Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 天文物理研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70959
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王立民(Li-Ming Wang)
dc.contributor.authorHsun Hsiehen
dc.contributor.author謝旬zh_TW
dc.date.accessioned2021-06-17T04:45:50Z-
dc.date.available2019-08-16
dc.date.copyright2018-08-16
dc.date.issued2018
dc.date.submitted2018-08-01
dc.identifier.citation[1] Uddin, J. (2017). Terahertz (THz) Spectroscopy: A cutting‐edge technology. In W. Ghann & J. Uddin (Eds.), Terahertz spectroscopy: a cutting edge technology (pp. 4). Rijeka, Croatia: Intech.
[2] Nave, C. R. Heterodyne principle [Online]. Retrieved June 13th, 2018, from http://hydrogen.physik.uni-wuppertal.de/hyperphysics/hyperphysics/hbase/audio/radio.html
[3] Brandt, M. (2004). Superconducting hot electron bolometers on silicon nitride membranes for terahertz waveguide mixers (Unpublished doctoral dissertation). University of Cologne, Cologne, Germany.
[4] Semenov, A. D., Gol’tsman, G. N. & Sobolewski, R. (2002). Hot-electron effect in superconductors and its applications for radiation sensors. Supercond. Sci. Technol, 15, R1–R16.
[5] Khosropanah, P., Bedorf, S., Cherednichenko, S., Drakinskiy, V., Jacobs, K., Merkel, H. & Kollberg, E. (2003). Fabrication and noise measurement of NbTiN hot electron bolometer heterodyne mixers at THz frequencies, in Proceedings of 14th International Symposium on Space Terahertz Technology, University of Arizona, Tuscon, USA, 20–30.
[6] Chang, H. W., Wang, C. L., Huang, Y. R., Chen, T. J., & Wang, M. J. (2017). Growth and characterization of few unit-cell NbN superconducting films on 3C-SiC/Si substrate. Supercond. Sci. Technol. 30, 115010.
[7] Nave, C. R. Critical Magnetic Field [Online]. Retrieved June 13th, 2018, from http://hyperphysics.phy-astr.gsu.edu/hbase/Solids/scbc.html
[8] Milosevic, M. (2004). Vortex Matter in Mesoscopic Superconductor / Ferromagnet Heterosystems (Unpublished doctoral dissertation). University of Antwerp, Antwerp, Belgium.
[9] Berdiyorov, G. (2007). Vortex Structure and Critical Parameters in Superconducting Thin Films with Arrays of Pinning Centers (Unpublished doctoral dissertation). University of Antwerp, Antwerp, Belgium.
[10] Gubin, A. I., Il’in, K. S., Vitusevich, S. A., Siegel, M., & Klein, N. (2005). Dependence of magnetic penetration depth on the thickness of superconducting Nb thin films. Phys. Rev. B, 72, 064503.
[11] Kang, L., Jin,,B. B., Liu, X. Y., Jia,,X. Q., Chen, J., Ji, Z. M., Xu, W. W., Wu, P. H., Mi, S. B., Pimenov, A. Y., Wu, J., & Wang, B. G. (2011). Suppression of superconductivity in epitaxial NbN ultrathin films. J. Appl. Phys., 109, 033908.
[12] Ivry, Y., Kim, C. S., Dane, A. E., De Fazio, D., McCaughan, A. N., Sunter, K. A., Zhao, Q., & Berggren, K. K. (2014). Universal scaling of the critical temperature for thin films near the superconducting-to-insulating transition. Phys. Rev. B, 90, 214515.
[13] Guo, Y., Zhang, Y. F., Bao, X. Y., Han, T. Z., Tang, Z., Zhang, L. X., Zhu, W. G., Wang, E. G., Niu, Q., Qiu, Z. Q., Jia, J. F., Zhao, Z. X., Xue, Q. K. (2004). Superconductivity modulated by quantum size effects. Science, 306, 1915-1917.
[14] Özer, M. M., Wang, C. Z., Zhang Z. Y., & Weitering, H. H. (2009). Quantum size effects in the growth, coarsening, and properties of ultra-thin metal films and related nanostructures. J. Low Temp. Phys., 157, 221.
[15] Czoschke, P., Hong, H., Basile, L. & Chiang, T. C. (2005). Quantum size effects in the surface energy of Pb/Si(111) film nanostructures studied by surface x-ray diffraction and model calculations. Phys. Rev. B, 72, 075402.
[16] Chiang, T. C. (2004). Superconductivity in Thin Films. Science, 306, 1900.
[17] Wei, C. M., & Chou, M. Y. (2002). Theory of quantum size effects in thin Pb(111) films. Phys. Rev. B, 66, 233408.
[18] Kiejnaa, A., Peisert, J., & Scharoch, P. (1999). Quantum-size effect in thin Al(110) slabs. Surf. Sci., 432, 54.
[19] Luh, D. -A., Miller, T., Paggel, J. J., Chou, M. Y., & Chiang, T.-C. (2001). Quantum Electronic Stability of Atomically Uniform Films. Science, 292, 1131.
[20] Sun, B., Zhang, P., Duan, S., & Zhao, X. -G. (2007). First-principles calculations of Cs adsorbed on Cu(001): Quantum size effect in surface energetics and surface chemical reactivities. Phys. Rev. B, 75, 245422.
[21] Benkahoul, M. (2005). Niobium nitride based thin films deposited by DC reactive magnetron sputtering: NbN, NbSiN and NbAlN (Unpublished doctoral dissertation). University of Constantine, Algeria.
[22] Dane, A. E. (2015). Reactive DC magnetron sputtering of ultrathin superconducting niobium nitride films (Unpublished doctoral dissertation). Massachusetts Institute of Technology, Cambridge, Massachusetts.
[23] Chockalingam, S. P., Chand, M., Kamlapure, A., Jesudasan, J., Mishra, A., Tripathi, V., & Raychaudhuri, P. (2008). Superconducting properties and Hall effect of epitaxial NbN thin films. Phys. Rev. B, 79, 094509.
[24] Aoyagi, M., Nakagawa, H., Nakagawa, Kurosawa, I. & Takada, S. (1992). NbN/MgO/NbN Josephson Junctions for Integrated Circuits. Jpn. J. AppL Phys., 31, 1778-1783.
[25] Irie, A., Hamasaki, K., Yamashita, T., Matsui, T. & Komiyama, B. (1991). High-gain DC SQUID magnetometers with NbN nanobridges. IEEE Trans. Magn., 27, 2967.
[26] Meledin, D., Tong, C. -Y. E., Blundell, R., Kaurova, N., Smirnov, K., Voronov, B., & Goltsman, G. (2003). Study of the IF bandwidth of NbN HEB mixers based on crystalline quartz substrate with an MgO buffer layer. IEEE Trans. Appl. Superconduct., 13, 164-167.
[27] Alessandrini, E. I., Sadagopan, V., & Laibowitz, R. B. (1971). Relationship between Structure and Sputtering Parameters in NbN Films. J. Vac. Sci. Technol., 8, 188.
[28] Fischer, C., Fuchs, G., Holzapfel, B., Schüpp-Niewa, B., & Warlimont, H. (2005) Functional Materials. In W. Martienssen & H. Warlimont (Eds.), Springer Handbook of Condensed Matter and Materials Data (pp. 704). Berlin, German: Spinger.
[29] Ethridge, E. C., Erwin, S. C., & Pickett, W. E. (1996). Nb4N3: Polymorphism in crystalline niobium nitrides. Phys. Rev. B, 53, 12563–12565.
[30] Zou, Y., Qi, X., Zhang, C., Ma, S., Zhang, W., Li, Y., Chen, T., Wang, X., Chen, Z., Welch, D., Zhu, P., Liu, B., Li, Q., Cui, T. & Li, B. (2016). Discovery of Superconductivity in Hard Hexagonal ε-NbN. Sci. Rep., 6, 22330.
[31] Pietrovito A. & Davies P. (2007). Describing crystalline solids [Online]. Retrieved June 13th, 2018, from http://www.seas.upenn.edu/~chem101/sschem/solidstatechem.html
[32] Farha, A. H., Ufuktepe, Y., Myneni, G., & Elsayed-Ali, H. E. (2015, Dec 4). Pulsed laser deposition of niobium nitride thin films applied [Online]. Retrieved June 13th, 2018, from http://slideplayer.com/slide/9166965/
[33] Cansever, N., Danişman, M., Kazmanli, K. (2008). The effect of nitrogen pressure on cathodic arc deposited NbN thin films. Surf. Coat. Technol., 202, 5919-5923.
[34] Shoji, A., Kiryu, S., & Kohjiro, S. (1992). Superconducting properties and normal-state resistivity of single-crystal NbN films prepared by a reactive rf-magnetron sputtering method. Appl. Phys. Lett., 60, 1624.
[35] Mathur, M. P., Deis, D. W., & Gavaler, J. R. (1972). Lower critical field measurements in NbN bulk and thin Films. J. Appl. Phys., 43, 3158.
[36] Shiino, T., Shiba, S., Sakai, N., Yamakura, T., Jiang, L., Uzawa, Y., Maezawa, H., & Yamamoto, S. (2010). Improvement of the critical temperature of superconducting NbTiN and NbN thin films using the AlN buffer layer. Supercond. Sci. Technol., 23, 045004.
[37] Krause1, S., Meledin, D., Desmaris, V., Pavolotsky, A., Belitsky, V., Rudziński, M., & Pippel, E. (2014). Epitaxial growth of ultra-thin NbN films on AlxGa1−xN buffer-layers. Supercond. Sci. Technol., 27, 065009.
[38] Gao, J. R., & Hajenius, M. (2007). Monocrystalline NbN nanofilms on a 3C-SiC/Si substrate. Appl. Phys. Lett., 91, 062504.
[39] Dochev, D., Desmaris, V., Pavolotsky, A., Meledin, D., Lai, Z., Henry, A., Janzén, E., Pippel, E., Woltersdorf, J., & Belitsky, V. (2011). Growth and characterization of epitaxial ultra-thin NbN films on 3C-SiC/Si substrate for terahertz applications. Supercond. Sci. Technol., 24, 035016.
[40] Zhang, J. J., Su, X., Zhang, L., Zheng, L., Wang, X. F., & You, L. (2013). Improvement of the superconducting properties of NbN thin film on single-crystal silicon substrate by using a TiN buffer layer. Supercond. Sci. Technol., 26, 045010.
[41] Wang, Z., Kawakami, A., Uzawa, Y., & Komiyama, B. (1996). Superconducting properties and crystal structures of singlecrystal niobium nitride thin films deposited at ambient substrate temperature. J. Appl. Phys., 79, 7837.
[42] Villegier, J. -C., Bouat, S., Cavalier, P., Setzu, R., Espiau de Lamaestre, R., Jorel, C., Odier, P., Guillet, B., Mechin, L., Chauvat, M. P., Ruterana, P., & P. Ruterana. (2009). Epitaxial growth of sputtered ultra-thin NbN layers and junctions on sapphire. IEEE Trans. Appl. Supercond., 19, 3375.
[43] Shoji, A., Kiryu, S., & Kohjiro, S. (1992). Superconducting properties and normal-state resistivity of single-crystal NbN films prepared by a reactive rf-magnetron sputtering method. Appl. Phys. Lett., 60, 1624.
[44] Semenov, A., Günther, B., Böttger, U., Hübers, H.-W. (2009). Optical and transport properties of ultrathin NbN films and nanostructures. Phys. Rev. B, 80, 054510.
[45] Lin, S. -Z., Ayala-Valenzuela, O., D. McDonald, R., Bulaevskii, L. N., Holesinger, T. G., Ronning, F., Weisse-Bernstein, N. R., Williamson, T. L., Mueller, A. H., Hoffbauer, M. A., Rabin, M. W., & Graf, M. J. (2013). Characterization of the thin-film NbN superconductor for single-photon detection by transport measurements. Phys. Rev. B, 87, 184507.
[46] Hazra, D., Tsavdaris, N., Jebari, S., Grimm, A., Blanchet, F., Mercier, F., Blanquet, E., Chapelier, C., & Hofheinz, M. (2016). Superconducting properties of very high quality NbN thin films grown by high temperature chemical vapor deposition Supercond. Sci. Technol., 29, 105011.
[47] Committee on Assessment of Combat Hybrid Power Systems. (2002). High-temperature, wideband gap materials for high-power electric power conditioning. In Committee on Assessment of Combat Hybrid Power Systems (Eds.), Combat hybrid power system component technologies: technical challenges and research priorities (pp. 35). Washington, D.C.: National Academy of Science.
[48] Collett, B. M. (1970). Scanning electron microscopy: a review and report of research in wood science. Wood and Fiber, 2, 113–133.
[49] Mølhave, K. (2004). Tools for In-situ Manipulation and Characterization of Nanostructures (Unpublished doctoral dissertation). Technical University of Denmark, Lyngby, Demark.
[50] Hansma, P. K., Elings, V. B., Marti, O., Bracker, C. E. (1988). Scanning tunneling microscopy and atomic force microscopy: application to biology and technology. Science, 242, 209.
[51] Hrouzek, M. (2007). Atomic Force Microscopy, modeling, estimation and control (Unpublished doctoral dissertation). Joseph Fourier University, Grenoble, French.
[52] Wang, Z. L. (2003). New development in transmission electron microscopy for nanotechnology. Adv. Mater., 15, 1497.
[53] Kanda, K. (1991). Energy dispersive X-ray spectrometer. United States Patent 5065020.
[54] Dutrow, B. L. & Clark, C. M. X-ray Powder Diffraction (XRD) [Online]. Retrieved June 13th, 2018, from https://serc.carleton.edu/research_education/geochemsheets/techniques/XRD.html
[55] Sultana, R., Rani, P., Hafiz, A.K., Goyal, R., Awana, V. P. S. (2016). An inter comparison of the upper critical fields (Hc2) of different superconductors - YBa2Cu3O7, MgB2, NdFeAsO0.8F0.2, FeSe0.5Te0.5 and Nb2PdS5. J. Supercond. Novel Magn., 29, 1399.
[56] Sadovskii, M. V. (1997). Superconductivity and localization. Phys. Rep., 282, 225.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70959-
dc.description.abstract由於擁有豐富多樣的化學特性及結構,使得氮化鈮化合物有著許多的物理特性。在NbxNy化合物中某些氮化鈮化合物有著超導特性。其中具有立方晶格的δ-NbN有著高達17 K的超導臨界溫度。δ-NbN因為有著卓越的特性,例如:高臨界溫度、快速的內在電子-聲子交互作用、和高超導臨界電流密度,已經被廣泛應用在許多超靈敏元件上。尤以應用超薄δ-NbN薄膜製成的紅外線熱電子混頻探測器在兆赫頻譜的偵測上有著優良的性能表現,已被運用在一些天文望遠鏡中。
在王明杰博士研究團隊裡的張曉文博士和其他成員的協助下,完成這篇論文。研究重點放在高品質超薄δ-NbN超導薄膜的製備以及其物理特性的研究。在760°C下,使用直流磁控濺鍍系統,在立方晶格的碳化矽基板上磊晶製備出超薄δ-NbN薄膜的方法,鍍膜速率大約是每秒0.05奈米。δ-NbN薄膜有著超導特性,即便是薄至2.14 ± 0.03奈米的薄膜(大約是5層晶格的厚度)亦然。利用高解析穿透式電子顯微鏡的影像,不僅能夠證實薄膜極佳的磊晶性,也能夠估算薄膜實際厚度以及其晶格常數。
我們利用了高達9特斯拉的外加磁場,探討了厚度範圍落在2.14 ± 0.03至4.95 ± 0.03奈米超薄氮化鈮薄膜的磁傳輸性質。利用量得的霍爾電阻,可以計算出載子濃度n,例如3.84 ± 0.02 奈米厚的薄膜,其載子濃度為每立方米約有(4.13 ± 0.04) × 1028個。一般而言,薄膜的臨界溫度會隨著薄膜厚度的減少而降低。臨界溫度的降低可以用標度律(scaling law)來解釋,描述晶格無序和超導性質兩者彼此競爭。而令我們感到驚訝的是臨界溫度和20 K常態電阻率隨著厚度的變化有著明顯的震盪,震盪週期約為0.5奈米。氮化鈮薄膜的臨界溫度在外加磁場下被抑制。臨界溫度對上臨界磁場的圖形,使用經驗公式μ0HC2(T) = μ0HC2(0)(1-t2)/(1+t2)作外插法後,可得到絕對零度時的上臨界磁場,其中 t = T/TC(μ0H = 0)。例如2.14 ± 0.03奈米的薄膜,絕對零度的上臨界磁場為8.13 ± 0.16特斯拉。而正如同臨界溫度和20 K常態電阻率,絕對零度的上臨界磁場亦隨著厚度變化而呈現震盪。而被用來解釋其他超導超薄膜臨界溫度震盪的量子尺寸效應,也能用來解釋我們氮化鈮薄膜中臨界溫度、20 K常態電阻率和絕對零度上臨界磁場的震盪。
zh_TW
dc.description.abstractNiobium nitride compounds have rich physical properties due to their complexities in stoichiometry and structures. Among these NbxNy compounds, some of them show superconductivity. The δ-NbN phase, with a cubic crystalline symmetry, has a high superconducting transition temperature (TC), up to 17 K. Ultra-thin superconducting δ-NbN film has been widely applied on ultrasensitive devices due to its prominent physical properties, such as having a high superconducting transition temperature, a short intrinsic electron-phonon interaction time, and a high superconducting critical current density. Especially, hot-electron-bolometer (HEB) mixers using -NbN ultra-thin film demonstrate excellent performance on terahertz detection and are used on several astronomical telescopes.
In my thesis study, I focused on the fabrication of high quality ultra-thin superconducting -NbN films and characterize their physical properties with the help of Dr. Hsiao-Wen Chang and other members in Dr. Ming-Jye Wang’s research group. We have realized the epitaxial growth of ultra-thin δ-NbN films on (100)-oriented 3C-SiC/Si substrates at temperature around 760°C by DC reactive magnetron sputtering. The deposition rate is about 0.05 nm/s. The δ-NbN films show superconductivity even with a thickness of 2.14 ± 0.03 nm (∼ 5 unit cells). The high-resolution transmission electron microscope images of films confirm excellent epitaxy and are used for estimating films’ thickness and lattice constant.
We have investigated the magnetotransport properties of ultra-thin NbN films with the thickness ranging from 2.14 ± 0.03 nm to 4.95 ± 0.03 nm under external magnetic field up to 9 Tesla. From the measured Hall resistances, the carrier concentration, n, of film can be calculated, for example n ~ (4.13 ± 0.04) × 1028 m-3 for 3.84 ± 0.02 nm film. Generally, the TC of film decreases as the film thickness is reduced. The degradation of TC can be explained by the scaling law which describes the competition between disorder and superconductivity. Surprisingly, some distinct oscillations of both TC and ρ20K as a function of film thickness are observed with a period near 0.5 nm, where ρ20K is the resistivity of film at 20 K. The transition temperature of NbN film is suppressed under external magnetic field. The upper critical field at zero temperature, μ0HC2(0), was estimated by using the empirical equation of μ0HC2(T) = μ0HC2(0)(1-t2)/(1+t2), where t = T/TC(μ0H = 0). For example, the μ0HC2(0) of 2.14 ± 0.03 nm film is 8.13 ± 0.16 Tesla. Similar to TC and ρ20K, the μ0HC2(0) of film is also oscillating in thickness. The oscillation of TC, ρ20K, and μ0HC2(0) might be explained by the quantum size effect which was used to explain the oscillation of TC in thickness in other superconducting ultra-thin films.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T04:45:50Z (GMT). No. of bitstreams: 1
ntu-107-R05244002-1.pdf: 4451058 bytes, checksum: 8a8781f7bcc6d3129b2184d4bbc77934 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents口試委員會審定書 #
誌謝 i
中文摘要 ii
ABSTRACT iv
CONTENTS vi
LIST OF FIGURES ix
LIST OF TABLES xi
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Goal 5
1.3 Structure 5
Chapter 2 Type-II Superconductor 6
2.1 Type-II Superconductor 6
2.1.1 General Type-II Superconductor 6
2.1.2 Ultra-thin Type-II Superconductor 8
2.2 NbN Superconductor 11
2.2.1 Nb-N System 12
2.2.2 General Properties of NbN Bulk Superconductor 14
2.2.3 Ultra-thin NbN Superconductor 14
Chapter 3 Growth and Analysis Method of the Ultra-thin NbN Films 16
3.1 Growth of Ultra-thin NbN Film on 3C-SiC/Si Substrate 16
3.1.1 Introduction and Preparation of 3C-SiC/Si Substrate 16
3.1.2 High Temperature Reactive DC Magnetron Sputtering System 18
3.1.3 The Growth of Ultra-thin NbN Films 21
3.2 Material Analysis 22
3.2.1 Scanning Electron Microscope (SEM) 23
3.2.2 Atomic Force Microscope (AFM) 23
3.2.3 Transmission Electron Microscopy (TEM) 24
3.2.4 Energy-dispersive X-ray Spectroscopy (EDS) 24
3.2.5 X-ray Diffraction (XRD) 25
3.3 The Properties of the Hall Bar Structure with NbN Ultra-thin Films 25
3.4 Magnetotransport Properties 26
Chapter 4 Material characterization of NbN Films 28
4.1 SEM and AFM 28
4.2 EDS 28
4.3 HRTEM 30
4.3.1 The Thickness Determination by Images of HRTEM 30
4.3.2 The Determination of Lattice Constant by Images of HRTEM 35
4.4 XRD 39
Chapter 5 Transport Properties of Ultra-thin NbN Films 40
5.1 Superconductivity Suppression in NbN Ultra-thin Films 40
5.1.1 Thickness Dependence of TC and ρn 40
5.1.2 Thickness Dependence of Upper Critical Field (μ0HC2) 42
5.1.3 Carrier Concentration 46
5.2 Analysis 50
5.2.1 Proximity Effect 50
5.2.2 Scaling Law 50
5.2.3 Quantum Size Effect 52
Chapter 6 Conclusion 55
REFERENCE 56
dc.language.isoen
dc.title超薄氮化鈮磊晶薄膜之製備及其超導特性之研究zh_TW
dc.titleFabrication and Superconductivity of Epitaxial Ultra-thin δ-NbN Films on 3C-SiC/Si Substrateen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.coadvisor王明杰(Ming-Jye Wang)
dc.contributor.oralexamcommittee林昭吟(Jauyn Grace Lin),陳鴻宜(Hong-Yi Chen)
dc.subject.keyword磁控濺鍍,磊晶成長,超導超薄膜,δ-NbN,zh_TW
dc.subject.keywordmagnetron sputtering,epitaxial growth,superconducting ultra-thin ?lm,δ-NbN,en
dc.relation.page56
dc.identifier.doi10.6342/NTU201802252
dc.rights.note有償授權
dc.date.accepted2018-08-02
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept天文物理研究所zh_TW
顯示於系所單位:天文物理研究所

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  目前未授權公開取用
4.35 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved