Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 應用數學科學研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70975
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor杜憶萍
dc.contributor.authorCheng-Yu Hungen
dc.contributor.author洪承郁zh_TW
dc.date.accessioned2021-06-17T04:46:35Z-
dc.date.available2020-08-06
dc.date.copyright2018-08-06
dc.date.issued2018
dc.date.submitted2018-08-01
dc.identifier.citation1 D. Bertsekas. Constrained optimization and lagrange multiplier method. Academic Press, 1982.
2 J.-F. Cai, E. J. Candés, and Z. Shen. A singular value thresholding algorithm for matrix completion. SIAM J. on Optimization, 2010.
3 E. Candés, X. Li, Y. Ma, and J. Wright. Robust principal component analysis? Journal of the ACM (JACM), 2011.
4 M. Fazel. Matrix rank minimization with applications. Ph.D. dissertation, Stanford University, 2002.
5 Z. Lin, M. Chen, and Y. Ma. The augmented lagrange multiplier method for exact re- covery of corrupted low-rank matrices. arXiv preprint, 2010.
6 R. Roy, S. Hohng, and T. Ha. A practical guide to single-molecule fret. Nature methods, 2008.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70975-
dc.description.abstract主成份分析 (Principal Component Analysis) 已經被廣泛運用在各種 影像處理上, 但是越來越複雜的影像導致主成份分析的假設已被破壞。 所以 Candés et al. (2011) 提出了穩定主成份分析,來應對這些新的挑 戰,例如 sensor failure 以及 corrupted sample。在這篇碩士論文裡,我 們針對穩定主成份分析做了一些調整,以擴展其應用。我們運用了策 略抽樣的方法,讓數據可以滿足 RPCA 。zh_TW
dc.description.abstractPrincipal Component Analysis (PCA) has been used in an overwhelming manner for data analysis. However, PCA did not perform well when data did not follow the model well like sensor failure or corrupted sample. Can- dés et al. (2011) proposed Robust Principal Component Analysis (RPCA) to recover the data and proved that it can perform very well when data has the sparsity property for the signal with a low rank background. Unfortunately, the FRET data set does not satisfy the working condition. Here, we employ a sampling scheme to enable the application for the FRET data. For extremely large number of pixel image application, RPCS may suffer from computation loading. Thus, we also extend RPCA to a high order SVD version.en
dc.description.provenanceMade available in DSpace on 2021-06-17T04:46:35Z (GMT). No. of bitstreams: 1
ntu-107-R05246006-1.pdf: 6606770 bytes, checksum: 8da690131d68e376b047066c9eac1adb (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents口試委員會審定書 iii
誌謝 v
摘要 vii
Abstract ix
1 Introduction 1
2 Theoretical Literature Review of Robust PCA 3
2.1 Fundamental Review ............................ 3
2.2 nuclear norm heuristic ........................... 4
2.3 Vector case: l1-norm minimization..................... 6
2.4 PCP problem of Robust PCA........................ 7
2.5 ‹Incoherence of L0 ............................ 7
2.6 ‹Support of the Sparse component S0 .................. 8
2.7 Main Result of RPCA .......................... 8
2.8 Algorithm of RPCA ............................ 9
3 Application challenges and Our Solutions 13
3.1 Application Challenges........................... 13
3.2 A Resampling Scheme ........................... 15
3.3 Refinement Scheme............................. 16
3.4 Higher-order RPCA............................. 17
4 Numerical Examples 19
4.1 Simple Examples .............................. 19
4.2 Localization of singlenano-sized light emitter . . . . . . . . . . . . . . . 21
4.3 Surveillance video ............................. 23
4.4 Examples of S0 notsatisfythe requirement of RPCA . . . . . . . . . . . 26
4.5 smFRET experiments............................ 29
5 Summary 33
Bibliography 35
dc.language.isoen
dc.subject穩定估計zh_TW
dc.subject隨機抽樣zh_TW
dc.subject隨機分群zh_TW
dc.subject生物影像zh_TW
dc.subject代理函數zh_TW
dc.subjectRandom Samplingen
dc.subjectRPCAen
dc.subjectBiological imagesen
dc.subjectRandom sketchen
dc.subjectSurrogate functionen
dc.title穩定主成份分析以及其延伸zh_TW
dc.titleRobust PCA and its Extensionen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee姚怡慶,陳定立,陳素雲,陳宏
dc.subject.keyword穩定估計,隨機抽樣,隨機分群,生物影像,代理函數,zh_TW
dc.subject.keywordRPCA,Random sketch,Random Sampling,Biological images,Surrogate function,en
dc.relation.page35
dc.identifier.doi10.6342/NTU201801816
dc.rights.note有償授權
dc.date.accepted2018-08-01
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept應用數學科學研究所zh_TW
Appears in Collections:應用數學科學研究所

Files in This Item:
File SizeFormat 
ntu-107-1.pdf
  Restricted Access
6.45 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved