請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70961
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林順福(Shun-Fu Lin) | |
dc.contributor.author | Chieh-Hsin Chen | en |
dc.contributor.author | 陳杰歆 | zh_TW |
dc.date.accessioned | 2021-06-17T04:45:56Z | - |
dc.date.available | 2018-08-14 | |
dc.date.copyright | 2018-08-14 | |
dc.date.issued | 2018 | |
dc.date.submitted | 2018-08-01 | |
dc.identifier.citation | 王慶茵 (2010) 茶葉品質近紅外光譜非破壞性檢測之研究。國立臺灣大學生物產業機電工程學系碩士論文。臺北市,臺灣。
吳泓書、郭素真、吳永培 (2013) 近紅外光分析技術應用稻米品質之測定.。嘉大農林學報10(1): 22-42。 李汪盛 (2015) 定距式水果糖度及重量分級機之研發。桃園區農業改良場研究彙報(77): 51-61。 林素梅、盧啟信、 侯金日 (2016) 近紅外光分析儀 (NIRS) 快速測定狼尾草之粗蛋白質及水溶性碳水化合物。中華民國雜草學會會刊37(2): 109-125。 陳榮坤和楊純明 (2004) 簡介近紅外光譜儀在化學分析上的應用。技術服務15(1): 1-5。 陳國憲 (2011) 認識花生黃麴毒素。臺南區農業專訊 (78) 1-3。 詹平喜 (1988) 對黃麴毒素的認識與預防。花蓮區農業推廣簡訊5(4): 12-13。 廖信凱 (2009) 以茄紅素近紅外光光譜分析番茄之成熟度。國立臺灣大學生物產業機電工程學系碩士論文。臺北市,臺灣。 劉興鑑、孫逸民、陳玉舜、趙敏勳、謝明學 (2007) 紅外線吸收光譜法。儀器分析:168-175。 蔡岳峻 (2006) 利用螢光影像及可見光/近紅外線光譜於檢測黃麴毒素之探討。國立屏東科技大學機械工程系碩士論文。屏東縣,臺灣。 衛生福利部食品藥物管理署 (2013) 食品中真菌毒素限量標準。衛生福利部食品藥物管理署。臺北市,臺灣。 Alcaide-Molina, M., Ruiz-Jimenez, J., Mata-Granados, J., and de Castro, M. L. (2009). High through-put aflatoxin determination in plant material by automated solid-phase extraction on-line coupled to laser-induced fluorescence screening and determination by liquid chromatography–triple quadrupole mass spectrometry. Journal of Chromatography A 1216(7): 1115-1125. Asis, R., Paola R. D. D., and Aldao M. A. J. (2002). Determination of aflatoxin B1 in highly contaminated peanut samples using HPLC and ELISA. Food and Agricultural Immunology 14(3): 201-208. ASTM E1790-04. (2004). Standard Practice for Near Infrared qualitative analysis, ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States. Barbas, C., Montepríncipe, U., Dams, A., and Majors, R. E. (2005). Separation of Aflatoxins by HPLC. Environment Food and Safety. Baur, F. J. (1975). Effect of storage upon aflatoxin levels in peanut materials. Journal of the American Oil Chemists Society 52(8): 263-265. Bennett, J. W. (2010). An overview of the genus Aspergillus. Aspergillus: Molecular Biology and Genomics: 1-17. Bilgrami, K. S. and Choudhary, A. K. (1998). Mycotoxins in preharvest contamination of agricultural crops. Mycotoxins in Agriculture and Food Safety: 1-43. Blanco, M., Alcalá, M., Planells, J., and Mulero, R. (2007). Quality control of cosmetic mixtures by NIR spectroscopy. Analytical and Bioanalytical Chemistry 389(5): 1577-1583. Bräse, S., Gläser, F., Kramer, C., Lindner, S., Linsenmeier, A. M., Masters, K., Meister, A., Ruff, B., and Zhong, S. (2013). Progress in the chemistry of organic natural products. The Chemistry of Mycotoxins. Progress in the Chemistry of Organic Natural Products 97. Ciurczak, E. (1987). Uses of near-infrared spectroscopy in pharmaceutical analysis. Applied Spectroscopy Reviews 23(1-2): 147-163. Colak, H., Bingol, E. B., Hampikyan, H., and Nazil, B. (2006). Determination of aflatoxin contamination in red-scaled, red and black pepper by ELISA and HPLC. Journal of Food and Drug Analysis 14(3): 292-296. Dickens, J. W. and Pattee, H. E. (1966). The effects of time, temperature and moisture on aflatoxin production in peanuts inoculated with a toxic strain of Aspergillus flavus. Tropical Science 8: 11-22. Diener, U. L., Cole, R. J., Sanders, T. H., Payne, G. A., Lee, L. S., and Klich, M. A. (1987). Epidemiology of aflatoxin formation by Aspergillus flavus. Annual Review of Phytopathology 25(1): 249-270. Diener, U. L. and Davis N. D. (1966). Aflatoxin production by isolates of Aspergillus flavus. Phytopathology 56(12): 1390-1393. Diener, U. L. and Davis N. D. (1967). Limiting temperature and relative humidity for growth and production of aflatoxin and free fatty acids byAspergillus flavus in sterile peanuts. Journal of the American Oil Chemists Society 44(4): 259-263. Diener, U. L. and Davis N. D. (1969). Production of aflatoxin on peanuts under controlled environments. Journal of Stored Products Research 5(3): 251-258. Durmuş, E., Gunes, A., and Kalkan, H. (2017). Detection of aflatoxin and surface mould contaminated figs by using Fourier transform near‐infrared reflectance spectroscopy. Journal of the Science of Food and Agriculture 97(1): 317-323. Eppley, R. M. (1968). Screening method for zearalenone, aflatoxin, and ochratoxin. Journal Association of Official Analytical Chemists 51(1): 74-78. Gunes, A., Kalkan, H., Durmus, E., and Butukcan, M. B. (2013). Detection of aflatoxin contaminated figs using Near-Infrared (NIR) reflectance spectroscopy. Electronics, Computer and Computation (ICECCO), 2013 International Conference on, Institute of Electrical and Electronics Engineers. Hirano, S., Okawara, N., and Narazaki, S. (1998). Near infra red detection of internally moldy nuts. Bioscience, Biotechnology, and Biochemistry 62(1): 102-107. Iqbal, A., Khalil, I., and Shah, H. (2006). Aflatoxin contents of stored and artificially inoculated cereals and nuts. Food Chemistry 98(4): 699-703. Jiang, J., Qiao, X., and He, R. (2016). Use of Near-Infrared hyperspectral images to identify moldy peanuts. Journal of Food Engineering 169: 284-290. Kaya-Celiker, H., Mallikarjunan, P. K., Schmale III, D., and Christie, M. E. (2014). Discrimination of moldy peanuts with reference to aflatoxin using FTIR-ATR system. Food Control 44: 64-71. Lequin, R. M. (2005). Enzyme immunoassay (EIA)/enzyme-linked immunosorbent assay (ELISA). Clinical Chemistry, 51(12), 2415-2418. Leszczyńska, J., Masłowska, J., Owczarek, A., and Kucharska, U. (2001). Determination of aflatoxins in food products by the ELISA method. Czech Journal of Food Science 19: 8-12. Li, P., Zhang, Q., Zhang, D., Guan, D., Liu, D. X., Fang, S., Wang, X., and Zhang, W. (2011). Aflatoxin measurement and analysis. Aflatoxins-Detection, Measurement and Control, InTech. Liu, Y., Delhom, C., Campbell, B. T., and Martin, V. (2016). Application of near infrared spectroscopy in cotton fiber micronaire measurement. Information Processing in Agriculture 3(1): 30-35. Llewellyn, G. C., Burkett, M., and Eadie, T. (1981). Potential mold growth, aflatoxin production, and antimycotic activity of selected natural spices and herbs. Journal-Association of Official Analytical Chemists 64(4): 955-960. Mellon, J. E. and Cotty, P. J. (1998). Effects of oilseed storage proteins on aflatoxin production by Aspergillus flavus. Journal of the American Oil Chemists' Society 75(9): 1085-1089. Mirghani, M. E. S., Che, M. Y. B., Jinap, S., Baharin, B. S., and Bakar, J. (2001). A new method for determining aflatoxins in groundnut and groundnut cake using Fourier transform infrared spectroscopy with attenuated total reflectance. Journal of the American Oil Chemists' Society, 78(10), 985-992. Murray, I. (1987). Chemical principles of near-infrared technology. Near-infrared Technology in the Agricultural and Food Industries: 17-34. Nesbitt, B. F., O'kelly, J., Sargeant, K., and Sheridan, A. (1962). Toxic metabolites of Aspergillus flavus. Nature, London 195(4846). Payne, G. A. and Widstrom, N. W. (1992). Aflatoxin in maize. Critical Reviews in Plant Sciences 10(5): 423-440. Pelletier, M. J., Spetz, W. L., and Aultz, T. R. (1991). Fluorescence sorting instrument for the removal of aflatoxin from large numbers of peanuts. Review of Scientific Instruments 62(8): 1926-1931. Prandini, A., Tansini, G., Sigolo, S., Filippi, L., Laporta, M., and Piva, G. (2009). On the occurrence of aflatoxin M1 in milk and dairy products. Food and Chemical Toxicology 47(5): 984-991. Ram, B. P., Hart, L. P., Cole, R. J., and Pestka, J. J. (1986). Application of ELISA to retail survey of aflatoxin B1 in peanut paste. Journal of Food Protection 49(10): 792-795. Shotwell, O. L., Hesseltine, C. W., Stubblefield, R. D., and Sorenson, W. G. (1966). Production of aflatoxin on rice. Applied Microbiology 14(3): 425-428. Stoloff, L. (1983). Aflatoxin as a cause of primary liver‐cell cancer in the United States: A probability study. Nutr. Cancer 5: 165-168. Teye, E., Huang, X. Y., and Afoakwa, N., (2013). Review on the potential use of near infrared spectroscopy (NIRS) for the measurement of chemical residues in food. American Journal of Food Science and Technology 1: 1-8. Uckun, O. and Işıl, V. (2014). Monitoring of aflatoxins in peanuts. Türk Tarım ve Doğa Bilimleri 6(6): 1310-1314. Villers, P. (2014). Aflatoxins and safe storage. Frontiers in Microbiology 5: 158. Wannop, C. C. (1961). The histopathology of turkey X disease in Great Britain. Avian Diseases 5(4): 371-381. Wicklow, D. T. and Pearson T. C. (2006). Detection and removal of single mycotoxin contaminated maize grains following harvest. Microorganisms, Mycotoxins, and Other Biological Contaminants: 109-119. Yabe, K., Ando, Y., Ito M., and Terakado, N. (1987). Simple method for screening aflatoxin-producing molds by UV photography. Applied and Environmental Microbiology 53(2): 230-234. Zaghini, A., Martelli, G., Roncada, P., Simioli, M., and Rizzi, L. (2005). Mannanoligosaccharides and aflatoxin B1 in feed for laying hens: effects on egg quality, aflatoxins B1 and M1 residues in eggs, and aflatoxin B1 levels in liver. Poultry Science 84(6): 825-832. Zhu, F., Yao, H., Hruska, Z., Kincaid, R., Brown, R., Bhatnagar, D., and Cleveland, T. E. (2016). Integration of fluorescence and reflectance visible near-infrared (VNIR) hyperspectral images for detection of aflatoxins in corn kernels. Transactions of the ASABE 59(3): 785-794. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70961 | - |
dc.description.abstract | 落花生(Arachis hypogaea)原生於南美洲,富含油脂與蛋白質,其用途廣泛可供為食用、加工及油用,加上落花生的適應性大而栽培甚為普遍,是世界上重要的食品與油料作物,但落花生及其產品易受黃麴菌感染而產生黃麴毒素,危害人體健康。因此本研究利用近紅外光譜分析技術測定落花生顆粒、落花生碎粒、花生醬以及帶莢落花生等不同類型的落花生及其產品之黃麴毒素含量,在近紅外光譜尋找特定波長以建立測定黃麴毒素檢測其含量的迴歸方程式及線性區別方程式,本研究設定High performance liquid chromatography之分析值為真值。
研究結果顯示,在反射波長806 nm及1508 nm位置所建立的迴歸方程式(A)能夠測定落花生碎粒的黃麴毒素含量,其R2達0.638;在反射波長539 nm及806 nm位置所建立的迴歸方程式(B)能夠測定落花生顆粒的黃麴毒素含量,其R2則為0.581;在反射波長539 nm、806 nm及1508 nm位置所建立的迴歸方程式(C)能夠測定落花生碎粒及落花生顆粒的黃麴毒素含量,其R2高達0.905;在反射波長600 nm至700 nm位置之間所建立的迴歸方程式(D)能夠測定帶莢落花生的黃麴毒素含量,其R2為0.842;在反射波長1712 nm位置所建立的迴歸方程式(E)能夠測定花生醬的黃麴毒素含量,其R2為0.704。在區別分析模式若以15 ppb作為區分是否超標的標準,則結果顯示上述A、B、C及D四個回歸方程式分別應用於落花生碎粒、顆粒、碎粒合併顆粒及帶莢落花生之黃麴毒素含量超標之區分均可達100%之正確率;而在反射波長1712 nm位置所建立的區別分析模式能夠檢測花生醬的黃麴毒素含量,其判別率為88.9%。 本研究推薦花生顆粒與落花生碎粒樣品的檢測可以反射波長539 nm、806 nm及1508 nm所建立的迴歸方程式及區別分析模式進行檢測;而帶莢落花生的黃麴毒素含量的檢測則可以反射波長600 nm至700 nm之間檢測與區分;花生醬則可以反射波長1712 nm所建立的方程式檢測與區分。 本研究另以ELISA方法做為NIR分析之比對,研究結果顯示其在顆粒落花生、碎粒落花生及帶莢落花生部份均有極優良之測定效果,但是在花生醬部份測定效果較差。綜合言之,NIR應用在測定顆粒落花生、碎粒落花生及帶莢花生之效果較佳,而應用在花生醬之黃麴毒素檢測則欠佳。本研究的結果可應用在初步大量快速篩檢海關及市場不同類型落花生及其產品之黃麴毒素含項是否超過標準。 | zh_TW |
dc.description.abstract | Peanut (Arachis hypogaea) originated in South America. It is full of oils and proteins for food, processing and oil and has a wide range of uses. The wide range of adaptability makes it become an important crop in the world. But peanuts and its products are easy infected by Aspergillus and occur aflatoxins. There in this study, near-infrared spectroscopy (NIR) was used to analyze the content aflatoxins in peanut kernel, peanut crumbs, peanut paste, and peanut pods, and to find out the regression and discrimination model of aflatoxins in different types of peanuts.
The results showed that the regression model (A) with reflectance wavelengths at 806 nm and 1508 nm can detect the content of aflatoxins in peanut crumbs, and the R2 is 0.638. The regression model (B) with reflectance wavelengths at 539 nm and 806 nm can detect the content of aflatoxins in peanut kernel, and the R2 is 0.581. The regression model (C) with reflectance wavelengths at 539 nm, 806 nm, and 1508 nm can detect the content of aflatoxins in peanut crumbs and whole peanut kernel, and the R2 is 0. 905. The regression model (D) with reflectance wavelengths at 600 nm to 700 nm can detect the content of aflatoxins in peanut paste, and the R2 is 0.842. The regression model (E) with reflectance wavelengths at 1712 nm can detect the content of aflatoxins in peanut pod, and the R2 is 0. 704. In discriminant analysis, 15 ppb was used as a threshold of discriminative examination to determine if the target exceeded or not. The results showed that models of A, B, C, and D can 100% detect with the peanut kernel, peanut crumbs, and peanut paste samples. The discriminant analysis model can 88.9% detect with reflectance at 1712 nm in peanut pod. This study recommends that the detection of peanut crumbs, and peanut kernel can use the reflectance in 539 nm, 806 nm, and 1508 nm, it is still quite accurate under 15 ppb of aflatoxins. The aflatoxins content of peanut paste can be detected and distinguished between the reflection wavelengths from 600 nm to 700 nm. The peanut pods can be used to detect and distinguish the equation established by reflecting the wavelength of 1712 nm. In ELISA method, there is a good detection for aflatoxins in whole kernels, peanut crumbs, and peanut pods, but the detection was poor in peanut paste. NIR is a useful method of detection aflatoxins for peanut kernel, peanut crumbs, and peanut pod. The application for peanut paste to detect aflatoxins is poor. The results of this study can be used to analyze the contents of aflatoxins in various types of peanut and its products in import border and market examinations. It can screen out the aflatoxins contamination products quickly, to inspect the contents more than the acceptable threshold or not in peanuts. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T04:45:56Z (GMT). No. of bitstreams: 1 ntu-107-R00621121-1.pdf: 1229304 bytes, checksum: 51f3e61c29b1d9eb50abe9c5ecfd87df (MD5) Previous issue date: 2018 | en |
dc.description.tableofcontents | 論文口試委員審定書 i
摘要 ii Abstract iv 目錄 vi 表目錄 viii 圖目錄 ix 一、前言 1 二、前人研究 3 (一)落花生感染黃麴毒素之相關研究 3 (二)近紅外線光譜儀技術的原理與應用 3 1.近紅外線光譜儀的原理 3 2.近紅外線光譜儀的應用 5 (三)近紅外線光譜儀應用於黃麴毒素之檢測 6 三、材料與方法 8 (一)落花生樣品感染黃麴毒素之處理 8 (二)黃麴毒素含量檢測 8 (三)近紅外線光譜儀器(Near infrareds spectrometry, NIR)檢測 8 (四)統計分析方法 9 1.統計分析軟體 9 2.建立黃麴毒素含量迴歸函數模式 9 3.建立黃麴毒素含量區別函數之模式 9 4.數據轉換 9 (五)酵素結合免疫吸附法(Enzyme-linked immunosorbent assay, ELISA)檢測黃麴毒素含量 10 四、結果與討論 11 (一)建立落花生顆粒及碎粒樣品黃麴毒素含量之迴歸方程式 11 (二)以NIR測定落花生樣品之黃麴毒素含量 16 (1)以ELISA方法測定落花生樣品黃麴毒素含量 19 (2)以NIR方法測定各類別樣品黃麴毒素含量 22 (2-1)利用碎粒波長數據代入合併後迴歸方程式 22 (2-2)利用顆粒波長數據代入合併後函數 23 (2-3)利用碎粒波長數據代入碎粒函數模式 24 (2-4)利用顆粒波長數據代入顆粒函數模式 25 (2-5)利用顆粒波長數據代入碎粒函數模式 26 (2-6)利用碎粒波長數據代入顆粒函數模式 27 (三)建立落花生顆粒及碎粒樣品黃麴毒素含量之線性區別方程式 30 (四)建立帶莢落花生樣品黃麴毒素含量之迴歸方程式 33 (五)檢測帶莢落花生樣品黃麴毒素含量 34 (1)以ELISA方法測定帶莢落花生樣品黃麴毒素含量 35 (2)以NIR方法測定帶莢落花生樣品黃麴毒素含量 36 (六)建立帶莢落花生樣品黃麴毒素含量之線性區別方程式 38 (七)建立花生醬樣品黃麴毒素含量之迴歸方程式 39 (八)檢測花生醬樣品黃麴毒素含量 40 (1)以ELISA方法測定花生醬樣品黃麴毒素含量 42 (2)以NIR方法測定花生醬樣品黃麴毒素含量 43 (九)建立花生醬樣品黃麴毒素含量之線性區別方程式 44 五、結論 45 六、參考文獻 46 | |
dc.language.iso | zh-TW | |
dc.title | 利用近紅外線光譜儀快速偵測落花生黃麴毒素含量 | zh_TW |
dc.title | Application of NIR spectrometry in fast detection and quantitation of aflatoxins in peanut | en |
dc.type | Thesis | |
dc.date.schoolyear | 106-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 葉茂生,盧煌勝,邱垂豐,游添榮 | |
dc.subject.keyword | 落花生顆粒,落花生碎粒,帶莢落花生,花生醬,黃麴毒素,近紅外線光譜,反射波長, | zh_TW |
dc.subject.keyword | Peanut kernel,Peanut crumb,Peanut pod,Peanut paste,Aflatoxin,Near infrared spectrometry,Reflectance, | en |
dc.relation.page | 53 | |
dc.identifier.doi | 10.6342/NTU201802316 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2018-08-02 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 農藝學研究所 | zh_TW |
顯示於系所單位: | 農藝學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-107-1.pdf 目前未授權公開取用 | 1.2 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。