Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70874
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
---|---|---|
dc.contributor.advisor | 賀曾樸(Paul Ho) | |
dc.contributor.author | Liang-Yao Wang | en |
dc.contributor.author | 王亮堯 | zh_TW |
dc.date.accessioned | 2021-06-17T04:41:55Z | - |
dc.date.available | 2019-08-13 | |
dc.date.copyright | 2018-08-13 | |
dc.date.issued | 2018 | |
dc.date.submitted | 2018-08-06 | |
dc.identifier.citation | Adams, F. C., Lada, C. J., & Shu, F. H. 1987, ApJ, 312, 788
Allen, A., Shu, F. H., & Li, Z.-Y. 2003, ApJ, 599, 351 Andre, P., Ward-Thompson, D., & Barsony, M. 1993, ApJ, 406, 122 Arce, H. G., & Goodman, A. A. 2001, ApJ, 551, L171 Bachiller, R. 1996, ARA&A, 34, 111 Bachiller, R., & Tafalla, M. 1999, in NATO Advanced Science Institutes (ASI) Series C, Vol. 540, The Origin of Stars and Planetary Systems, ed. C. J. Lada & N. D. Kylafis (Dordrecht: Kluwer Academic Publishers), 227 Bally, J. 2016, ARA&A, 54, 491 Beckwith, S. V. W., Sargent, A. I., Chini, R. S., & Guesten, R. 1990, AJ, 99, 924 Bontemps, S., Andre, P., Terebey, S., & Cabrit, S. 1996, A&A, 311, 858 Cabrit, S., Raga, A., & Gueth, F. 1997, in IAU Symposium, Vol. 182, Herbig-Haro Flows and the Birth of Stars, ed. B. Reipurth & C. Bertout, 163–180 Canto, J., & Raga, A. C. 1991, ApJ, 372, 646 Carrasco-González, C., Rodríguez, L. F., Anglada, G., et al. 2010, Science, 330, 1209 Chandrasekhar, S. 1961, Hydrodynamic and hydromagnetic stability Chen, H., Myers, P. C., Ladd, E. F., & Wood, D. O. S. 1995, ApJ, 445, 377 Ching, T.-C., Lai, S.-P., Zhang, Q., et al. 2016, ApJ, 819, 159 Codella, C., Cabrit, S., Gueth, F., et al. 2007, A&A, 462, L53 Davis, C. J., Chrysostomou, A., Hatchell, J., et al. 2010, MNRAS, 405, 759 Dayou, F., & Balança, C. 2006, A&A, 459, 297 Dent, W. R. F., Matthews, H. E., & Ward-Thompson, D. 1998, MNRAS, 301, 1049 Downes, T. P., & Cabrit, S. 2003, A&A, 403, 135 Downes, T. P., & Ray, T. P. 1999, A&A, 345, 977 Dunham, M. M., Stutz, A. M., Allen, L. E., et al. 2014, Protostars and Planets VI, 195 Flower, D. R. 2001, Journal of Physics B Atomic Molecular Physics, 34, 2731 Frank, A., Jones, T. W., Ryu, D., & Gaalaas, J. B. 1996, ApJ, 460, 777 Frank, A., Ray, T. P., Cabrit, S., et al. 2014, Protostars and Planets VI, 451 Goldreich, P., & Kwan, J. 1974, ApJ, 189, 441 Goldreich, P., & Kylafis, N. D. 1981, ApJ, 243, L75 —. 1982, ApJ, 253, 606 Gueth, F., & Guilloteau, S. 1999, A&A, 343, 571 Gusdorf, A., Cabrit, S., Flower, D. R., & Pineau Des Forêts, G. 2008, A&A, 482, 809 Haro, G. 1952, ApJ, 115, 572 Herbig, G. H. 1951, ApJ, 113, 697 Hirano, N., Ho, P. P. T., Liu, S.-Y., et al. 2010, ApJ, 717, 58 Hirano, N., Liu, S.-Y., Shang, H., et al. 2006, ApJ, 636, L141 Ho, P. T. P., Moran, J. M., & Lo, K. Y. 2004, ApJ, 616, L1 Kenyon, S. J., Calvet, N., & Hartmann, L. 1993, ApJ, 414, 676 Konigl, A., & Pudritz, R. E. 2000, Protostars and Planets IV, 759 Krasnopolsky, R., Li, Z.-Y., & Shang, H. 2010, ApJ, 716, 1541 Kwan, J., & Scoville, N. 1976, ApJ, 210, L39 Lada, C. J. 1987, in IAU Symposium, Vol. 115, Star Forming Regions, ed. M. Peimbert & J. Jugaku, 1–17 Lee, C.-F., Hirano, N., Palau, A., et al. 2009, ApJ, 699, 1584 Lee, C.-F., Hirano, N., Zhang, Q., et al. 2015, ApJ, 805, 186 Lee, C.-F., Ho, P. T. P., Hirano, N., et al. 2007a, ApJ, 659, 499 Lee, C.-F., Ho, P. T. P., Palau, A., et al. 2007b, ApJ, 670, 1188 Lee, C.-F., Mundy, L. G., Reipurth, B., Ostriker, E. C., & Stone, J. M. 2000, ApJ, 542, 925 Lee, C.-F., Rao, R., Ching, T.-C., et al. 2014, ApJ, 797, L9 Lee, C.-F., Stone, J. M., Ostriker, E. C., & Mundy, L. G. 2001, ApJ, 557, 429 Lefloch, B., Cabrit, S., Busquet, G., et al. 2012, ApJ, 757, L25 Li, Z.-Y., & Shu, F. H. 1996, ApJ, 472, 211 Masson, C. R., & Chernin, L. M. 1992, ApJ, 387, L47 Matzner, C. D., & McKee, C. F. 1999, ApJ, 526, L109 Meyers-Rice, B. A., & Lada, C. J. 1991, ApJ, 368, 445 Myers, P. C., & Ladd, E. F. 1993, ApJ, 413, L47 Nisini, B., Codella, C., Giannini, T., & Richer, J. S. 2002, A&A, 395, L25 Nisini, B., Codella, C., Giannini, T., et al. 2007, A&A, 462, 163 Palau, A., Ho, P. T. P., Zhang, Q., et al. 2006, ApJ, 636, L137 Raga, A., & Cabrit, S. 1993, A&A, 278, 267 Raga, A. C., Binette, L., & Canto, J. 1990, ApJ, 360, 612 Richer, J. S., Shepherd, D. S., Cabrit, S., Bachiller, R., & Churchwell, E. 2000, Protostars and Planets IV, 867 Rosen, A., Hardee, P. E., Clarke, D. A., & Johnson, A. 1999, ApJ, 510, 136 Santiago-García, J., Tafalla, M., Johnstone, D., & Bachiller, R. 2009, A&A, 495, 169 Sault, R. J., Staveley-Smith, L., & Brouw, W. N. 1996, A&AS, 120, 375 Schilke, P., Walmsley, C. M., Pineau des Forets, G., & Flower, D. R. 1997, A&A, 321, 293 Schöier, F. L., Jørgensen, J. K., van Dishoeck, E. F., & Blake, G. A. 2004, A&A, 418, 185 Schöier, F. L., van der Tak, F. F. S., van Dishoeck, E. F., & Black, J. H. 2005, A&A, 432, 369 Scoville, N. Z., Carlstrom, J. E., Chandler, C. J., et al. 1993, PASP, 105, 1482 Shang, H., Allen, A., Li, Z.-Y., et al. 2006, ApJ, 649, 845 Shu, F., Najita, J., Ostriker, E., et al. 1994, ApJ, 429, 781 Shu, F. H., Adams, F. C., & Lizano, S. 1987, ARA&A, 25, 23 Shu, F. H., Najita, J., Ostriker, E. C., & Shang, H. 1995, ApJ, 455, L155 Shu, F. H., Najita, J. R., Shang, H., & Li, Z.-Y. 2000, Protostars and Planets IV, 789 Shu, F. H., Ruden, S. P., Lada, C. J., & Lizano, S. 1991, ApJ, 370, L31 Smith, M. D., Suttner, G., & Yorke, H. W. 1997, A&A, 323, 223 Snell, R. L., Loren, R. B., & Plambeck, R. L. 1980, ApJ, 239, L17 Stone, J. M., Hawley, J. F., Evans, C. R., & Norman, M. L. 1992, ApJ, 388, 415 Stone, J. M., & Norman, M. L. 1993, ApJ, 413, 198 Surdej, J. 1977, A&A, 60, 303 Tafalla, M. 1993, PhD thesis, California University Tafalla, M., Santiago, J., Johnstone, D., & Bachiller, R. 2004, A&A, 423, L21 Tafalla, M., Santiago-García, J., Hacar, A., & Bachiller, R. 2010, A&A, 522, A91 Tafalla, M., Su, Y.-N., Shang, H., et al. 2017, A&A, 597, A119 Wang, L.-Y., Shang, H., Krasnopolsky, R., & Chiang, T.-Y. 2015, ApJ, 815, 39 Wang, L.-Y., Shang, H., Su, Y.-N., et al. 2014, ApJ, 780, 49 Wernli, M., Valiron, P., Faure, A., et al. 2006, A&A, 446, 367 Wu, Y., Wei, Y., Zhao, M., et al. 2004, A&A, 426, 503 Zhang, Q., & Zheng, X. 1997, ApJ, 474, 719 Ziurys, L. M., Friberg, P., & Irvine, W. M. 1989, ApJ, 343, 201 Zuckerman, B., Kuiper, T. B. H., & Rodriguez Kuiper, E. N. 1976, ApJ, 209, L137 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70874 | - |
dc.description.abstract | 源自第零類原恆星系統的分子外流攜帶著關於早期恆星形成過程的訊息。這些年輕外流的特徵是之一是具有「極高速噴流」和「低速殼層」的雙重組成,而此構成可以自然地用整合風模型(Shang et al. 2006)解釋。在此模型中,高速噴流的部分是源自磁化風自身在軸上的高密度分佈,而低速殼層的部分則是周圍被風推開的物質積聚而成。在這個基本框架之下,我們利用數值模擬實驗來增進理解並且計算分子發射譜線來更真實的比較模擬結果與觀測。
為了探討高溫的風在低溫環境中的傳播,我們在模擬中追蹤源自風的物質的分佈並依此進行「雙溫度」的模擬。結果顯示當磁場夠強時,即使在高溫之下高速噴流的部分仍可以維持其準直型態,否則將會因為熱壓力的作用而變得彌散。我們也發現周圍包層物質中的極向磁場能幫助抑制風與環境交互作用邊界上不穩定性的發展,進而造成較平直的低速殼層。 我們計算分子發射譜線的合成影象、位置-速度表、以及光譜,而 CO J=2-1 譜線的影像清楚的表現出極高速噴流和低速殼層的雙組成。模型的質量-速度分佈表之冪次法則指數大約落在 1 到 3 之間,我們發現其大小和風的磁場強度有所關聯。 我們分析在第零類原恆星系統 IRAS 04166+2706 噴流中觀測到的特殊鋸齒狀速度分佈,並且提出以球狀風的速度場和軸上高密度物質分佈的方式來解釋其成因。在此假設之下鋸齒特徵的斜率會自然地隨距離改變,正如觀測結果所示。當假設分子外流與視線的夾角為 52 度時,模型預側的速度分佈與觀測基本符合。 | zh_TW |
dc.description.abstract | Molecular outflows associated with the youngest Class 0 protostars can bear clues of the early protostellar systems in the star formation process. These young outflows are characterized by dual components of extremely high velocity jets and low-velocity cavities, which are naturally understood in context of the unified wind model of Shang et al. 2006. The jet and cavity features are associated with the intrinsic density concentration of the magnetized primary wind and the swept-up ambient gas, respectively. Based on this framework, we develop understanding through numerical experiments and construct synthetic line emissions to bridge the gap between theory and observation.
By using a wind tracer field, we employ a two-temperature scheme to study the problem of a warm wind running into a cold ambient. Our exploration shows that the jet can be well maintained even at a high temperature for a sufficiently magnetized wind, but can be otherwise diffused. We also find that the presence of poloidal magnetic field in the ambient mass can help suppress instabilities at the wind-ambient interface to produce a less corrugated shell boundary. Synthetic images, position-velocity diagrams, and spectra for molecular transition lines are presented, and the dual jet and shell components are clearly seen in CO J=2-1. The model power-law spectral index γ of the mass-velocity relation (m ~ v^-γ) falls in the range of ~1 to 3, and a dependency on the wind magnetization is revealed. We analyze the observed sawtooth-like velocity pattern of the Class 0 IRAS 04166+2706 outflow and propose that a spherical wind-like velocity field with mass concentration near axis could underly the pattern. The systematic change of the teeth slope with distance is a natural consequence in this case, and the overall pattern is consistently explained with an inclination angle of ~52 degree. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T04:41:55Z (GMT). No. of bitstreams: 1 ntu-107-D00244001-1.pdf: 9721189 bytes, checksum: bb18b4e1ea866755b2087a16a4e0a3bf (MD5) Previous issue date: 2018 | en |
dc.description.tableofcontents | 論文口試委員審定書ii
誌謝 v 摘要 vii Abstract ix 1 Introduction 1 1.1 Evolutionary Stages in Isolated Low-Mass Star Formation . . . . . . . . 1 1.2 Mass Outflow Phenomena from Young Stars . . . . . . . . . . . . . . . . 3 1.3 Class 0 Molecular Outflows . . . . . . . . . . . . . . . . . . . . . . . . 4 1.4 Motivation and Approaches of the Study . . . . . . . . . . . . . . . . . . 5 2 A Two-Temperature Model of Magnetized Protostellar Outflows 9 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.2 Model Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2.1 Asymptotic Structure of Magnetocentrifugal Winds . . . . . . . . 11 2.2.2 Singular Isothermal Toroids . . . . . . . . . . . . . . . . . . . . 12 2.3 Simulation Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.4 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.4.1 Basic Features . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.4.2 The Joint Effect of Wind Temperature and Bϕ . . . . . . . . . . . 17 2.4.3 The Role of Ambient Poloidal Fields . . . . . . . . . . . . . . . 23 2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.5.1 Implications on the Jet and Shell . . . . . . . . . . . . . . . . . . 27 2.5.2 Instability and Mixing Between Wind and Toroid . . . . . . . . . 29 2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3 Synthetic Observations of Youngest Protostellar Outflows 39 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.2.1 Two-Temperature Wind and Toroids . . . . . . . . . . . . . . . . 43 3.2.2 Synthetic Imaging . . . . . . . . . . . . . . . . . . . . . . . . . 48 3.3 Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 3.3.1 Column Density Distributions . . . . . . . . . . . . . . . . . . . 52 3.3.2 Synthetic Channel Maps . . . . . . . . . . . . . . . . . . . . . . 54 3.3.3 Synthetic Position–Velocity Diagrams . . . . . . . . . . . . . . . 59 3.3.4 Synthetic Spectra . . . . . . . . . . . . . . . . . . . . . . . . . . 61 3.3.5 Mass–Velocity Relation . . . . . . . . . . . . . . . . . . . . . . 62 3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 3.4.1 Signatures of Temperature and Magnetic Fields . . . . . . . . . . 66 3.4.2 Mass-Velocity Relation Revisited . . . . . . . . . . . . . . . . . 68 3.4.3 Velocity Distribution of the Swept-Up Mass in Presence of Magnetic Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 4 Molecular Jet of IRAS 04166+2706 81 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 4.2 Observations and Data Reduction . . . . . . . . . . . . . . . . . . . . . 83 4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 4.3.1 The 350 GHz Continuum . . . . . . . . . . . . . . . . . . . . . . 85 4.3.2 Overall Morphology of the CO J = 3–2 Molecular Outflow . . . 87 4.3.3 The Missing Flux . . . . . . . . . . . . . . . . . . . . . . . . . . 89 4.3.4 The EHV Jet . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 4.3.5 The Low-Velocity Conical Shells . . . . . . . . . . . . . . . . . 98 4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 4.4.1 Large Velocity Gradient Analysis of EHV Jet . . . . . . . . . . . 101 4.4.2 Uncertainties in The Analysis of Offsets in The Peak Positions . . 105 4.4.3 I04166, L1448C, and HH 211 Outflows . . . . . . . . . . . . . . 108 4.5 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . 110 5 Ejection History of IRAS 04166+2706 Molecular Jet 113 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 5.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 5.2.1 Molecular Outflow IRAS 04166+2706 and The Sawtooth Velocity Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 5.2.2 The Unified Wind Model . . . . . . . . . . . . . . . . . . . . . . 117 5.3 Sawtooth Velocity Pattern: a Spherical Wind Interpretation . . . . . . . . 120 5.3.1 An Intuitive Explanation . . . . . . . . . . . . . . . . . . . . . . 120 5.3.2 A Quantitative Description . . . . . . . . . . . . . . . . . . . . . 123 5.4 Numerical Simulations of Variable Velocity Wind . . . . . . . . . . . . . 127 5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 5.5.1 Wind or Jet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 5.5.2 Implications on Velocity History . . . . . . . . . . . . . . . . . . 136 5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 6 Summary 139 A Velocity Pattern of the Spherical Wind Model 143 Bibliography 147 | |
dc.language.iso | en | |
dc.title | 年輕分子噴流:理論模型與觀測 | zh_TW |
dc.title | Youngest Molecular Jets and Outflows: Theoretical Modeling and Observations | en |
dc.type | Thesis | |
dc.date.schoolyear | 106-2 | |
dc.description.degree | 博士 | |
dc.contributor.coadvisor | 尚賢(Hsien Shang) | |
dc.contributor.oralexamcommittee | 李太楓(Typhoon Lee),辜品高(Pin-Gao Gu),管一政(Yi-Jehng Kuan) | |
dc.subject.keyword | IRAS 04166+2706,噴流與風,運動學與動力學,恆星形成, | zh_TW |
dc.subject.keyword | ISM: individual objects (IRAS 04166+2706),ISM: jets and outflows,ISM: kinematics and dynamics,stars: formation, | en |
dc.relation.page | 151 | |
dc.identifier.doi | 10.6342/NTU201802508 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2018-08-06 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 天文物理研究所 | zh_TW |
Appears in Collections: | 天文物理研究所 |
Files in This Item:
File | Size | Format | |
---|---|---|---|
ntu-107-1.pdf Restricted Access | 9.49 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.