Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 醫學檢驗暨生物技術學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70904
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor方偉宏
dc.contributor.authorRong-Syuan Yenen
dc.contributor.author顏榕宣zh_TW
dc.date.accessioned2021-06-17T04:43:11Z-
dc.date.available2018-08-30
dc.date.copyright2018-08-30
dc.date.issued2018
dc.date.submitted2018-08-03
dc.identifier.citationAn, Q., Robins, P., Lindahl, T., and Barnes, D.E. (2005). C→ T mutagenesis and γ‐radiation sensitivity due to deficiency in the Smug1 and Ung DNA glycosylases. The EMBO journal 24, 2205-2213.
Bennett, S., and Mosbaugh, D. (1992). Characterization of the Escherichia coli uracil-DNA glycosylase. inhibitor protein complex. Journal of Biological Chemistry 267, 22512-22521.
Caprioli, R.M., Farmer, T.B., and Gile, J. (1997). Molecular imaging of biological samples: localization of peptides and proteins using MALDI-TOF MS. Analytical chemistry 69, 4751-4760.
Caradonna, S., and Cheng, Y.-C. (1980). Uracil DNA-glycosylase. Purification and properties of this enzyme isolated from blast cells of acute myelocytic leukemia patients. Journal of Biological Chemistry 255, 2293-2300.
Chait, B.T., Wang, R., Beavis, R.C., and Kent, S. (1993). Protein ladder sequencing. Science 262, 89-92.
Di Noia, J.M., and Neuberger, M.S. (2007). Molecular mechanisms of antibody somatic hypermutation. Annu Rev Biochem 76, 1-22.
Domena, J.D., and Mosbaugh, D.W. (1985). Purification of nuclear and mitochondrial uracil-DNA glycosylase from rat liver. Identification of two distinct subcellular forms. Biochemistry 24, 7320-7328.
Drohat, A.C., Jagadeesh, J., Ferguson, E., and Stivers, J.T. (1999). Role of electrophilic and general base catalysis in the mechanism of Escherichia coli uracil DNA glycosylase. Biochemistry 38, 11866-11875.
Du, Y.C., Jiang, H.X., Huo, Y.F., Han, G.M., and Kong, D.M. (2016). Optimization of strand displacement amplification-sensitized G-quadruplex DNAzyme-based sensing system and its application in activity detection of uracil-DNA glycosylase. Biosens Bioelectron 77, 971-977.
Duncan, B.K., and Chambers, J.A. (1984). The cloning and overproduction of Escherichia coli uracil-DNA glycosylase. Gene 28, 211-219.
Duncan, B.K., and Weiss, B. (1982). Specific mutator effects of ung (uracil-DNA glycosylase) mutations in Escherichia coli. Journal of bacteriology 151, 750-755.
Duncan, J., Hamilton, L., and Friedberg, E.C. (1976). Enzymatic degradation of uracil-containing DNA. II. Evidence for N-glycosidase and nuclease activities in unfractionated extracts of Bacillus subtilis. Journal of virology 19, 338-345.
Fang, W.-h., Wang, B.-J., Wang, C.-H., Lee, S.-J., Chang, Y.-T., Chuang, Y.-K., and Lee, C.-N. (2003). DNA loop repair by Escherichia coli cell extracts. Journal of Biological Chemistry 278, 22446-22452.
Frederico, L.A., Kunkel, T.A., and Shaw, B.R. (1990). A sensitive genetic assay for the detection of cytosine deamination: determination of rate constants and the activation energy. Biochemistry 29, 2532-2537.
Griffin, T.J., and Smith, L.M. (2000). Single-nucleotide polymorphism analysis by MALDI–TOF mass spectrometry. Trends in biotechnology 18, 77-84.
Haff, L.A., and Smirnov, I.P. (1997). Single-nucleotide polymorphism identification assays using a thermostable DNA polymerase and delayed extraction MALDI-TOF mass spectrometry. Genome research 7, 378-388.
Imai, K., Slupphaug, G., Lee, W.I., Revy, P., Nonoyama, S., Catalan, N., Yel, L., Forveille, M., Kavli, B., Krokan, H.E., et al. (2003). Human uracil-DNA glycosylase deficiency associated with profoundly impaired immunoglobulin class-switch recombination. Nat Immunol 4, 1023-1028.
Ingraham, H.A., Dickey, L., and Goulian, M. (1986). DNA fragmentation and cytotoxicity from increased cellular deoxyuridylate. Biochemistry 25, 3225-3230.
Jiao, F., Qian, P., Qin, Y., Xia, Y., Deng, C., and Nie, Z. (2016). A novel and label-free biosensors for uracil-DNA glycosylase activity based on the electrochemical oxidation of guanine bases at the graphene modified electrode. Talanta 147, 98-102.
Johnson, K.A., and Goody, R.S. (2011). The original Michaelis constant: translation of the 1913 Michaelis–Menten paper. Biochemistry 50, 8264-8269.
Jurinke, C., van den Boom, D., Jacob, A., Tang, K., Wörl, R., and Köster, H. (1996). Analysis of Ligase Chain Reaction Products via Matrix-Assisted Laser Desorption/Ionization Time-of-Flight–Mass Spectrometry. Analytical biochemistry 237, 174-181.
Köster, H., Tang, K., Fu, D.-J., Braun, A., Van Den Boom, D., Smith, C.L., Cotter, R.J., and Cantor, C.R. (1996). A strategy for rapid and efficient DNA sequencing by mass spectrometry. Nature biotechnology 14, 1123.
Karas, M., Bachmann, D., and Hillenkamp, F. (1985). Influence of the wavelength in high-irradiance ultraviolet laser desorption mass spectrometry of organic molecules. Analytical chemistry 57, 2935-2939.
Kavli, B., Otterlei, M., Slupphaug, G., and Krokan, H.E. (2007). Uracil in DNA—general mutagen, but normal intermediate in acquired immunity. DNA repair 6, 505-516.
Krokan, H., and Urs Wittwer, C. (1981). Uracil DNA-glycosylase from HeLa cells: general properties, substrate specificity and effect of uracil analogs. Nucleic acids research 9, 2599-2614.
Krokan, H.E., Drabløs, F., and Slupphaug, G. (2002). Uracil in DNA–occurrence, consequences and repair. Oncogene 21, 8935.
Lindahl, T. (1974). An N-glycosidase from Escherichia coli that releases free uracil from DNA containing deaminated cytosine residues. Proceedings of the National Academy of Sciences 71, 3649-3653.
Lindahl, T. (1979). DNA Glycosylases, Endonucleases for Apurinic/Apyrimidinic Sites, and Base Excision-Repair. 22, 135-192.
Lindahl, T. (1993). Instability and decay of the primary structure of DNA. Nature 362, 709-715.
Lindahl, T., Ljungquist, S., Siegert, W., Nyberg, B., and Sperens, B. (1977). DNA N-glycosidases: properties of uracil-DNA glycosidase from Escherichia coli. Journal of Biological Chemistry 252, 3286-3294.
Lindahl, T., and Nyberg, B. (1974). Heat-induced deamination of cytosine residues in deoxyribonucleic acid. Biochemistry 13, 3405-3410.
Lineweaver, H., and Burk, D. (1934). The Determination of Enzyme Dissociation Constants. Journal of the American Chemical Society 56, 658-666.
Liu, B., Yang, X., Wang, K., Tan, W., Li, H., and Tang, H. (2007). Real-time monitoring of uracil removal by uracil-DNA glycosylase using fluorescent resonance energy transfer probes. Anal Biochem 366, 237-243.
Liu, Y., and Wilson, S.H. (2012). DNA base excision repair: a mechanism of trinucleotide repeat expansion. Trends Biochem Sci 37, 162-172.
Longley, D.B., Harkin, D.P., and Johnston, P.G. (2003). 5-fluorouracil: mechanisms of action and clinical strategies. Nature Reviews Cancer 3, 330.
Lyamichev, V., Brow, M., and Dahlberg, J.E. (1993). Structure-specific endonucleolytic cleavage of nucleic acids by eubacterial DNA polymerases. Science 260, 778-783.
Mosbaugh, D.W., and Bennett, S.E. (1994). Uracil-Excision DNA Repair. 48, 315-370.
Neuberger, M.S., Harris, R.S., Di Noia, J., and Petersen-Mahrt, S.K. (2003). Immunity through DNA deamination. Trends in Biochemical Sciences 28, 305-312.
Nie, H., Wang, W., Li, W., Nie, Z., and Yao, S. (2015). A colorimetric and smartphone readable method for uracil-DNA glycosylase detection based on the target-triggered formation of G-quadruplex. Analyst 140, 2771-2777.
Nilsen, H., Otterlei, M., Haug, T., Solum, K., Nagelhus, T.A., Skorpen, F., and Krokan, H.E. (1997). Nuclear and mitochondrial uracil-DNA glycosylases are generated by alternative splicing and transcription from different positions in the UNG gene. Nucleic acids research 25, 750-755.
Olsen, L.C., Aasland, R., Wittwer, C.U., Krokan, H.E., and Helland, D. (1989). Molecular cloning of human uracil‐DNA glycosylase, a highly conserved DNA repair enzyme. The EMBO journal 8, 3121-3125.
Pieles, U., Zürcher, W., Schär, M., and Moser, H. (1993). Matrix-assisted laser desorption ionization time-of-flight mass spectrometry: a powerful tool for the mass and sequence analysis of natural and modified oligonucleotides. Nucleic acids research 21, 3191-3196.
Robertson, A.B., Klungland, A., Rognes, T., and Leiros, I. (2009). DNA repair in mammalian cells: Base excision repair: the long and short of it. Cell Mol Life Sci 66, 981-993.
Savva, R., McAuley-Hecht, K., Brown, T., and Pearl, L. (1995). The structural basis of specific base-excision repair by uracil–DNA glycosylase. Nature 373, 487.
Seal, G., Brech, K., Karp, S.J., Cool, B.L., and Sirover, M.A. (1988). Immunological lesions in human uracil DNA glycosylase: association with Bloom syndrome. Proceedings of the National Academy of Sciences of the United States of America 85, 2339-2343.
Seibert, E., Ross, J.A., and Osman, R. (2002). Role of DNA flexibility in sequence-dependent activity of uracil DNA glycosylase. Biochemistry 41, 10976-10984.
Slupphaug, G., Mol, C.D., Kavli, B., Arvai, A.S., Krokan, H.E., and Tainer, J.A. (1996). A nucleotide-flipping mechanism from the structure of human uracil–DNA glycosylase bound to DNA. Nature 384, 87.
Sousa, M.M., Krokan, H.E., and Slupphaug, G. (2007). DNA-uracil and human pathology. Mol Aspects Med 28, 276-306.
Su, K.-Y., Lai, H.-M., Goodman, S.D., Hu, W.-Y., Cheng, W.-C., Lin, L.-I., Yang, Y.-C., and Fang, W.-h. (2018a). Application of single nucleotide extension and MALDI-TOF mass spectrometry in proofreading and DNA repair assay. DNA repair 61, 63-75.
Su, K., Goodman, S., Lai, H., Yen, R., Hu, W., Cheng, W., Lin, L., Yang, Y., and Fang, W. (2018b). Proofreading and DNA Repair Assay Using Single Nucleotide Extension and MALDI-TOF Mass Spectrometry Analysis. Journal of visualized experiments: JoVE.
Su, K.Y., Goodman, S.D., Lai, H.M., Yen, R.S., Hu, W.Y., Cheng, W.C., Lin, L.I., Yang, Y.C., and Fang, W.H. (2018c). Proofreading and DNA Repair Assay Using Single Nucleotide Extension and MALDI-TOF Mass Spectrometry Analysis. J Vis Exp.
Su, K.Y., Lai, H.M., Goodman, S.D., Hu, W.Y., Cheng, W.C., Lin, L.I., Yang, Y.C., and Fang, W.H. (2018d). Application of single nucleotide extension and MALDI-TOF mass spectrometry in proofreading and DNA repair assay. DNA Repair 61, 63-75.
Tanaka, K., Waki, H., Ido, Y., Akita, S., Yoshida, Y., Yoshida, T., and Matsuo, T. (1988). Protein and polymer analyses up to m/z 100 000 by laser ionization time‐of‐flight mass spectrometry. Rapid communications in mass spectrometry 2, 151-153.
Taylor, J.W., Schmidt, W., Cosstick, R., Okruszek, A., and Eckstein, F. (1985). The use of phosphorothioate-modified DNA in restriction enzyme reactions to prepare nicked DNA. Nucleic acids research 13, 8749-8764.
Torimura, M., Kurata, S., Yamada, K., Yokomaku, T., Kamagata, Y., Kanagawa, T., and Kurane, R. (2001). Fluorescence-quenching phenomenon by photoinduced electron transfer between a fluorescent dye and a nucleotide base. Analytical sciences 17, 155-160.
Tye, B.-K., Chien, J., Lehman, I., Duncan, B.K., and Warner, H.R. (1978). Uracil incorporation: a source of pulse-labeled DNA fragments in the replication of the Escherichia coli chromosome. Proceedings of the National Academy of Sciences 75, 233-237.
Verly, W., and Paquette, Y. (1972). An endonuclease for depurinated DNA in Escherichia coli B. Canadian journal of biochemistry 50, 217-224.
Verri, A., Mazzarello, P., Biamonti, G., Spadari, S., and Focher, F. (1990). The specific binding of nuclear protein (s) to the cAMP responsive element (CRE) sequence (TGACGTCA) is reduced by the misincorporation of U and increased by the deamination of C. Nucleic acids research 18, 5775-5780.
Wang, L.J., Ren, M., Zhang, Q., Tang, B., and Zhang, C.Y. (2017). Excision Repair-Initiated Enzyme-Assisted Bicyclic Cascade Signal Amplification for Ultrasensitive Detection of Uracil-DNA Glycosylase. Anal Chem 89, 4488-4494.
Wieser, A., Schneider, L., Jung, J., and Schubert, S. (2012). MALDI-TOF MS in microbiological diagnostics—identification of microorganisms and beyond (mini review). Applied microbiology and biotechnology 93, 965-974.
Zhou, D.M., Xi, Q., Liang, M.F., Chen, C.H., Tang, L.J., and Jiang, J.H. (2013). Graphene oxide-hairpin probe nanocomposite as a homogeneous assay platform for DNA base excision repair screening. Biosens Bioelectron 41, 359-365.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70904-
dc.description.abstractUracil是在細胞中正常存在於RNA上的鹼基,但uracil會在某些情況下不正常的出現在DNA中,並可能會產生由dC變為dT的transition mutation,所以清除掉DNA上的uracil則非常重要。uracil-DNA glycosylase (UDG)為細菌或真核細胞中主要切除DNA中uracil的酵素,許多文獻指出,當細胞中缺乏UDG的功能時會導致很多疾病,因此近年來發表了許多偵測UDG活性方法的研究報告,傳統的偵測方法為放射線及螢光標定,近年來還發展出呈色法、電化學等方法,然而每個方法都有其限制性,為了提供更為精確可靠的測定方法,我們利用基質協助雷射去吸附離子化飛行質譜儀(MALDI-TOF MS)偵測反應後分子量的變化的能力,以測得UDG切除uracil的活性,設計出一種不需要任何同位素或是螢光標記,且步驟簡單的方法測定UDG活性。
首先測試MALDI-TOF MS的操作是否能夠偵測到UDG的活性及含有dU及AP site DNA穩定性,頻譜圖結果顯示原本錯誤鹼基股的訊號在與UDG反應30分鐘後消失並產生分子量減少約96之dU被切除的產物。接下來測試UDG催化反應的酵素動力學,以短時間反應測得UDG反應初速,將不同濃度的DNA受質反應初速繪製成圖表,並計算出UDG的最大反應速率為1.02 sec-1、Km值為51.3 nM,數值與傳統測定結果相合。
接著探討最適合用於實驗的UDG濃度,以50 pmole的DNA受質與不同濃度的UDG作用分析反應效率,發現以0.05 U UDG的反應,在3分鐘內最能夠觀察到其反應過程,因此接下來實驗所使用的酵素濃度為0.05 U。在先前的文獻指出UDG能夠與單股及雙股DNA進行反應且對於單股DNA的反應速率較快,於是我們以質譜儀測試UDG對於單股DNA及雙股DNA的反應效率,結果顯示UDG切除單股DNA上U的效率比起雙股DNA高了約3倍,與先前文獻的結論相同,另外也發現dU在DNA受質的5’端時,UDG的反應速率較快。
前部分的實驗都是以phenol/chloroform終止反應,但phenol/chloroform具有毒性且牽涉相的變化,實驗流程不易自動化,於是我們考慮透過降低pH值終止反應,結果顯示以酸終止法能夠順利使UDG失活。接下來因為希望能夠將此檢測技術應用在人類細胞的層面,我們首先設計能夠用於cell extract試管內實驗的DNA受質,發現UDG能夠與以phosphorothioate bond修飾後的DNA受質作用。並且也測試了人類細胞中UDG的其中一員hSMUG1活性也能由MALDI-TOF MS所偵測到。另外我們以濃度由低至高的UDG的抑制物UGI (UDG inhibitor)與UDG反應,測試出UGI的抑制效果,希望能延伸此偵測平台至藥物的發展上。
經過質譜儀對於UDG反應的探討,此種透過質量改變來分析修復DNA損傷的酵素活性方法,不僅可以觀察到反應的過程及中間產物,並且應用上更加簡單、快速,使得這個方法應用性更加廣泛。
zh_TW
dc.description.abstractUracil is a normal base in RNA. However, in DNA it can arise from spontaneous deamination of a deoxycytidine residue. Reactive oxygen species from normal aerobic respiration as well as exposure DNA to nitrate can also enhance the formation of uracil. Uracil in DNA is potentially mutagenic since it prefer to pair with dATP during replication, yielding G-C to A-T transition mutation. Uracil DNA glycosylase (UDG) acts as a key component in base excision repair (BER) pathway to repair hydrolytic deamination of cytosine in DNA, thus is very important in maintaining genome integrity.
The abnormal UDG activity in human cells may cause malfunction of uracil excision repair and eventually various diseases. In recent years, new methods have been published to conveniently detect UDG activity. Traditional methods involved in radioactive labeling coupled with gel-electrophoresis or chromatography. Alternative approaches such as fluorescence, electrochemical and G-quadruplex assay are also applicable. However, most of these methods required specific labeling or had limitation of specific sequence design, not suitable for standardization of UDG measurement.
Herein, we designed non-labeled and non-radio-isotopic and very specific method to measure UDG activity. An oligodeoxyribonucleotide with a single uracil is annealed to a template DNA forming a defined G-U mismatch and is hydrolyzed by Escherichia coli UDG. Resulting product containing an apurinic/apyrimidinic (AP) site is subjected to Matrix Assisted Laser Desorption/Ionization-time of flight mass spectrometry (MALDI-TOF MS) analysis. The cleavage of uracil is identified by the mass change from uracil substrate to AP product. The high resolution of MS results clearly separate product signal from substrate signal.
We evaluated the UDG kinetic assay by MALDI-TOF MS. Assay UDG activity in short time course could obtain the initial rate of the reaction. The value of Vmax and Km were 1.02 sec-1 and 51.3 nM, which were consistent with traditional assay. To evaluate the suitable enzyme concentration for subsequent experiments for substrate specificity, we titrated the UDG cleavage efficiency using 50 pmole of DNA substrate. We concluded that applying 0.05U UDG yielded the best result. We examined UDG activity with single strand and double strand DNAs containing single uracil at various positions of center, near 5’ end, or near 3’end. We found that UDG showed three fold active on single-stranded DNA substrate than that of double-stranded reactions. And we also found that UDG reacted more effectively when dU was at 5’ end of DNA substrate.
For a protocol safer and amenable to automation, we tested an alternative quenching protocol with HCl/DEA yielded similar results. We designed and tested endonuclease-resistant DNA substrate with chemical modification intend in vitro human cell assay. We also demonstrated the activity of hSMUG1 which is one of UDG in human cells by MALDI-TOF MS. We also subject uracil substrate to direct comparison of E. coli and mammalian UDG measurements, and we found inconsistency of units defined by different assays from the same commercial source of the enzymes. For the convenient, accurate, precision of this MALDI-TOF analysis should make it potentially a reference method in the future. Uracil DNA Glycosylase inhibitor (UGI) was employed to evaluate inhibition kinetic. The results should demonstrate the high potential for pharmaceutical application of glycosylase inhibitor screening.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T04:43:11Z (GMT). No. of bitstreams: 1
ntu-107-R05424021-1.pdf: 3025004 bytes, checksum: bd92b8b651c4f48b34bfe24af1db668d (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents致謝 I
摘要 II
Abstract IV
總目次 VI
圖目次 VIII
附錄目次 IX
縮寫表 X
前言 1
1.1 在DNA中的尿嘧啶 1
1.2 鹼基切除修復系統 (Base excision repair) 2
1.3 尿嘧啶醣苷酶-uracil DNA glycosylase (UDG) 4
1.4 偵測UDG之方法 6
1.5 基質協助雷射去吸附離子化-飛行時間質譜儀 7
1.6 研究動機 9
材料與方法 10
2.1 DNA序列 10
2.2 酵素與緩衝液 10
2.3 大腸桿菌菌株(Escherichia coli strain) 10
2.4 MALDI-TOF MS 11
2.5 UDG活性測定 11
2.6大腸桿菌細胞萃取物(cell extract)之製備 12
2.7 UDG活性效能百分比計算 13
結果 14
3.1 測試UDG的反應產物是否能夠被MALDI-TOF MS所偵測 14
3.2 測試含有dU的DNA受質之穩定度 14
3.3 分析以MALDI-TOF MS方法偵測時的UDG kinetic assay 15
3.4 測試實驗所使用之UDG濃度 16
3.5 比較UDG作用於雙股及單股DNA的活性 16
3.6 比較dU位於DNA受質的不同位置對於UDG切除活性的影響 17
3.7 終止反應方法比較 17
3.8 設計用於細胞萃取物之DNA受質 18
3.9 以MALDI-TOF MS分析hSMUG1之活性 19
3.10 測定UDG受到UGI的抑制程度 20
討論 22
圖 26
附錄 41
參考文獻 50
dc.language.isozh-TW
dc.subject質譜儀zh_TW
dc.subject尿嘧啶醣??zh_TW
dc.subject尿嘧啶zh_TW
dc.subject核酸修復zh_TW
dc.subject酵素動力學zh_TW
dc.subjecturacilen
dc.subjectMALDI-TOF MSen
dc.subjecturacil DNA glycosylaseen
dc.subjectenzyme kineticen
dc.subjectDNA Repairen
dc.title應用質譜儀進行DNA修復蛋白的分析zh_TW
dc.titleApplication of MALDI-TOF mass spectrometry for DNA repair enzyme activityen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee楊雅倩,蘇剛毅,許濤,蔡芷季
dc.subject.keyword質譜儀,尿嘧啶醣??,尿嘧啶,核酸修復,酵素動力學,zh_TW
dc.subject.keywordMALDI-TOF MS,uracil DNA glycosylase,uracil,DNA Repair,enzyme kinetic,en
dc.relation.page54
dc.identifier.doi10.6342/NTU201802451
dc.rights.note有償授權
dc.date.accepted2018-08-03
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept醫學檢驗暨生物技術學研究所zh_TW
顯示於系所單位:醫學檢驗暨生物技術學系

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
2.95 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved