Y. Yeom, 'Atmospheric pressure plasmas for surface modification of flexible and printed electronic devices: A review', Thin Solid Films, 2016. 598: p. 315-334.
21. Chirokov, A., A. Gutsol, and A. Fridman, 'Atmospheric pressure plasma of dielectric barrier discharges', Pure and Applied Chemistry, 2005. 77(2): p. 487-495.
22. G. J. Kim, F. Iza, and J. K. Lee, 'Electron and ion kinetics in a micro hollow cathode discharge', Journal of Physics D-Applied Physics, 2006. 39(20): p. 4386-4392.
23. A. Bogaerts, E. Neytsa, R. Gijbelsa and J. Mullenb, 'Gas discharge plasmas and their applications', Spectrochimica Acta Part B-Atomic Spectroscopy, 2002. 57(4): p. 609-658.
24. R. M. Sankaran, 'High-pressure Microdischarges as Microreactor for Materials Applications', 2004.
25. K. H. Schoenbach, R. Verhappen, T. Tessnow, F. E. Peterkin and W. W. Byszewski, 'Microhollow cathode discharges', Applied Physics Letters, 1996. 68(1): p. 13-15.
26. X. Lu, M. Laroussi, and V. Puech, 'On atmospheric-pressure non-equilibrium plasma jets and plasma bullets', Plasma Sources Science & Technology, 2012. 21(3): p. 17.
27. H. Koinuma, H. Ohkubo, and T. Hashimoto, 'Development and Application of a Microbeam Plasma Generator.' Applied Physics Letters, 1992. 60(7): p. 816-817.
28. M. Moravej, X. Yang, G. R. Nowling, J. P. Chang, and R. F. Hicks, 'Physics of high-pressure helium and argon radio-frequency plasmas', Journal of Applied Physics, 2004. 96(12): p. 7011-7017.
29. A. I. Al-Shamma’a, S. R. Wylie, J. Lucas, R. A. Stuart, 'Microwave plasma jet for material processing at 2.45 GHz', Journal of Materials Processing Technology, 2002. 121(1): p. 143-147.
30. 張家豪 '電漿源原理與應用之介紹', 物理雙月刊, 28卷2期,2006: p.440-451
31. F. D. Egitto, and L. J. Matienzo (1994), 'Plasma Modification of Polymer Surfaces for Adhesion Improvement', Ibm Journal of Research and Development 38(4): 423-439.
32. J. E. E. Baglin, and G.J. Clark, 'Ion-Beam Bonding of Thin-Films', Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms, 1985. 7-8(MAR): p. 881-885.
33. J. E. E. Baglin, 'Ion-Beam Enhancement of Metal-Insulator Adhesion', Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms, 1992. 65(1-4): p. 119-128.
34. H. Schonhorn and R. H. Hansen, 'Surface Treatment of Polymers for Adhesive Bonding', Journal of Applied Polymer Science, 1967. 11(8): p. 1461.
35. O. V. Penkov, M. Khadem and W. S. Lim, 'A review of recent applications of atmospheric pressure plasma jets for materials processing', Journal of Coatings Technology and Research, 2015. 12(2): p. 225-235.
36. Y. Kusano, 'Atmospheric Pressure Plasma Processing for Polymer Adhesion: A Review', Journal of Adhesion, 2014. 90(9): p. 755-777.
37. D. Pappas, 'Status and potential of atmospheric plasma processing of materials', Journal of Vacuum Science & Technology A, 2011. 29(2): p. 17.
38. Z. H. Nie and E. Kumacheva, 'Patterning surfaces with functional polymers', Nature Materials, 2008. 7(4): p. 277-290.
39. K. G. Kostov, T. M. C. Nishime, A. H. R. Castro, A. Toth and L.R.O. Hein, 'Surface modification of polymeric materials by cold atmospheric plasma jet', Applied Surface Science, 2014. 314: p. 367-375.
40. F. Massines and G. Gouda, 'A comparison of polypropylene-surface treatment by filamentary, homogeneous and glow discharges in helium at atmospheric pressure', Journal of Physics D-Applied Physics, 1998. 31(24): p. 3411-3420.
41. N. Y. Cui, and N. M. D. Brown, 'Modification of the surface properties of a polypropylene (PP) film using an air dielectric barrier discharge plasma', Applied Surface Science, 2002. 189(1-2): p. 31-38.
42. T. Shao, C. Zhang, K. Longa, D. Zhang, J. Wang, P. Yan and Y. Zhou, 'Surface modification of polyimide films using unipolar nanosecond-pulse DBD in atmospheric air', Applied Surface Science, 2010. 256(12): p. 3888-3894.
43. O. T. Olabanji and J.W. Bradley, 'Side-on Surface Modification of Polystyrene with an Atmospheric Pressure Microplasma Jet', Plasma Processes and Polymers, 2012. 9(9): p. 929-936.
44. K. G. Kostova, T. M. C. Nishimea, L. R. O. Heinb and A. Toth, 'Study of polypropylene surface modification by air dielectric barrier discharge operated at two different frequencies', Surface & Coatings Technology, 2013. 234: p. 60-66.
45. D. Popovicia, A. I. Barzic, C. Hulubei, I. Stoica, M. Aflori, D. S. Vasilescu and S. Dunca, 'Surface properties and antibacterial testing of a partially alicyclic polyimide film modified by RF plasma and NaOH/AgNO3 treatment', Polymer Testing, 2016. 49: p. 94-99.
46. E.M. Liston, L. Martinu and M. R. Wertheimer, ' Plasma surface modification of polymers for improved adhesion: a critical review', Journal of Adhesion Science and Technology.
47. 蘇癸陽, '實用電鍍理論與實際應用', 復文書局,1983, p.1-5。
48. 賴耿陽, '工業叢書電鍍技術', 南台圖書公司, 1979, P.193-222。
49. 尤先光, '電鍍手冊—電鍍作業上應用之資料及圖表', 黎明文化事業公司,1986。
50. 王大倫, '實用電鍍學', 徐氏基金會, 1973。
51. 尤先光, '電鍍工程學', 徐氏基金會, 1997。
52. 張.王桂香, '電鍍添加劑與電鍍工藝', 張亮生, 實用精細化學品叢書, 2001。
53. M. Charbonnier, M. Alami and M. Romand, 'Electroless plating of polymers: XPS study of the initiation mechanisms', Journal of Applied Electrochemistry, 1998. 28(4): p. 449-453.
54. M. Charbonnier and M. Romand, 'Polymer pretreatments for enhanced adhesion of metals deposited by the electroless process', International Journal of Adhesion and Adhesives, 2003. 23(4): p. 277-285.
55. S. Y. Kim, K. Hong, K. Kim, H. K. Yu and W. K. Kim, 'Effect of N2, Ar, and O2 plasma treatments on surface properties of metals', Journal of Applied Physics, 2008. 103(7): p. 3.
56. J. Vandenmeerakker, 'On the Mechanism of Electroless Plating. 1. Oxidation of Formaldehyde at Different Electrode Surfaces', Journal of Applied Electrochemistry, 1981. 11(3): p. 387-393.
57. J. Vandenmeerakker, 'On the Mechanism of Electroless Plating. 2. One Mechanism for different Reductants', Journal of Applied Electrochemistry, 1981. 11(3): p. 395-400.
58. J. Vandenmeerakker and J. W. G. Debakker, 'On the Mechanism of Electroless Plating. 3. Electroless Copper-Alloys', Journal of Applied Electrochemistry, 1990. 20(1): p. 85-90.
59. H. Ohya, V. V. Kudryavsev and S. I. Semenova, 'Polyimide Membranes: Applications, Fabrications and Properties', 1996.
60. D. J. Liaw, K. L. Wang, Y. C. Huang, K. R. Lee, J. Y. Lai and C. S. Ha, ' Advanced polyimide materials: Syntheses, physical properties and applications', Progress in Polymer Science, 2012. 37(7): p. 907-974.
61. V. Ratta, ' Chapter 1 POLYIMIDES: chemistry & structure-property relationships – literature review', 1999.
62. J. K. Gillham, and H.C. Gillham, 'Polyimides-Effect of Molecular-Structure and Cure on Thermomechanical Behavior', Polymer Engineering and Science, 1973. 13(6): p. 447-454.
63. Wikipedia, https://en.wikipedia.org/wiki/Polyimide.
64. S. Iwamori, T. Miyashita, S. Fukuda, S. Nozaki, K. Sudoh and N. Fukuda, 'Changes in the adhesion strength between copper thin films and polyimide substrates after heat treatment', Journal of Adhesion Science and Technology, 1997. 11(6): p. 783-795.
65. M. Pascu, D. Debarnot, F. Poncin-Epaillard, G. G. Bumbu, S. Cimmino and C. Vasile, 'Study of electroless copper plating onto PVDF modified by radio frequency plasma treatment', Journal of Physics D-Applied Physics, 2006. 39(10): p. 2224-2230.
66. S. Kreitz, C. Penache, M. Thomas and C. P. Klages, 'Patterned DBD treatment for area-selective metallization of polymers-plasma printing', Surface & Coatings Technology, 2005. 200(1-4): p. 676-679.
67. M. Charbonnier, M. Romand, E. Harry and M. Alami, 'Surface plasma functionalization of polycarbonate: Application to electroless nickel and copper plating', Journal of Applied Electrochemistry, 2001. 31(1): p. 57-63.
68. A. Atli, S. Simon, F. J. Cadete Santos Aires, L. Cardenas, E. Ehret, and P. Lourdin, 'A new strategy to activate liquid crystal polymer samples for electroless copper deposition', Journal of Applied Polymer Science, 2017. 134(1): p. 12.
69. M. Charbonnier, M. Romand, Y. Goepfert, D. Léonard and M. Bouadi, 'Copper metallization of polymers by a palladium-free electroless process', Surface & Coatings Technology, 2006. 200(18-19): p. 5478-5486.
70. J. B. Park, J. S. Oh, E. L. Gil, S. J. Kyoung, J. T. Lim and G. Y. Yeom, 'Polyimide Surface Treatment by Atmospheric Pressure Plasma for Metal Adhesion', Journal of the Electrochemical Society, 2010. 157(12): p. D614-D619.
71. J. B. Park, J. Y. Choi, S. H. Lee, Y. S. Song and G. Y. Yeom, 'Polymer surface texturing for direct inkjet patterning by atmospheric pressure plasma treatment', Soft Matter, 2012. 8(18): p. 5020-5026.
72. S. Gout, J. Coulm, D. Léonard and F. Bessueille, 'Silver localization on polyimide using microcontact printing and electroless metallization', Applied Surface Science, 2014. 307: p. 716-723.
73. B. G. Park, K. S. Kin, K. H. Jung amd S. B. Jung, 'Effect of Atmospheric-Pressure Plasma Treatment on the Adhesion Characteristics of Screen-Printed Ag Nanoparticles on Polyimide', Journal of Nanoscience and Nanotechnology, 2014. 14(12): p. 9448-9453.
74. M. K. Mun, J. W. Park and G. Y. Yeom, 'Linewidth Control and the Improved Adhesion of Inkjet-Printed Ag on Polyimide Substrate, Textured Using Near-Atmospheric Pressure Plasmas', Plasma Processes and Polymers, 2016. 13(7): p. 722-729.
75. Y. C. Liao and Z. K. Kao, 'Direct Writing Patterns for Electroless Plated Copper Thin Film on Plastic Substrates', ACS Applied Materials & Interfaces, 2012. 4(10): p. 5109-5113.
76. H. Esrom, R. Seeböck, M. Charbonnier and M. Romand, 'Surface activation of polyimide with dielectric barrier discharge for electroless metal deposition', Surface & Coatings Technology, 2000. 125(1-3): p. 19-24.
77. CHARBONNIER M. (1) ; ROMAND M. (1) ; GOEPFERT Y. (2) ; LEONARD D. (2) ; BOUADI M. (3) ;
78. M. Charbonnier, M. Romand, Y. Goepfert, D. Leomand and M.Bouadi, 'Copper metallization of polymers by a palladium-free electroless process', Surface & Coatings Technology, 2006. 200(18-19): p. 5478-5486.
79. A. Möbius, D. Elbick, E. R. Weidlich, K. Feldmann, F. Schüßler, J. Borris, M. Thomas, A. Zänker and C. P.Klages, 'Plasma-printing and galvanic metallization hand in hand-A new technology for the cost-efficient manufacture of flexible printed circuits', Electrochimica Acta, 2009. 54(9): p. 2473-2477.
80. J. Borris, A. Dohse, A. Hinze, M. Thomas, C. P. Klages, A. Möbius, D. Elbick and E. R. Weidlich, 'Improvement of the Adhesion of a Galvanic Metallization of Polymers by Surface Functionalization Using Dielectric Barrier Discharges at Atmospheric Pressure', Plasma Processes and Polymers, 2009. 6: p. S258-S263.
81. S. J. Cho, S. P. Shrestha and J. H. Boo, 'Surface treatment for Cu metallization on polyimide film by atmospheric pressure dielectric barrier discharge plasma system.' Current Applied Physics, 2011. 11(5): p. S135-S139.
82. B. Kim, S. H. Jung, S. W. Suh and B. K. Park, 'Study of Palladium Catalyzation for Electroless Copper Plating on Polyimide Film', Journal of Nanoscience and Nanotechnology, 2013. 13(1): p. 517-522.
83. H. N. Lee, Y. Han, J. H. Lee, J. Y. Hur and H. K. Lee, 'Aging Effect on Adhesion Strength between Electroless Copper and Polyimide Films', Materials Transactions, 2013. 54(6): p. 1040-1044.
84. P. Zhao, W. Zheng, J. Watanabe, Y. D. Meng and M. Nagatsu, 'Highly Conductive Cu Thin Film Deposition on Polyimide by RF-Driven Atmospheric Pressure Plasma Jets under Nitrogen Atmosphere', Plasma Processes and Polymers, 2015. 12(5): p. 431-438.
85. D. Bhusari, H. Hayden, R. Tanikella, S. A. B. Allen and P. A. Kohl, 'Plasma treatment and surface analysis of polyimide films for electroless copper buildup process', Journal of the Electrochemical Society, 2005. 152(10): p. F162-F170.
86. H. E. Wagner, R. Brandenburg, K.V. Kozlov, A. Sonnenfeld, P. Michel and J. F. Behnke, 'The barrier discharge: basic properties and applications to surface treatment', Vacuum, 2003. 71(3): p. 417-436.
87. J. Winter, R. Brandenburg and K. D. Weltmann, 'Atmospheric pressure plasma jets: an overview of devices and new directions', Plasma Sources Science & Technology, 2015. 24(6): p. 19.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70977-
dc.description.abstract聚醯亞胺因其高熱穩定度與高彎曲性被廣泛應用在半導體製程,而銅因其低成本與高導電性是為工廠製程中常用金屬。在實際製程上,金屬與高分子表面的貼附好壞甚為關鍵,因此,如何提高其表面能進行反應極為重要。
此論文中,我們使用介電質放電形式的噴流式大氣電漿,利用介電質放電的低功率、低溫、均勻的特性;噴流式電漿的氣體帶動流場不直接造成樣品毀損,且代測樣品較不受限;大氣電漿在常壓下不須高成本的真空設備;電漿本身的高反應性;我們嘗試在一般的無電鍍銅製程前,加上電漿前處理,利用高反應性的離子等轟擊表面,造成表面改質使後續的無電鍍製程更有效率的進行。
研究中,利用一分鐘的電漿前處理,即可在兩分鐘的無電鍍銅程序中,均勻且穩定的生成銅在聚醯亞胺表面,且達到ISO1的貼附標準。除了使用一般工廠製程中常見的Kapton聚醯亞胺以外,也嘗試將製程推展到具有不同官能基的聚醯亞胺,可得到相似的效果。同時,我們利用電腦時間解析照片的紅綠藍三色彩元素隨時間在各個區域的變化,將聚醯亞胺以表面遮罩覆蓋後,放入電漿測試,證明有經過電漿處理的區域可以明顯提升無電鍍的起始速率,且用於無電鍍的終點判斷,讓我們在表面圖案化的製程中,克服單一片聚醯亞胺本身的差異,選擇適當的反應終點,以達成較好的圖案化樣品解析度,我們嘗試不同線寬的長方形比較轉印忠誠度,得到最小的穩定解析度在邊長為1.25 ± 0.04 毫米的正三角形大小。未來,藉由步徑馬達的使用,可望將此反應延伸至工廠的軸對軸(Roll-to-Roll)製程中,用以減少反應時間與得到更好的吸附效果與均勻度。
zh_TW
dc.description.abstractPolyimide (PI) is of great interest due to its flexibility, high thermal stability, low cost and high conductivity of copper. However, PI with low surface energy causing the better adhesion to be more critical in copper coating processes.
The atmospheric pressure plasma jet (APPJ) used in this work is a dielectric-barrier-discharge (DBD)-type plasma jet, a home-made system that can be operated under atmospheric pressure powered by a commercially available high voltage power source. We use DBD for its low energy consumption, low temperature and umiform characteristic; APPJ for its remote fluid field without damaging the surface and the flexibility for sample type. After the plasma treatment, silver nitrite ink, serving as the activated agent, is coated on the PI surface. Electroless copper plating is then performed by soaking the PI in the copper plating bath and finally quantified by cross-cut test and Red Green Blue (RGB) time-resolved analysis.
The results showed that the adhesion of the copper film can be greatly improved to ISO1 by the one minute plasma pre-treatment and followed by two minutes copper plating process. Also, this process can not only used for Kapton PI, but also for PI of different functional groups. Moreover, the RGB time-resolved analysis showed that the initiation time for copper plating can be reduced up to fifty percent by this system. Furthermore, we can use the RGB analysis to point out the indication for end-point detecting in the electroless plating process. This can be used for the patterning plating process for the high selectivity for copper. We tried to test the pattern fidality by different width of lines. With the treatment, we can steadily form the minimum line with 1.25 ± 0.04 mm width.
This work presents the use of an atmospheric pressure plasma jet (APPJ) for improving the adhesion and decreasing process time. Further research of step-motor use could shed light on the roll-to-roll industrial application in the near future.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T04:46:40Z (GMT). No. of bitstreams: 1
ntu-107-R04524040-1.pdf: 7616072 bytes, checksum: 1fb0cf70f4ed3c35b31439cc26d7985c (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents口試委員會審定書 #
致謝 I
中文摘要 III
ABSTRACT V
目錄 VII
圖目錄 XI
表目錄 XIX
第 1 章 緒論 1
1.1 前言 1
1.2 研究動機與目標 1
1.3 論文總覽 2
第 2 章 文獻回顧 3
2.1 電漿簡介 3
2.1.1 電漿產生機制 3
2.1.2 非熱平衡電漿 11
2.1.3 直流電漿之典型特徵電壓電流曲線 13
2.1.4 電漿分類 16
2.2 介電質放電電漿系統 21
2.3 常壓噴流式電漿系統 26
2.3.1 常壓電漿簡介 26
2.3.2 噴流式大氣電漿 26
2.4 電漿在高分子表面改質之應用 34
2.5 無電鍍銅之製程與應用 40
2.5.1 無電鍍 40
2.5.2 聚醯亞胺 43
2.5.3 近期無電鍍之發展 47
第 3 章 實驗設備與架構 53
3.1 噴流式大氣電漿產生裝置 53
3.2 無電鍍銅之裝備 55
3.2.1 藥品配置 55
3.2.2 聚醯亞胺 57
3.2.3 實驗流程 58
3.3 電漿檢測及分析設備 61
3.3.1 光學檢測 61
3.3.2 溫度測試 61
3.3.3 電性測試 61
3.3.4 接觸角儀 62
3.4 無電鍍製程檢測及分析設備 65
3.4.1 影像分析裝置 65
3.4.2 遮罩裝置 67
3.5 樣品分析及檢測設備 71
3.5.1 掃描式電子顯微鏡 71
3.5.2 傅立葉轉換紅外線光譜儀 71
3.5.3 X射線繞射分析儀 72
3.5.4 百格刀測試 72
3.6 化學藥品 74
第 4 章 實驗結果與討論 75
4.1 系統裝置之特性分析 75
4.1.1 光學性質分析 75
4.1.2 系統下游溫度分析 77
4.1.3 電性檢測 79
4.1.4 電漿對聚醯亞胺的表面改質 81
4.2 不同前處理方式對無電鍍銅成效之影響 83
4.3 電漿處理時間對無電鍍銅成效之影響 91
4.4 無電鍍時間對成效之影響 93
4.5 電漿處理後閒置時間對無電鍍銅成效之影響 98
4.6 應用:電漿在聚醯亞胺表面圖案化製程 102
4.6.1 利用遮罩比較電漿處理沿時間對無電鍍之影響 102
4.6.2 不同形狀遮罩之表面圖案化效果 106
4.7 電漿在不同聚醯亞胺基材對無電鍍銅之影響 112
4.7.1 不同聚醯亞胺之比較 112
4.7.2 不同聚醯亞胺基材在電漿處理後對無電鍍銅之影響 114
第 5 章 結論與未來展望 117
第 6 章 參考文獻 119
dc.language.isozh-TW
dc.subject噴流式大氣電漿zh_TW
dc.subject表面改質zh_TW
dc.subject無電鍍銅zh_TW
dc.subject時間解析zh_TW
dc.subject表面圖案化製程zh_TW
dc.subjectpatternen
dc.subjectatmospheric pressure plasma jeten
dc.subjectsurface modificationen
dc.subjectelectroless copper platingen
dc.subjecttime-resolved analysisen
dc.title利用常壓噴流式電漿改質聚醯亞胺表面並應用於無電鍍銅之製程zh_TW
dc.titleSurface Treatment on Polyimide by an Atmospheric Pressure Plasma Jet for Electroless Copper Platingen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee李明蒼,李岱洲
dc.subject.keyword噴流式大氣電漿,表面改質,無電鍍銅,時間解析,表面圖案化製程,zh_TW
dc.subject.keywordatmospheric pressure plasma jet,surface modification,electroless copper plating,time-resolved analysis,pattern,en
dc.relation.page128
dc.identifier.doi10.6342/NTU201701226
dc.rights.note有償授權
dc.date.accepted2018-08-01
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
7.44 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved