Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 醫學工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70901
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor呂東武
dc.contributor.authorSong-Ying Lien
dc.contributor.author李松穎zh_TW
dc.date.accessioned2021-06-17T04:43:03Z-
dc.date.available2028-12-31
dc.date.copyright2018-08-15
dc.date.issued2018
dc.date.submitted2018-08-03
dc.identifier.citation1. Gamage, P., et al. 3D reconstruction of patient specific bone models from 2D radiographs for image guided orthopedic surgery. in Digital Image Computing: Techniques and Applications, 2009. DICTA'09. 2009. IEEE.
2. Krekel, P.R., et al. Interactive simulation and comparative visualisation of the bone-determined range of motion of the human shoulder. in SimVis. 2006.
3. Siston, R.A., et al., Surgical navigation for total knee arthroplasty: a perspective. Journal of biomechanics, 2007. 40(4): p. 728-735.
4. Fernandez, J., et al., Anatomically based geometric modelling of the musculo-skeletal system and other organs. Biomechanics and modeling in mechanobiology, 2004. 2(3): p. 139-155.
5. Harrysson, O.L., Y.A. Hosni, and J.F. Nayfeh, Custom-designed orthopedic implants evaluated using finite element analysis of patient-specific computed tomography data: femoral-component case study. BMC Musculoskeletal Disorders, 2007. 8(1): p. 91.
6. Lu, T.-W., et al., In vivo three-dimensional kinematics of the normal knee during active extension under unloaded and loaded conditions using single-plane fluoroscopy. Medical Engineering and Physics, 2008. 30(8): p. 1004-1012.
7. Chen, C.-C., et al., A method for measuring three-dimensional mandibular kinematics in vivo using single-plane fluoroscopy. Dentomaxillofacial Radiology, 2013. 42(1): p. 95958184-95958184.
8. Rathnayaka, K., et al., Effects of CT image segmentation methods on the accuracy of long bone 3D reconstructions. Medical Engineering and Physics, 2011. 33(2): p. 226-233.
9. Banks, S.A., et al., Comparing in vivo kinematics of unicondylar and bi-unicondylar knee replacements. Knee Surgery, Sports Traumatology, Arthroscopy, 2005. 13(7): p. 551-556.
10. Stenner, P., et al., Dynamic iterative beam hardening correction (DIBHC) in myocardial perfusion imaging using contrast-enhanced computed tomography. Investigative radiology, 2010. 45(6): p. 314-323.
11. Van Gompel, G., et al., Iterative correction of beam hardening artifacts in CT. Medical physics, 2011. 38(S1).
12. Caponetti, L. and A.M. Fanelli, Computer-aided simulation for bone surgery. IEEE Computer Graphics and Applications, 1993. 13(6): p. 86-92.
13. Gamage, P., et al., Diagnostic radiograph based 3D bone reconstruction framework: Application to the femur. Computerized Medical Imaging and Graphics, 2011. 35(6): p. 427-437.
14. Kim, K.-j., S. Lee, and Y.H. Kim. Dense femur reconstruction from two x-ray images using generic 3D model with twist correction. in Image Processing (ICIP), 2015 IEEE International Conference on. 2015. IEEE.
15. Laporte, S., et al., A biplanar reconstruction method based on 2D and 3D contours: application to the distal femur. Computer Methods in Biomechanics & Biomedical Engineering, 2003. 6(1): p. 1-6.
16. Le Bras, A., et al., 3D reconstruction of the proximal femur with low-dose digital stereoradiography. Computer Aided Surgery, 2004. 9(3): p. 51-57.
17. Baka, N., et al., 2D–3D shape reconstruction of the distal femur from stereo X-ray imaging using statistical shape models. Medical image analysis, 2011. 15(6): p. 840-850.
18. Karade, V. and B. Ravi, 3D femur model reconstruction from biplane X-ray images: a novel method based on Laplacian surface deformation. International journal of computer assisted radiology and surgery, 2015. 10(4): p. 473-485.
19. Tsai, T.-Y., et al., Principal component analysis in construction of 3D human knee joint models using a statistical shape model method. Computer methods in biomechanics and biomedical engineering, 2015. 18(7): p. 721-729.
20. Zheng, G. and S. Schumann, 3D reconstruction of a patient‐specific surface model of the proximal femur from calibrated x‐ray radiographs: A validation study. Medical physics, 2009. 36(4): p. 1155-1166.
21. Baudoin, A., et al., Parametric subject-specific model for in vivo 3D reconstruction using bi-planar X-rays: application to the upper femoral extremity. Medical & biological engineering & computing, 2008. 46(8): p. 799-805.
22. Chaibi, Y., et al., Fast 3D reconstruction of the lower limb using a parametric model and statistical inferences and clinical measurements calculation from biplanar X-rays. Computer methods in biomechanics and biomedical engineering, 2012. 15(5): p. 457-466.
23. Humbert, L., et al., 3D reconstruction of the spine from biplanar X-rays using parametric models based on transversal and longitudinal inferences. Medical engineering & physics, 2009. 31(6): p. 681-687.
24. Moewis, P., et al., The quality of bone surfaces may govern the use of model based fluoroscopy in the determination of joint laxity. Medical Engineering and Physics, 2012. 34(10): p. 1427-1432.
25. Tsai, T.Y., et al., A volumetric model‐based 2D to 3D registration method for measuring kinematics of natural knees with single‐plane fluoroscopy. Medical physics, 2010. 37(3): p. 1273-1284.
26. Blackburn, T.A. and E. Craig, Knee anatomy: a brief review. Physical therapy, 1980. 60(12): p. 1556-1560.
27. Hallen, L. and O. Lindahl, The “screw-home” movement in the knee-joint. Acta Orthopaedica Scandinavica, 1966. 37(1): p. 97-106.
28. Baka, N., et al., Statistical shape model-based femur kinematics from biplane fluoroscopy. IEEE transactions on Medical Imaging, 2012. 31(8): p. 1573-1583.
29. Hurvitz, A. and L. Joskowicz, Registration of a CT-like atlas to fluoroscopic X-ray images using intensity correspondences. International journal of computer assisted radiology and surgery, 2008. 3(6): p. 493.
30. Yao, J. Assessing accuracy factors in deformable 2D/3D medical image registration using a statistical pelvis model. in Computer Vision, 2003. Proceedings. Ninth IEEE International Conference on. 2003. IEEE.
31. Lin, C.-C., et al., Comparisons of surface vs. volumetric model-based registration methods using single-plane vs. bi-plane fluoroscopy in measuring spinal kinematics. Medical engineering & physics, 2014. 36(2): p. 267-274.
32. Fleute, M. and S. Lavallée. Nonrigid 3-D/2-D registration of images using statistical models. in International Conference on Medical Image Computing and Computer-Assisted Intervention. 1999. Springer.
33. Lamecker, H., T.H. Wenckebach, and H.-C. Hege. Atlas-based 3D-shape reconstruction from X-ray images. in Pattern Recognition, 2006. ICPR 2006. 18th International Conference on. 2006. IEEE.
34. Zheng, G., et al. Reconstruction of patient-specific 3D bone surface from 2D calibrated fluoroscopic images and point distribution model. in International Conference on Medical Image Computing and Computer-Assisted Intervention. 2006. Springer.
35. Benameur, S., et al., 3D/2D registration and segmentation of scoliotic vertebrae using statistical models. Computerized Medical Imaging and Graphics, 2003. 27(5): p. 321-337.
36. Zheng, G., et al., A 2D/3D correspondence building method for reconstruction of a patient-specific 3D bone surface model using point distribution models and calibrated X-ray images. Medical image analysis, 2009. 13(6): p. 883-899.
37. Tang, T.S. and R.E. Ellis. 2D/3D deformable registration using a hybrid atlas. in International Conference on Medical Image Computing and Computer-Assisted Intervention. 2005. Springer.
38. Chang, C.F., et al., Adolescents after Pemberton's osteotomy for developmental dysplasia of the hip displayed greater joint loading than healthy controls in affected and unaffected limbs during gait. Journal of Orthopaedic Research, 2011. 29(7): p. 1034-1041.
39. Chen, H.-L., et al., Biomechanical strategies for successful obstacle crossing with the trailing limb in older adults with medial compartment knee osteoarthritis. Journal of biomechanics, 2008. 41(4): p. 753-761.
40. Kadaba, M.P., H. Ramakrishnan, and M. Wootten, Measurement of lower extremity kinematics during level walking. Journal of orthopaedic research, 1990. 8(3): p. 383-392.
41. Kuo, M.-Y., et al., Influence of soft tissue artifacts on the calculated kinematics and kinetics of total knee replacements during sit-to-stand. Gait & posture, 2011. 33(3): p. 379-384.
42. Lafortune, M., et al., Three-dimensional kinematics of the human knee during walking. Journal of biomechanics, 1992. 25(4): p. 347-357.
43. Lu, T.-W. and J. O’connor, Bone position estimation from skin marker co-ordinates using global optimisation with joint constraints. Journal of biomechanics, 1999. 32(2): p. 129-134.
44. Selvik, G., Roentgen stereophotogrammetry: a method for the study of the kinematics of the skeletal system. Acta Orthopaedica Scandinavica, 1989. 60(sup232): p. 1-51.
45. Kärrholm, J., Roentgen stereophotogrammetry: review of orthopedic applications. Acta Orthopaedica Scandinavica, 1989. 60(4): p. 491-503.
46. Banks, S.A. and W.A. Hodge, Accurate measurement of three-dimensional knee replacement kinematics using single-plane fluoroscopy. IEEE Transactions on Biomedical Engineering, 1996. 43(6): p. 638-649.
47. Dennis, D.A., et al., Range of motion after total knee arthroplasty The effect of implant design and weight-bearing conditions. The Journal of arthroplasty, 1998. 13(7): p. 748-752.
48. Komistek, R.D., D.A. Dennis, and M. Mahfouz, In vivo fluoroscopic analysis of the normal human knee. Clinical orthopaedics and related research, 2003. 410: p. 69-81.
49. Tashman, S. and W. Anderst, In-vivo measurement of dynamic joint motion using high speed biplane radiography and CT: application to canine ACL deficiency. Journal of biomechanical engineering, 2003. 125(2): p. 238-245.
50. Lemieux, L., et al., A patient‐to‐computed‐tomography image registration method based on digitally reconstructed radiographs. Medical physics, 1994. 21(11): p. 1749-1760.
51. Baka, N., et al., Evaluation of automated statistical shape model based knee kinematics from biplane fluoroscopy. Journal of biomechanics, 2014. 47(1): p. 122-129.
52. Cubes, M., A high resolution 3d surface construction algorithm/william e. Lorensen, Harvey E. Cline–SIG ‘87, 1987.
53. Ferrarini, L., et al., GAMEs: growing and adaptive meshes for fully automatic shape modeling and analysis. Medical image analysis, 2007. 11(3): p. 302-314.
54. Besl, P.J. and N.D. McKay. Method for registration of 3-D shapes. in Sensor Fusion IV: Control Paradigms and Data Structures. 1992. International Society for Optics and Photonics.
55. Myronenko, A. and X. Song, Point set registration: Coherent point drift. IEEE transactions on pattern analysis and machine intelligence, 2010. 32(12): p. 2262-2275.
56. Sarkalkan, N., H. Weinans, and A.A. Zadpoor, Statistical shape and appearance models of bones. Bone, 2014. 60: p. 129-140.
57. Cootes, T.F. and C.J. Taylor, Statistical models of appearance for computer vision. 2004, Technical report, University of Manchester.
58. Goodall, C., Procrustes methods in the statistical analysis of shape. Journal of the Royal Statistical Society. Series B (Methodological), 1991: p. 285-339.
59. Wold, S., K. Esbensen, and P. Geladi, Principal component analysis. Chemometrics and intelligent laboratory systems, 1987. 2(1-3): p. 37-52.
60. Heimann, T. and H.-P. Meinzer, Statistical shape models for 3D medical image segmentation: a review. Medical image analysis, 2009. 13(4): p. 543-563.
61. Baltzopoulos, V., A videofluoroscopy method for optical distortion correction and measurement of knee-joint kinematics. Clinical Biomechanics, 1995. 10(2): p. 85-92.
62. Kaptein, B.L., et al., A comparison of calibration methods for stereo fluoroscopic imaging systems. Journal of biomechanics, 2011. 44(13): p. 2511-2515.
63. Hatze, H., High-precision three-dimensional photogrammetric calibration and object space reconstruction using a modified DLT-approach. Journal of biomechanics, 1988. 21(7): p. 533-538.
64. Spoor, C. and F. Veldpaus, Rigid body motion calculated from spatial co-ordinates of markers. Journal of biomechanics, 1980. 13(4): p. 391-393.
65. Patil, S. and B. Ravi. Voxel-based representation, display and thickness analysis of intricate shapes. in Computer Aided Design and Computer Graphics, 2005. Ninth International Conference on. 2005. IEEE.
66. Siddon, R.L., Fast calculation of the exact radiological path for a three‐dimensional CT array. Medical physics, 1985. 12(2): p. 252-255.
67. Söderkvist, I. and P.-Å. Wedin, Determining the movements of the skeleton using well-configured markers. Journal of biomechanics, 1993. 26(12): p. 1473-1477.
68. Canny, J., A computational approach to edge detection, in Readings in Computer Vision. 1987, Elsevier. p. 184-203.
69. Goldberg, D.E. and J.H. Holland, Genetic algorithms and machine learning. Machine learning, 1988. 3(2): p. 95-99.
70. Penney, G.P., et al., A comparison of similarity measures for use in 2-D-3-D medical image registration. IEEE transactions on medical imaging, 1998. 17(4): p. 586-595.
71. Lin, C.C., et al., A Model‐Based Tracking Method for Measuring 3‐D Dynamic Joint Motion Using an Alternating Biplane X‐Ray Imaging System. Medical physics, 2018.
72. Lagarias, J.C., et al., Convergence properties of the Nelder--Mead simplex method in low dimensions. SIAM Journal on optimization, 1998. 9(1): p. 112-147.
73. Miranda, D.L., et al., Automatic determination of anatomical coordinate systems for three-dimensional bone models of the isolated human knee. Journal of biomechanics, 2010. 43(8): p. 1623-1626.
74. Wu, G. and P.R. Cavanagh, ISB recommendations for standardization in the reporting of kinematic data. Journal of biomechanics, 1995. 28(10): p. 1257-1261.
75. Cignoni, P., C. Rocchini, and R. Scopigno. Metro: Measuring error on simplified surfaces. in Computer Graphics Forum. 1998. Wiley Online Library.
76. van de Kraats, E.B., et al., Standardized evaluation methodology for 2-D-3-D registration. IEEE Transactions on Medical Imaging, 2005. 24(9): p. 1177-1189.
77. Filippi, S., B. Motyl, and C. Bandera, Analysis of existing methods for 3D modelling of femurs starting from two orthogonal images and development of a script for a commercial software package. Computer methods and programs in biomedicine, 2008. 89(1): p. 76-82.
78. Zhu, Z. and G. Li, Construction of 3D human distal femoral surface models using a 3D statistical deformable model. Journal of biomechanics, 2011. 44(13): p. 2362-2368.
79. Lenz, N.M., et al., The effects of femoral fixed body coordinate system definition on knee kinematic description. Journal of biomechanical engineering, 2008. 130(2): p. 021014.
80. Yue, B., et al., Differences of knee anthropometry between Chinese and white men and women. The Journal of arthroplasty, 2011. 26(1): p. 124-130.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70901-
dc.description.abstract基於雙平面動態X光影像進行比對得到運動學資訊在目前為活體非侵入性方法中較精確且常見的,過去已有許多文獻應用相關技術於運動學的量測,而在這樣的技術中,最重要的部分就是要先重建個人化三維骨模型,其也能被應用於許多臨床相關之研究,而在目前最精確的方法是透過電腦斷層掃瞄影像進行重建,然而其會有輻射劑量高與花費高等問題。因此,發展替代技術對於骨科相關之研究是必要且有幫助的,在過去文獻中雖有利用二維X光影像搭配如統計形狀模型等變形模型方法建構三維骨頭表面模型,然而其重建誤差普遍都偏高,是否能達到三維動態X光量測之高精度需求是很值得探討的。
本研究以五十七隻膝關節骨模型建立膝關節統計形狀模型,並開發搭配動態X光影像重建個人化膝關節骨模型之方法,透過最佳化的方法進行影像比對以重建骨模型,並透過電腦模擬驗證、試體實驗驗證與活體實驗,以驗證方法之可行性、量化三維骨模型重建誤差以及其應用於膝關節運動學比對之結果。
其結果顯示在活體膝關節骨模型重建誤差上,股骨與脛骨模型分別有0.69 ± 0.09與0.7 ± 0.07 mm之良好的方均根誤差,而透過重建模型所比對之結果相對於CT模型之結果,其所有影像平均比對誤差之平均於股骨為0.60 ± 0.09 mm,於脛骨為0.64 ± 0.11 mm,有高的比對精確度。本研究所開發之方法能以高準確度重建膝關節骨模型,且具有足夠能力應用於動態X光量測關節運動上。
zh_TW
dc.description.abstractMeasuring joint kinematics via bi-plane fluoroscopic images is a common and accurate in-vivo non-invasive method. The most important part above is the subject-specific bone model reconstruction. Subject-specific bone models are required for many clinical and biomechanical applications. Currently, the most accurate bone models can be obtained from computed tomography (CT). However, it may cause some concerns such as radiation exposure. Therefore, developing an alternative method is necessary. The previous studies showed higher reconstruction error, and whether it can achieve the high precision requirement of 3D fluoroscopy measurement is very worthy of discussion.
This study collected 57 models of knee joint to establish the knee joint statistical shape model (SSM), and develop a method for reconstruction of subject-specific knee joints via the fluoroscopic images. The three-stage experiments inclusive of computer simulation, in-vitro and in-vivo experiments are performed to evaluate the constructing errors and access the performance in 3D kinematics measurements.
The results showed 0.69 ± 0.09 mm reconstruction error on femur models and 0.7 ± 0.07 mm on tibia models for in-vivo knee joints reconstruction. The average of the mean target registration errors of all frames relative to CT models are 0.60 ± 0.09 mm on femur models and 0.64 ± 0.11 mm on tibia models. This indicated that the method developed by this study can reached the high accuracy for knee joint bone reconstruction, and can be applied on the joint kinematics measurement via fluoroscopy.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T04:43:03Z (GMT). No. of bitstreams: 1
ntu-107-R05548014-1.pdf: 4997497 bytes, checksum: ca15ea95c248ba0249df52754874195b (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents誌謝 I
摘要 II
Abstract III
目錄 IV
圖目錄 VI
表目錄 X
第一章 緒論 1
第一節 研究背景 1
第二節 膝關節解剖學與運動學 2
第三節 文獻回顧 4
第四節 研究目的 7
第二章 材料與方法 9
第一節 訓練模型 9
第二節 統計形狀模型 10
第三節 實驗設備與儀器 14
第四節 系統校正 15
第五節 實驗流程 20
第六節 三維骨模型重建 28
第七節 運動學數據分析 36
第八節 誤差之量化 40
第三章 結果 43
第一節 統計形狀模型 43
第二節 電腦模擬驗證 46
第三節 試體實驗驗證 49
第四節 活體量測 51
第四章 討論 58
第五章 結論 63
第六章 參考文獻 65
dc.language.isozh-TW
dc.subject個人化骨模型重建zh_TW
dc.subject統計形狀模型zh_TW
dc.subject動態X光zh_TW
dc.subject影像比對法zh_TW
dc.subject膝關節zh_TW
dc.subject運動學zh_TW
dc.subjectkinematicsen
dc.subjectsubject-specific bone reconstructionen
dc.subjectimage registrationen
dc.subjectknee jointen
dc.subjectstatistical shape modelen
dc.subjectfluoroscopyen
dc.title發展人體膝關節統計形狀模型以利三維動態X光量測關節運動zh_TW
dc.titleDevelopment of A Statistical Shape Model of the Human Knee for Three-Dimensional Fluoroscopic Imaging of the Joint Motionen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.coadvisor林正忠
dc.contributor.oralexamcommittee陳文斌,陳祥和
dc.subject.keyword個人化骨模型重建,統計形狀模型,動態X光,影像比對法,膝關節,運動學,zh_TW
dc.subject.keywordsubject-specific bone reconstruction,statistical shape model,fluoroscopy,image registration,knee joint,kinematics,en
dc.relation.page72
dc.identifier.doi10.6342/NTU201802473
dc.rights.note有償授權
dc.date.accepted2018-08-03
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept醫學工程學研究所zh_TW
顯示於系所單位:醫學工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
4.88 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved