Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電子工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70871
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張子璿zh_TW
dc.contributor.advisorTzu-Hsuan Changen
dc.contributor.author陳建良zh_TW
dc.contributor.authorChien-Liang Chenen
dc.date.accessioned2021-06-17T04:41:48Z-
dc.date.available2025-08-31-
dc.date.copyright2020-09-17-
dc.date.issued2020-
dc.date.submitted2002-01-01-
dc.identifier.citation[1] K. J. Lee et al., "Bendable GaN high electron mobility transistors on plastic substrates," Journal of Applied Physics, vol. 100, no. 12, p. 124507, 2006.
[2] J. A. Rogers, T. Someya, and Y. Huang, "Materials and mechanics for stretchable electronics," science, vol. 327, no. 5973, pp. 1603-1607, 2010.
[3] T. H. Kim et al., "Printable, flexible, and stretchable forms of ultrananocrystalline diamond with applications in thermal management," Advanced Materials, vol. 20, no. 11, pp. 2171-2176, 2008.
[4] R. Landauer, "Electrical conductivity in inhomogeneous media," in AIP Conference Proceedings, 1978, vol. 40, no. 1: American Institute of Physics, pp. 2-45.
[5] H. Hong, J. U. Kim, and T.-i. Kim, "Effective assembly of nano-ceramic materials for high and anisotropic thermal conductivity in a polymer composite," Polymers, vol. 9, no. 9, p. 413, 2017.
[6] H. Zhu et al., "Highly Thermally Conductive Papers with Percolative Layered Boron Nitride Nanosheets," ACS Nano, vol. 8, no. 4, pp. 3606-3613, 2014/04/22 2014, doi: 10.1021/nn500134m.
[7] T.-H. Chang et al., "High power fast flexible electronics: Transparent RF AlGaN/GaN HEMTs on plastic substrates," in 2015 IEEE MTT-S International Microwave Symposium, 2015: IEEE, pp. 1-4.
[8] Y. Sun and J. A. Rogers, "Inorganic semiconductors for flexible electronics," Advanced materials, vol. 19, no. 15, pp. 1897-1916, 2007.
[9] W. Wong et al., "Fabrication of thin-film InGaN light-emitting diode membranes by laser lift-off," Applied physics letters, vol. 75, no. 10, pp. 1360-1362, 1999.
[10] Y. Kobayashi, K. Kumakura, T. Akasaka, and T. Makimoto, "Layered boron nitride as a release layer for mechanical transfer of GaN-based devices," Nature, vol. 484, no. 7393, pp. 223-227, 2012.
[11] K. J. Lee et al., "A printable form of single‐crystalline gallium nitride for flexible optoelectronic systems," small, vol. 1, no. 12, pp. 1164-1168, 2005.
[12] K. Xiong et al., "Single crystal gallium nitride nanomembrane photoconductor and field effect transistor," Advanced Functional Materials, vol. 24, no. 41, pp. 6503-6508, 2014.
[13] E. T. Kim, J.-M. Seo, S. J. Woo, J. A. Zhou, H. Chung, and S. J. Kim, "Fabrication of pillar shaped electrode arrays for artificial retinal implants," Sensors, vol. 8, no. 9, pp. 5845-5856, 2008.
[14] H. Guo et al., "A highly sensitive, self-powered triboelectric auditory sensor for social robotics and hearing aids," Science Robotics, vol. 3, no. 20, 2018.
[15] J. Ge et al., "A stretchable electronic fabric artificial skin with pressure‐, lateral strain‐, and flexion‐sensitive properties," Advanced materials, vol. 28, no. 4, pp. 722-728, 2016.
[16] H. S. Kim, X. Sun, J.-H. Lee, H.-W. Kim, X. Fu, and K. W. Leong, "Advanced drug delivery systems and artificial skin grafts for skin wound healing," Advanced drug delivery reviews, vol. 146, pp. 209-239, 2019.
[17] E. Scarpa et al., "Wearable piezoelectric mass sensor based on pH sensitive hydrogels for sweat pH monitoring," Scientific Reports, vol. 10, no. 1, pp. 1-10, 2020.
[18] S. P. Lee et al., "Highly flexible, wearable, and disposable cardiac biosensors for remote and ambulatory monitoring," NPJ digital medicine, vol. 1, no. 1, pp. 1-8, 2018.
[19] C. Pan, K. Kou, Q. Jia, Y. Zhang, G. Wu, and T. Ji, "Improved thermal conductivity and dielectric properties of hBN/PTFE composites via surface treatment by silane coupling agent," Composites Part B: Engineering, vol. 111, pp. 83-90, 2017.
[20] J. Xia et al., "Highly mechanical strength and thermally conductive bismaleimide–triazine composites reinforced by Al2O3@ polyimide hybrid fiber," Composites Part A: Applied Science and Manufacturing, vol. 80, pp. 21-27, 2016.
[21] J. Su and J. Zhang, "Improvement of mechanical and dielectrical properties of ethylene propylene diene monomer (EPDM)/barium titanate (BaTiO3) by layered mica and graphite flakes," Composites Part B: Engineering, vol. 112, pp. 148-157, 2017.
[22] L. Frormann, A. Iqbal, and S. A. Abdullah, "Thermo‐viscoelastic behavior of PCNF‐filled polypropylene nanocomposites," Journal of applied polymer science, vol. 107, no. 4, pp. 2695-2703, 2008.
[23] S. A. Abdullah, A. Iqbal, and L. Frormann, "Melt mixing of carbon fibers and carbon nanotubes incorporated polyurethanes," Journal of applied polymer science, vol. 110, no. 1, pp. 196-202, 2008.
[24] C. Pan et al., "Fabrication and characterization of micro-nano AlN co-filled PTFE composites with enhanced thermal conductivity: a morphology-promoted synergistic effect," Journal of Materials Science: Materials in Electronics, vol. 27, no. 11, pp. 11909-11916, 2016.
[25] N. Song, X. Hou, L. Chen, S. Cui, L. Shi, and P. Ding, "A green plastic constructed from cellulose and functionalized graphene with high thermal conductivity," ACS applied materials & interfaces, vol. 9, no. 21, pp. 17914-17922, 2017.
[26] T. Morishita and H. Okamoto, "Facile exfoliation and noncovalent superacid functionalization of boron nitride nanosheets and their use for highly thermally conductive and electrically insulating polymer nanocomposites," ACS applied materials & interfaces, vol. 8, no. 40, pp. 27064-27073, 2016.
[27] N. Song, D. Cao, X. Luo, Y. Guo, J. Gu, and P. Ding, "Aligned cellulose/nanodiamond plastics with high thermal conductivity," Journal of Materials Chemistry C, vol. 6, no. 48, pp. 13108-13113, 2018.
[28] Z. Bao, Y. Feng, A. Dodabalapur, V. Raju, and A. J. Lovinger, "High-performance plastic transistors fabricated by printing techniques," Chemistry of Materials, vol. 9, no. 6, pp. 1299-1301, 1997.
[29] J. A. Rogers et al., "like electronic displays: Large-area rubber-stamped plastic sheets of electronics and microencapsulated electrophoretic inks," Proceedings of the National Academy of Sciences, vol. 98, no. 9, pp. 4835-4840, 2001.
[30] F. Garnier, R. Hajlaoui, A. Yassar, and P. Srivastava, "All-polymer field-effect transistor realized by printing techniques," Science, vol. 265, no. 5179, pp. 1684-1686, 1994.
[31] G. H. Gelinck et al., "Flexible active-matrix displays and shift registers based on solution-processed organic transistors," Nature materials, vol. 3, no. 2, pp. 106-110, 2004.
[32] W. Kim, J. W. Bae, I. D. Choi, and Y. S. Kim, "Thermally conductive EMC (epoxy molding compound) for microelectronic encapsulation," Polymer Engineering & Science, vol. 39, no. 4, pp. 756-766, 1999.
[33] L. C. Sim, S. Ramanan, H. Ismail, K. Seetharamu, and T. Goh, "Thermal characterization of Al2O3 and ZnO reinforced silicone rubber as thermal pads for heat dissipation purposes," Thermochimica acta, vol. 430, no. 1-2, pp. 155-165, 2005.
[34] C. Wong and R. Bollampally, "Mixed filler combinations for enhanced thermal conductivity of liquid encapsulants for electronic packaging," in Proceedings International Symposium on Advanced Packaging Materials. Processes, Properties and Interfaces (IEEE Cat. No. 99TH8405), 1999: IEEE, pp. 113-117.
[35] C. Wong and R. S. Bollampally, "Thermal conductivity, elastic modulus, and coefficient of thermal expansion of polymer composites filled with ceramic particles for electronic packaging," Journal of applied polymer science, vol. 74, no. 14, pp. 3396-3403, 1999.
[36] G. A. Gelves, B. Lin, U. Sundararaj, and J. A. Haber, "Low electrical percolation threshold of silver and copper nanowires in polystyrene composites," Advanced Functional Materials, vol. 16, no. 18, pp. 2423-2430, 2006.
[37] C. M. Ye, B. Q. Shentu, and Z. X. Weng, "Thermal conductivity of high density polyethylene filled with graphite," Journal of Applied Polymer Science, vol. 101, no. 6, pp. 3806-3810, 2006.
[38] J. Zhu, J. Kim, H. Peng, J. L. Margrave, V. N. Khabashesku, and E. V. Barrera, "Improving the dispersion and integration of single-walled carbon nanotubes in epoxy composites through functionalization," Nano letters, vol. 3, no. 8, pp. 1107-1113, 2003.
[39] A. A. Balandin et al., "Superior thermal conductivity of single-layer graphene," Nano letters, vol. 8, no. 3, pp. 902-907, 2008.
[40] J. Zeng, R. Fu, Y. Shen, H. He, and X. Song, "High thermal conductive epoxy molding compound with thermal conductive pathway," Journal of applied polymer science, vol. 113, no. 4, pp. 2117-2125, 2009.
[41] G.-W. Lee, M. Park, J. Kim, J. I. Lee, and H. G. Yoon, "Enhanced thermal conductivity of polymer composites filled with hybrid filler," Composites Part A: Applied science and manufacturing, vol. 37, no. 5, pp. 727-734, 2006.
[42] W. Peng, X. Huang, J. Yu, P. Jiang, and W. Liu, "Electrical and thermophysical properties of epoxy/aluminum nitride nanocomposites: Effects of nanoparticle surface modification," Composites Part A: Applied Science and Manufacturing, vol. 41, no. 9, pp. 1201-1209, 2010.
[43] K. Yung, B. Zhu, J. Wu, T. Yue, and C. Xie, "Effect of AlN content on the performance of brominated epoxy resin for printed circuit board substrate," Journal of Polymer Science Part B: Polymer Physics, vol. 45, no. 13, pp. 1662-1674, 2007.
[44] K. Wu et al., "Achieving a collapsible, strong, and highly thermally conductive film based on oriented functionalized boron nitride nanosheets and cellulose nanofiber," ACS applied materials & interfaces, vol. 9, no. 35, pp. 30035-30045, 2017.
[45] Y. H. Jung et al., "High-performance green flexible electronics based on biodegradable cellulose nanofibril paper," Nature Communications, vol. 6, no. 1, p. 7170, 2015/05/26 2015, doi: 10.1038/ncomms8170.
[46] S. Pramila, M. Fulekar, and P. Bhawana, "E-waste-A challenge for tomorrow," Research Journal of Recent Sciences ISSN, vol. 2277, p. 2502, 2012.
[47] W. S. Wong and A. Salleo, Flexible electronics: materials and applications. Springer Science & Business Media, 2009.
[48] C. Pan, J. Zhang, K. Kou, Y. Zhang, and G. Wu, "Investigation of the through-plane thermal conductivity of polymer composites with in-plane oriented hexagonal boron nitride," International Journal of Heat and Mass Transfer, vol. 120, pp. 1-8, 2018.
[49] C.-H. Lin et al., "A flexible solar-blind 2D boron nitride nanopaper-based photodetector with high thermal resistance," npj 2D Materials and Applications, vol. 2, no. 1, p. 23, 2018.
[50] Y. Wang et al., "High temperature thermal management with boron nitride nanosheets," Nanoscale, vol. 10, no. 1, pp. 167-173, 2018.
[51] W. Meng, Y. Huang, Y. Fu, Z. Wang, and C. Zhi, "Polymer composites of boron nitride nanotubes and nanosheets," Journal of Materials Chemistry C, vol. 2, no. 47, pp. 10049-10061, 2014.
[52] K. Sato et al., "Thermally conductive composite films of hexagonal boron nitride and polyimide with affinity-enhanced interfaces," Journal of Materials Chemistry, vol. 20, no. 14, pp. 2749-2752, 2010.
[53] R. L. Crawford, Lignin biodegradation and transformation. John Wiley and Sons., 1981.
[54] D. M. Updegraff, "Semimicro determination of cellulose inbiological materials," Analytical biochemistry, vol. 32, no. 3, pp. 420-424, 1969.
[55] Y.-N. Xu and W. Y. Ching, "Calculation of ground-state and optical properties of boron nitrides in the hexagonal, cubic, and wurtzite structures," Physical Review B, vol. 44, no. 15, pp. 7787-7798, 10/15/ 1991, doi: 10.1103/PhysRevB.44.7787.
[56] H. Mi et al., "Characterizations of biodegradable epoxy-coated cellulose nanofibrils (CNF) thin film for flexible microwave applications," Cellulose, vol. 23, no. 3, pp. 1989-1995, 2016// 2016, doi: 10.1007/s10570-016-0913-2.
[57] B. Balaji, J. McCullough, R. K. Gupta, and Y. Agarwal, "Accurate characterization of the variability in power consumption in modern mobile processors," in Presented as part of the 2012 Workshop on Power-Aware Computing and Systems, 2012.
[58] M. Azize and T. Palacios, "Effect of substrate-induced strain in the transport properties of AlGaN/GaN heterostructures," Journal of Applied Physics, vol. 108, no. 2, p. 023707, 2010.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70871-
dc.description.abstract隨著積體電路的設計走向三維度的整合,邏輯晶片的運算能力大幅度的提升,但是相對單位密度的元件功率消耗也會大幅度的提升,如何設計有效的散熱及封裝結構則變成現在追求高性能、高速電子元件的重要議題。因此,具有開發一個高散熱且低介電常數與低介電損耗複合材料的技術,並且同時能進行大規模的使用是很重要的。軟性材料應用於晶片封裝的應用,但這類材料唯一的缺點是熱傳導係數非常低,必須加入一些熱傳導係數特別高的陶瓷粉末,才能提升散熱效能,但此類複合材料的熱傳導係數也只能提高至 ~1W/mK,相對於金屬材料還要低兩個數量級,無法有效傳導電子元件運作的熱能。
在本篇論文裡,我們成功的研究了一套生產新的複合材料的技術,將具有超高效能平面熱傳導能力的二維氮化硼 (h-BN),有效的透過奈米纖維的方式,散佈在軟性材料中,形成緻密的散熱網路。我們做出來的複合材料將原先軟性材料的熱傳導從0.2 W/mK提高至28.181 W/mK,除此之外,介電常數維持在2.4與極低的介電損耗(<10-4)可以讓此複合材料用於各種高速元件的應用。我們開發的複合材料不只有非常優秀的散熱與介電特性,生產過程符合工業製程,能進行大量生產,同時對於水及濕氣有極高的抵禦力,非常適合作為封裝材料。透過進一步的分析材料的特性,我們引入了一個修正項修正Bruggeman model,成功的計算出二維材料的複合材料空間分布情形,瞭解製程成功的原因,作為未來混煉其他二維材料的根基。最後,我們將高功率元件AlGaN/GaN HEMTs薄膜從原先的基板上取下來,轉移到我們製作出來的複合材料薄膜上,來實證我們開發材料的散熱特性。在轉移後,透過應力的釋放,以及改善的散熱能力下,我們可以在軟性材料上面,提升元件的transconductance 高達18%。
zh_TW
dc.description.abstractCreating a polymeric composite with high thermal conductivity, low dielectric constant, and tangent loss are essential for packaging high-speed electronics. Soft-materials are able to be injected and molded around the transistors but also inherently poor at conducting heat. Even though many approaches that inserting the high conductive component into the polymers are proved to be able to increase the thermal properties, the blended composite is still maintaining the thermal conductivity around ~1W/mK, which is still far lowered than that of the general metal. In this research, we successfully create the new composite materials, not only with better thermal and dielectric properties, but also can be compatible for mass manufacturing. We successfully resolve the uniform distribution of 2D materials (boron nitride) into polymers by pre-mixing the BN and Cellulose nanofibril as a blended component. The orientation of BN inside the polymer are matched by Bruggeman model and demonstration of water-resistance and heaters are discussed. The process increases the thermal conductivity of polymer from 0.2W/mK to 28.181W/mK and has medium to low dielectric constant ~2.4 and ultra-low tangent loss (<10-4) and are suitable for high-speed applications. Finally, we release a GaN film from silicon substrate, and then transfer to composite thin film. The device is biased under the low bias shows that gm is actually increased by 18%.en
dc.description.provenanceMade available in DSpace on 2021-06-17T04:41:48Z (GMT). No. of bitstreams: 1
U0001-2008202011590500.pdf: 3931053 bytes, checksum: a5162267631cbfe54dfa2d93d35e54fd (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents摘要 iii
Abstract iv
List of Figures vii
List of Tables x
Chapter 1: Introduction 1
1.1 Introduction to high performance wearable/flexible electronics 1
1.2 Dielectric and thermal properties of flexible substrate for flexible electronics 3
1.2.1 Thermal conductivity 3
1.2.2 Imaginary part of Dielectric Constant: Loss Tangent 4
1.3 Power Electronics on new composite thin film 6
1.4 Thermal induced device degradation 7
1.5 Conclusion 7
Chapter 2: Composite process 8
2.1 Soft and organic material used as the substrate of flexible electronics 8
2.2 Compound materials and fitting dielectric properties using Bruggeman model 9
2.2.1 Effective medium approximations (EMS) 9
2.2.2 Bruggeman’s Model Formulas 11
2.3 Improved thermal conductivity of organic material by added filler material & Problem 13
2.4 Recently progress of blending 2D materials with CNF & moisture issues 14
2.5 Tangent loss and high-speed electronics 15
2.6 Conclusion 16
Chapter 3: Improved thermal conductivity by added pre-mix BN/CNF and maintain same order Loss tangent 18
3.1 Improved thermal conductivity by added pre-mix BN/CNF 18
3.2 Experiment setup 20
3.2.1 Methods of pre-blending CNF/BN film for uniform dispersion of h-BN 22
3.2.2 Rotary mixture and injection molding 23
3.3 Thermal conductivity and tangent loss 24
3.4 Modified EMS model and fitting 28
3.5 Validation of thermal conductivity through thermal Resistor measurement 32
3.6 Thermal Resistor measurement 33
3.7 Conclusion 34
Chapter 4: Flexible AlGaN/GaN HEMTs on CNF/BN/PP Flexible Substrate 39
4.1 Applications of AlGaN/GaN HEMTs over the flexible/wearable electronics 39
4.2 Experiment Setup 40
4.3 DC measurement of AlGaN/GaN HEMTs on Si and on composites substrate at moderate input power 45
4.4 Conclusion and future work 49
Reference 50
-
dc.language.isoen-
dc.subjectBruggeman modelzh_TW
dc.subject纖維素奈米纖維zh_TW
dc.subject氮化硼zh_TW
dc.subject二維材料zh_TW
dc.subject2D materialsen
dc.subjectCellulose nanofibrilen
dc.subjectBoron Nitrideen
dc.subjectBruggeman modelen
dc.title利用2D材料提高可撓性電子元件的介電與散熱特性zh_TW
dc.titleImprovement of Dielectric and Thermal Properties of flexible electronics with 2D materialen
dc.typeThesis-
dc.date.schoolyear108-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee吳肇欣;林致廷zh_TW
dc.contributor.oralexamcommitteeChao-Hsin Wu;Chih-Ting Linen
dc.subject.keyword二維材料,氮化硼,纖維素奈米纖維,Bruggeman model,zh_TW
dc.subject.keyword2D materials,Boron Nitride,Cellulose nanofibril,Bruggeman model,en
dc.relation.page54-
dc.identifier.doi10.6342/NTU202004130-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2020-08-20-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept電子工程學研究所-
dc.date.embargo-lift2025-08-31-
顯示於系所單位:電子工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-108-2.pdf3.84 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved