請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70893完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 盧中仁 | |
| dc.contributor.author | Po-Cheng Chien | en |
| dc.contributor.author | 簡伯丞 | zh_TW |
| dc.date.accessioned | 2021-06-17T04:42:43Z | - |
| dc.date.available | 2018-08-07 | |
| dc.date.copyright | 2018-08-07 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-08-05 | |
| dc.identifier.citation | [1] S. H. Strogatz, 'Spontaneous synchronization in nature,' Proceedings of International Frequency Control Symposium, pp. 2-4, 1997.
[2] S. Berlocher, 'Regularities and irregularities in periodical cicada evolution,' Proceedings of the National Academy of Sciences of the United States of America, vol. 110, no. 17, pp. 6620-6621, 2013. [3] D. C. Michaels, E. P. Matyas, and J. Jalife, 'Mechanisms of sinoatrial pacemaker synchronization: a new hypothesis,' Circulation Research, vol. 61, no. 5, pp. 704-714, 1987. [4] B. Eckhardt, E. Ott, S. H. Strogatz, D. Abrams, and A. McRobie, 'Modeling walker synchronization on the Millennium Bridge,' Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, vol. 75, no. 2, p. 021110, 2007. [5] S. H. Strogatz, D. Abrams, A. McRobie, B. Eckhardt, and E. Ott, 'Theoretical mechanics: Crowd synchrony on the Millennium Bridge,' Nature, vol. 438, no. 7064, pp. 43-44, 2005. [6] Y. Ovchinnikov and V. Kresin, 'Networks of Josephson junctions and their synchronization,' Physical Review B: Condensed Matter and Material Physics, vol. 88, no. 21, 2013. [7] V. A. Kostelecký, J. Pantaleone, and S. Samuel, 'Neutrino oscillations in the early universe,' Physics letters. B, vol. 315, no. 1-2, pp. 46-50, 1993. [8] 汪小帆, 李翔, and 陈关荣, 复杂网络理论及其应用. 清华大学出版社有限公司, 2006. [9] Z. Néda, E. Ravasz, Y. Brechet, T. Vicsek, and A. L. Barabási, 'The sound of many hands clapping,' Nature, vol. 403, no. 6772, pp. 849-850, 2000. [10] L. Pecora and T. Carroll, 'Synchronization in chaotic systems,' Physical Review Letters, vol. 64, no. 8, pp. 821-824, 1990. [11] C. Hugenii, 'Horoloquim oscilatorium,' Paris: Muguet. Reprinted in English as: The pendulum clock. Ames, IA: Iowa State UP, 1986. [12] J. Pantaleone, 'Synchronization of metronomes,' American Journal of Physics, vol. 70, no. 10, pp. 992-1000, 2002. [13] Y. Wu, N. Wang, L. Li, and J. Xiao, 'Anti-phase synchronization of two coupled mechanical metronomes,' Chaos: An Interdisciplinary Journal of Nonlinear Science, vol. 22, no. 2, p. 023146, 2012. [14] T. Kanamaru, 'Van der Pol oscillator,' Scholarpedia journal, vol. 2, no. 1, p. 2202, 2007. [15] K. Czolczynski, P. Perlikowski, A. Stefanski, and T. Kapitaniak, 'Clustering and synchronization of n Huygens’ clocks,' Physica. A, vol. 388, no. 24, pp. 5013-5023, 2009. [16] M. Bennett, M. F. Schatz, H. Rockwood, and K. Wiesenfeld, 'Huygens's clocks,' Proceedings - Royal Society. Mathematical, physical and engineering sciences (Print), vol. 458, no. 2019, pp. 563-579, 2002. [17] A. Y. Pogromsky, V. N. Belykh, and H. Nijmeijer, 'Controlled synchronization of pendula,' 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475), vol. 5, pp. 4381-4386, 2003. [18] K. Czolczynski, P. Perlikowski, A. Stefanski, and T. Kapitaniak, 'HUYGENS'ODD SYMPATHY EXPERIMENT REVISITED,' International Journal of Bifurcation and Chaos, vol. 21, no. 07, pp. 2047-2056, 2011. [19] J. C. Carranza López, 'On the synchronization of two metronomes and their related dynamics,' 2017. [20] K. Czołczyński, P. Perlikowski, A. Stefański, and T. Kapitaniak, 'Why two clocks synchronize: Energy balance of the synchronized clocks,' Chaos: An Interdisciplinary Journal of Nonlinear Science, vol. 21, no. 2, p. 023129, 2011. [21] P. Perlikowski, M. Kapitaniak, K. Czolczynski, A. Stefanski, and T. Kapitaniak, 'Chaos in coupled clocks,' International Journal of Bifurcation and Chaos, vol. 22, no. 12, p. 1250288, 2012. [22] J. P. Ramirez, K. Aihara, R. Fey, and H. Nijmeijer, 'Further understanding of Huygens’ coupled clocks: The effect of stiffness,' Physica D: Nonlinear Phenomena, vol. 270, pp. 11-19, 2014. [23] F. N. Hoogeboom, A. Y. Pogromsky, and H. Nijmeijer, 'Huygens’ Synchronization: Experiments, Modeling, and Local Stability Analysis,' IFAC-PapersOnLine, vol. 48, no. 18, pp. 146-151, 2015. [24] D. Dudkowski, K. Czołczyński, and T. Kapitaniak, 'Synchronization of two self-excited pendula: Influence of coupling structure’s parameters,' Mechanical Systems and Signal Processing, vol. 112, pp. 1-9, 2018. [25] Q. Hu, W. Liu, H. Yang, J. Xiao, and X. Qian, 'Experimental study on synchronization of three coupled mechanical metronomes,' European Journal of Physics, vol. 34, no. 2, p. 291, 2013. [26] X. Xin, Y. Muraoka, and S. Hara, 'Analysis of synchronization of n metronomes on a cart via describing function method: New results beyond two metronomes,' in American Control Conference (ACC), 2016, 2016, pp. 6604-6609: IEEE. [27] K. Czolczynski, P. Perlikowski, A. Stefanski, and T. Kapitaniak, 'Synchronization of the self-excited pendula suspended on the vertically displacing beam,' Communications in Nonlinear Science and Numerical Simulation, vol. 18, no. 2, pp. 386-400, 2013. [28] S. Boda, L. Davidova, and Z. Néda, 'Order and disorder in coupled metronome systems,' The European Physical Journal Special Topics, vol. 223, no. 4, pp. 649-663, 2014. [29] P. Koluda, P. Perlikowski, K. Czolczynski, and T. Kapitaniak, 'Synchronization configurations of two coupled double pendula,' Communications in Nonlinear Science and Numerical Simulation, vol. 19, no. 4, pp. 977-990, 2014. [30] R. Du and L. Xie, The mechanics of mechanical watches and clocks. Springer Science & Business Media, 2012. [31] M. Kapitaniak, K. Czolczynski, P. Perlikowski, A. Stefanski, and T. Kapitaniak, 'Synchronization of clocks,' Physics reports, vol. 517, no. 1-2, pp. 1-69, 2012. [32] D. J. LaBounty and CMC FBHI. The Use of Computer-Aided Design(CAD) in Clockmaking. [33] N. Chakrabarty, A. Jain, K. D. Gupta, and P. Parmananda, 'Effect of parameter mismatch on the synchronization of strongly coupled self sustained oscillators,' arXiv preprint arXiv:1407.2096, 2014. [34] M. Denny, 'The pendulum clock: a venerable dynamical system,' European journal of physics, vol. 23, no. 4, p. 449, 2002. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70893 | - |
| dc.description.abstract | 同步是常見的現象,涵蓋的範圍也相當廣泛,在生物、物理、通訊、醫療、工程等領域皆有重要的應用。Huygens觀察兩個掛在牆上的擺鐘的行為,最早注意到機械系統的同步現象,也引發後續許多的研究。前人的研究大多為利用范德波爾振盪器模擬節拍器或將節拍器內部擺錘所受的驅動力矩假設為一常數以求得擺錘的運動方程式,來探討同步現象。目前尚未發現有學者透過節拍器或擺鐘內部擒縱裝置的幾何形狀推導擺錘的運動方程式。因此本論文嘗試分析以無幌擒縱器為計時機構的擺鐘,由無幌擒縱器的幾何形狀,利用Lagrange方程式推導擺錘的運動方程式,探討同步現象。
本研究發展了無幌擒縱器擺鐘的動態模型,利用無幌擒縱器的幾何形狀、動作特性與Lagrange方程式推導無幌擒縱器擺鐘的運動方程式。首先將無幌擒縱器擺鐘放置於地面上,探討擺錘振幅和自發性週期運動的關係。接著將一個無幌擒縱器擺鐘放置於可自由運動的水平基底上,探討水平基底對無幌擒縱器擺鐘的影響。 在充分了解單一無幌擒縱器擺鐘固定於地面與水平基底上的運動特性後,將多個無幌擒縱器擺鐘放置於可自由水平運動的基底上,利用數值積分,探討其間的交互作用,及可能的同步行為。我們分析初始角度、擺長、基底質量等參數對同步形式的影響,探討不同同步形式的吸引區域,比較不同同步形式的週期。最後,我們利用諧和平衡法,推導不同形式同步解的振幅和頻率。 | zh_TW |
| dc.description.abstract | Synchronization is a common phenomenon and has important applications in many different fields such as biology, physics, communication, medicine, engineering, etc. Huygens was the first one who observed the synchronization of two pendulum clocks hung on the wall. Stimulated by Huygens’ observation, many researchers started to study the synchronization of pendulum clocks. The key part of a pendulum clock is the escapement mechanism, which has been either modeled as a Van der Pol oscillator or as two constant pulses acting on the pendulum in the literature. To the best of our knowledge, no one has derived the governing equations of a pendulum clock taking into the account the geometric shape of the escapement mechanism. In this thesis, we studied the synchronization of pendulum clocks with the deadbeat escapement mechanism. With the help of Lagrange’s equations, we derived the governing equations according to the shapes and dimensions of the parts composing the deadbeat escapement mechanism.
We first placed a deadbeat escapement clock on the ground to study the relation between the driving moment and the period of the pendulum. Then we put a deadbeat escapement clock on a plate, which can move freely in the horizontal direction, to investigate the influence of the movement of the plate on the motion of the pendulum clock. After that, we put several pendulum clocks on a plate and use numerical integration to study possible synchronization patterns of the pendulum clocks. We investigated the effects of system parameters, e.g., length of the pendulum, mass of the plate, initial angles, on the synchronization patterns. We examined the domains of attraction of different synchronization patterns. Finally, we employed the method of harmonic balance to determine approximately the amplitude and frequency of different synchronization patterns. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T04:42:43Z (GMT). No. of bitstreams: 1 ntu-107-R05522501-1.pdf: 14966455 bytes, checksum: dfc19c6aecc2faab32f7a756d18f0b17 (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 口試委員審定書 i
致謝 ii 摘要 iii Abstract iv 目錄 vi 圖目錄 ix 表目錄 xii 第一章 緒論 1 1.1 研究動機 1 1.2 文獻回顧 2 1.3 擒縱機構介紹 4 1.3.1 冠輪擒縱器(Verge escapement) 4 1.3.2 錨擒縱器(Anchor escapement) 6 1.3.3 無幌擒縱器(Deadbeat escapement) 7 1.4 論文架構 8 第二章 無幌擒縱器擺鐘 9 2.1 無幌擒縱器機構 9 2.2 運動階段 10 2.3 無幌擒縱器機構設計 11 2.4 升程階段幾何分析 18 2.4.1 入口托板升程階段幾何關係 18 2.4.2 出口托板升程階段幾何關係 21 2.4.3 升程階段擒縱輪、叉所轉最大角度 25 2.5 擒縱叉受力 29 2.5.1 鎖程 29 2.5.2 升程 30 2.5.3 降程 31 2.6 運動方程式 32 2.6.1 擺錘鎖程與降程 33 2.6.2 擺錘入口升程 33 2.6.3 擺錘出口升程 35 2.6.4 擺錘運動方程式 36 2.6.5 擒縱輪入口鎖程 37 2.6.6 擒縱輪入口升程 37 2.6.7 擒縱輪入口降程 38 2.6.8 擒縱輪出口鎖程 38 2.6.9 擒縱輪出口升程 38 2.6.10 擒縱輪出口降程 39 2.7 n個擺鐘置於水平基底 39 2.7.1 系統的運動方程式 40 2.7.2 對應的擺錘鎖程與降程 41 2.7.3 對應的擺錘入口升程 41 2.7.4 對應的擺錘出口升程 43 2.7.5 對應的擺錘的運動方程式 44 第三章 無幌擒縱器擺鐘的運動特性 45 3.1 參數設定 45 3.2 固定於地面的擺鐘 47 3.3 固定於水平基底的擺鐘 55 3.4 擺長對擺錘所受驅動力矩的影響 59 第四章 同步現象 63 4.1 兩個擺鐘置於水平基底 63 4.2 三個擺鐘置於水平基底 72 4.3 四個擺鐘置於水平基底 77 4.4 五個擺鐘置於水平基底 80 4.5 各同步形式的穩態週期比較 84 第五章 諧和平衡法 86 5.1 兩個擺鐘置於水平基底 86 5.2 三個擺鐘置於水平基底 90 5.3 四個擺鐘置於水平基底 93 5.4 五個擺鐘置於水平基底 96 5.5 不同擺長下,諧和平衡法與數值分析的結果比較 99 第六章 結論 108 參考文獻 110 附錄A 114 附錄B 118 附錄C 125 | |
| dc.language.iso | zh-TW | |
| dc.subject | 諧和平衡法 | zh_TW |
| dc.subject | 擺鐘 | zh_TW |
| dc.subject | 無幌擒縱器 | zh_TW |
| dc.subject | 同步 | zh_TW |
| dc.subject | synchronization | en |
| dc.subject | deadbeat escapement | en |
| dc.subject | pendulum clocks | en |
| dc.subject | harmonic balance | en |
| dc.title | 無幌擒縱器擺鐘的同步 | zh_TW |
| dc.title | Synchronization of Deadbeat Escapement Pendulum Clocks | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 伍次寅,劉建豪 | |
| dc.subject.keyword | 同步,無幌擒縱器,擺鐘,諧和平衡法, | zh_TW |
| dc.subject.keyword | synchronization,deadbeat escapement,pendulum clocks,harmonic balance, | en |
| dc.relation.page | 127 | |
| dc.identifier.doi | 10.6342/NTU201802522 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2018-08-06 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf 未授權公開取用 | 14.62 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
