Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70918
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor游景雲(Gene Jiing-Yun You)
dc.contributor.authorChi-Chun Changen
dc.contributor.author張期鈞zh_TW
dc.date.accessioned2021-06-17T04:43:47Z-
dc.date.available2019-08-13
dc.date.copyright2018-08-13
dc.date.issued2017
dc.date.submitted2018-08-03
dc.identifier.citationReferences
[1] Agresti, A., & Coull, B. A. (1998). Approximate is better than “exact” for interval estimation of binomial proportions. The American Statistician, 52(2), 119-126.
[2] Arnold, B. C., Balakrishnan, N., & Nagaraja, H. N. (2008). A first course in order statistics. Society for Industrial and Applied Mathematics.
[3] Bayazit, M., & Ünal, N. E. (1990). Effects of hedging on reservoir performance. Water resources research, 26(4), 713-719.
[4] Brown, L. D., Cai, T. T., & DasGupta, A. (2001). Interval estimation for a binomial proportion. Statistical science, 101-117.
[5] Bower, B. T., Hufschmidt, M. M., & Reedy, W. W. (1962). Operating procedures: Their role in the design of water-resource systems by simulation analyses. Design of water resource systems, 443-458.
[6] Brier, G. W. (1950). Verification of forecasts expressed in terms of probability. Monthly weather review, 78(1), 1-3.
[7] Buizza, R., & Palmer, T. N. (1998). Impact of ensemble size on ensemble prediction. Monthly Weather Review, 126(9), 2503-2518.
[8] Choi, S. C., & Clark, V. A. (1970). Sequential decision for a binomial parameter with delayed observations. Biometrics, 411-420.
[9] Chow, V. T., Maidment, D. R., & Mays, L. W. (1988). Applied hydrology.
[10] de Elía, R., & Laprise, R. (2005). Diversity in interpretations of probability: implications for weather forecasting. Monthly Weather Review, 133(5), 1129-1143.
[11] Draper, A. J., & Lund, J. R. (2004). Optimal hedging and carryover storage value. Journal of Water Resources Planning and Management, 130(1), 83-87.
[12] Gal, S. (1979). Optimal management of a multireservoir water supply system. Water Resources Research, 15(4), 737-749.
[13] Gneiting, T., Balabdaoui, F., & Raftery, A. E. (2007). Probabilistic forecasts, calibration and sharpness. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 69(2), 243-268.
[14] Hamill, T. M. (1997). Reliability diagrams for multicategory probabilistic forecasts. Weather and forecasting, 12(4), 736-741
[15] Hashimoto, T., Stedinger, J. R., & Loucks, D. P. (1982). Reliability, resiliency, and vulnerability criteria for water resource system performance evaluation. Water resources research, 18(1), 14-20.
[16] Hyndman, R. J., & Koehler, A. B. (2006). Another look at measures of forecast accuracy. International journal of forecasting, 22(4), 679-688..
[17] Karamouz, M., Imen, S., & Nazif, S. (2012). Development of a demand driven hydro-climatic model for drought planning. Water resources management, 26(2), 329-357.
[18] Kimball, M. S. (1990). Precautionary Saving in the Small and in the Large. Econometrica: Journal of the Econometric Society, 53-73.
[19] Lahiri, K., & Wang, J. G. (2005). Evaluating Probability Forecasts: Calibration Isn't Everything. Unpublished Working Paper, Department of Economics, Univeristy of Albany, State Univerisity of New York.
[20] Loucks, D. P., Stedinger, J. R., & Haith, D. A. (1981). Water resource systems planning and analysis. Prentice-Hall..
[21] Maass, A., Hufschmidt, M. M., Dorfman, R., Thomas, H. A., Marglin, S. A., Fair, G. M., ... & Fiering, M. B. (1962). Design of water-resource systems.
[22] Murphy, A. H., & Winkler, R. L. (1977). Can weather forecasters formulate reliable probability forecasts of precipitation and temperature. National weather digest, 2(2), 2-9.
[23] Murphy, A. H. (1993). What is a good forecast? An essay on the nature of goodness in weather forecasting. Weather and forecasting, 8(2), 281-293.
[24] Mylne, K. R. (2002). Decision‐making from probability forecasts based on forecast value. Meteorological Applications, 9(3), 307-315.
[25] Newcombe, R. G. (1998). Interval estimation for the difference between independent proportions: comparison of eleven methods. Statistics in medicine, 17(8), 873-890.
[26] Newcombe, R. G. (1998). Two‐sided confidence intervals for the single proportion: comparison of seven methods. Statistics in medicine, 17(8), 857-872.
[27] Piegat, A. (2011). Uncertainty of probability. Recent Advances in Fuzzy Sets, Intuitionistic Fuzzy Sets, Generalized Nets and Related Topics, 1, 159-173..
[28] Schnader, M. H., & Stekler, H. O. (1990). Evaluating predictions of change. Journal of Business, 99-107.
[29] Shiau, J. T., & Lee, H. C. (2005). Derivation of optimal hedging rules for a water-supply reservoir through compromise programming. Water resources management, 19(2), 111-132.
[30] Shih, J. S., & ReVelle, C. (1995). Water supply operations during drought: A discrete hedging rule. European journal of operational research, 82(1), 163-175.
[31] Stedinger, J. R. (1984). The performance of LDR models for preliminary design and reservoir operation. Water Resources Research, 20(2), 215-224.
[32] Thornes, J. E., & Stephenson, D. B. (2001). How to judge the quality and value of weather forecast products. Meteorological Applications, 8(03), 307-314.
[33] Tu, M. Y., Hsu, N. S., Tsai, F. T. C., & Yeh, W. W. G. (2008). Optimization of hedging rules for reservoir operations. Journal of Water Resources Planning and Management, 134(1), 3-13.
[34] United Stated Army Corps of Engineers(USACE). (2014). Uncertainty Estimates for Graphical. (Non-Analytic) Frequency Curves, 6th ed, Hydrologic Engineering Center.
[35] You, J. Y., & Cai, X. (2008). Hedging rule for reservoir operations: 2. A numerical model. Water resources research, 44(1).
[36] You, J. Y., & Cai, X. (2008). Hedging rule for reservoir operations: 1. A theoretical analysis. Water resources research, 44(1).
[37] 林郁雯 (2015). 水庫排砂即時操作之研究. 碩士論文. 國立臺灣大學土木工程學研究所, 台北.
[38] 周冠汶 (2016). 運用序率動態規劃與系集入流預報於水庫枯旱供水策略擬定. 碩士論文. 國立臺灣大學土木工程學研究所, 台北.
[39] 經濟部水利署北區水資源局 (2013). 石門水庫運用要點.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70918-
dc.description.abstract臺灣在水資源的使用上,主要仰賴於水庫的水資源操作。雖然台灣的降雨量十分充沛,但因地形而導致空間與空間上的降雨不均,並使得大部分的水資源無法被利用。另外,各式各樣常用之預報,如定性預報、機率預報、甚至是系集預報的好壞在極大程度上影響決策者在許多方面的決定,例如入流預報對水庫的操作的影響。也因此許多方法被提出,用來判定是否預報能符合準確的要求,但在近年受到極端氣候影響,預報在不論降雨或及水庫入流的預估上已無法提供決策者準確的資訊,以至在面對如梅雨延後是缺水時常遭受重大損失。預報的校準通常藉由圖料精度表或是根據貝式定理的後測機率來執行,此雖可增加其準確度,但面對愈加嚴重的氣候變遷,其效果仍十分有限。
本研究旨在提供機率預報事前的不確定性,並運用於入流預報觀察對水庫操作的影響。在不確定性的事前預估中,採用的方法根據了(1)順序統計法以及(2)回歸週期。其概念為二項分配的抽樣概念以及根據某水文現象的統計特性,利用現有水文資料,分析水文變數設計值與出現頻率(或重現期)之間的定量關係。
考慮了未來不確定性後,假設檢定便會對操作產生影響。考慮第一型錯誤和第二型錯誤可能發生的情況,使預估的成本提高,但當預估越靠近需求時,成本卻會因事先考慮的錯誤而降低。將不確定性帶到避險準則(period hedging rule)中,發現在相信未來有不確定性的情況下,考慮事前不確定的操作在低水位時的可降低損失,尤其於面臨乾旱情況時。最後將不確定性應用於模擬乾旱年預報在石門水庫的實際操作,發現當水庫於平均水位下時,考慮事前不確定性的操作能有顯著效益。並且適當的不確定性預估,能有效在各時期水位以及各時期入流上將損失大幅度降低。近年來極端旱象頻率節節攀升,過去預報的精準度已跟不上日益顯著的氣候變遷,為此機率預報不確定性概念將未來真實機率納入考量以提高預報之準確性,協助決策者做出較為周全之決策,藉此降低整體操作損失。
zh_TW
dc.description.abstractIn Taiwan, utilization of water resources mainly relies on the reservoirs. Although the precipitation is abundant, lots of water is unavailable due to steep landform and spatial-temporally unequal distribution of rainfall. Besides, the quality the probabilistic forecasts often used, for example deterministic forecast, probabilistic forecast or ensemble forecast, would strongly affect decision-maker to make the operation policy. For instance, the influence of inflow forecast in reservoir operation. Many methods are proposed to adjust the accuracy of forecasts. However, forecasts are more inaccurate because of the impact of extreme events occurring. Although forecast verifications could follow reliability diagram or Bayes' theorem - posterior probability, the limitation still exists due to severe climate change.
This study aims to give the uncertainty of probabilistic forecast in reservoir operation before events occurring. The method estimating the uncertainty based on two concepts – Order Statistics Method and Return Period. The concepts are the random sampling of Binomial Distribution and the relationship between hydraulic coefficients and return period calculated by statistics characteristics of hydraulic events. The Hypothesis test would be proposed, and the influence in the operation would be considered. With type I error and Type II error, the cost of the forecast would increase. However, the cost would get lower when forecast approaches demand target because considering uncertainty beforehand. Next, we apply the uncertainty to hedging rule. The operating results represent that under the existing of future uncertainty, operating cost tends to decrease under the low water level, especially in drought. Moreover, the uncertainty is applied to a practical operation for Shihmen reservoir during drought. The efficiency of considering the uncertainty of probabilistic forecast is evident when the water level is low. Besides, the cost would reduce apparently when during each water level and inflow with proper uncertainty estimate. With the increasing frequency of extreme events during drought, the accuracy of the probabilistic forecast is not high as before. The concept of the uncertainty of probabilistic forecast provides the decision maker a different aspect of treating the future uncertainty. As a result, the total loss would be diminished.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T04:43:47Z (GMT). No. of bitstreams: 1
ntu-106-R04521310-1.pdf: 5995292 bytes, checksum: f1371061720f100e88c75a1f742d46fd (MD5)
Previous issue date: 2017
en
dc.description.tableofcontentsCONTENTS
摘要 i
ABSTRACT iii
CONTENTS v
LIST OF FIGURES vii
LIST OF TABLES xiii
Chapter 1 Introduction 1
1.1 The overview of distribution and utilization of water resources 1
1.2 Research objectives 4
Chapter 2 Literature Review 8
2.1 Water allocation 9
Chapter 3 Model Formulation 16
3.1 Uncertainty estimation 17
3.1.1 Return Period 17
3.1.2 Order Statistics Method 23
3.2 The difference between Return Period and Order Statistics Method 29
3.3 Value-reliability diagram 31
3.4 Characteristics analysis 34
3.5 Two-period model 40
3.5.1 Hedging rule 40
3.5.2 The development of two period model 41
Chapter 4 Case Study 68
4.1 Shihmen reservoir 68
4.2 Value - reliability diagrams 70
4.3 Loss comparison 72
Chapter 5 Conclusions and recommendations 81
5.1 Conclusions 81
5.2 Recommendations 83
References 84
Appendix 88
A. Asymptotic approximation 88
dc.language.isoen
dc.subject預報zh_TW
dc.subject水庫操作zh_TW
dc.subject不確定性zh_TW
dc.subject假設檢定zh_TW
dc.subjectreservoir operationen
dc.subjectForecasten
dc.subjecthypothesis testen
dc.subjectuncertainty of probabilistic forecasten
dc.title機率預報不確定性於水資源調配之影響zh_TW
dc.titleThe Impact of the Uncertainty of Probabilistic Forecast on Water Resource Allocationen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee余化龍(Hwa-Lung Yu),胡明哲(Ming-Che Hu),楊智傑(Jay Chih-Chieh Young),劉宏仁(Hung-Jen Liu)
dc.subject.keyword預報,水庫操作,假設檢定,不確定性,zh_TW
dc.subject.keywordForecast,reservoir operation,hypothesis test,uncertainty of probabilistic forecast,en
dc.relation.page91
dc.identifier.doi10.6342/NTU201703293
dc.rights.note有償授權
dc.date.accepted2018-08-03
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept土木工程學研究所zh_TW
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  未授權公開取用
5.85 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved