請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70860
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林詩舜(Shih-Shun Lin) | |
dc.contributor.author | Sin-Fen Hu | en |
dc.contributor.author | 胡馨分 | zh_TW |
dc.date.accessioned | 2021-06-17T04:41:21Z | - |
dc.date.available | 2020-08-21 | |
dc.date.copyright | 2020-08-21 | |
dc.date.issued | 2020 | |
dc.date.submitted | 2020-08-20 | |
dc.identifier.citation | Agudelo-Romero P, de la Iglesia F, and Elena SF (2008) The pleiotropic cost of host- specialization in Tobacco etch potyvirus. Infect. Genet. Evol. 8: 806-814.
Alazem M, He MH, Moffett P, and Lin NS (2017) Abscisic acid induces resistance against Bamboo mosaic virus through Argonaute2 and 3. Plant Physiol. 174: 339-355. Anandalakshmi R, Pruss GJ, Ge X, Marathe R, Mallory AC, Smith TH, and Vance VB (1998) A viral suppressor of gene silencing in plants. Proc. Natl. Acad. Sci. USA 95: 13079-13084. Anandalakshmi R, Marathe R, Ge X, Herr JMJ, Mau C, Mallory A, Pruss G, Bowman L, and Vance VB (2000) A calmodulin-related protein that suppresses posttranscriptional gene silencing in plants. Science 290: 142-144. Bilsborough GD, Runions A, Barkoulas M, Jenk- ins HW, Hasson A, Galinha C, Laufs P, Hay A, Prusinkiewicz P, Tsiantis M. Model for the regulation of Arabidopsis thaliana leaf margin development. Proc Natl Acad Sci 2011, 108:3424–3429. Bouché N (2010) New insights into miR398 functions in Arabidopsis. Plant Signal Behav. 5: 684-686. Branscheid A, Marchais A, Schott G, Lange H, Gagliardi D, Andersen SU, Voinnet O, and Brodersen P (2015) SKI2 mediates degradation of RISC 5'-cleavage fragments and prevents secondary siRNA production from miRNA targets in Arabidopsis. Nucleic Acids Res. 43: 10975-10988. Cecchetti V, Brunetti P, Napoli N, Fattorini L, Altamura MM, Costantino P, and Cardarelli M (2015) ABCB1 and ABCB19 auxin transporters have synergistic effects on early and late Arabidopsis anther development. J. Integr. Plant Biol. 57: 1089-1098. Chen Z, Zhao PX, Miao ZQ, Qi GF, Wang Z, Yuan Y, Ahmad N, Cao MJ, Hell R, Wirtz M, and Xiang CB (2019) SULTR3s function in chloroplast sulfate uptake and affect ABA biosynthesis and the stress response. Plant Physiol. 180: 593- 604. Cheng CH, Shen BN, Shang QW, Liu LD, Peng KC, Chen YH, Chen FF, Hu SF, Wang YT, Wang HC, Wu HY, Lo CT, and Lin SS (2018) Gene-to-gene network analysis of the mediation of plant innate immunity by the eliciting plant response-like 1 (Epl1) elicitor of Trichoderma formosa. Mol. Plant Microbe Interact. 31: 683-691. Chiu MT, Lin CP, Lin PC, and Lin SS (2013) Enhance of IgG purification by FPLC for a serological study on the Turnip mosaic virus P1 Protein. Plant Path. Bull. 22: 21-30. Cui Y, Fang X, and Qi Y (2016) TRANSPORTIN1 promotes the association of microRNA with ARGONAUTE1 in Arabidopsis. Plant Cell 28: 2576-2585. Deyholos MK, Cavaness GF, Hall B, King E, Punwani J, Van Norman J, and Sieburth LE (2003) VARICOSE, a WD-domain protein, is required for leaf blade development. Development 130: 6577-6588. DeYoung BJ, Bickle KL, Schrage KJ, Muskett P, Patel K, and Clark SE (2006) The CLAVATA1-related BAM1, BAM2 and BAM3 receptor kinase-like proteins are required for meristem function in Arabidopsis. Plant J. 45: 1-16. Dyson BC, Miller MA, Feil R, Rattray N, Bowsher CG, Goodacre R, Lunn JE, and Johnson GN (2016) FUM2, a cytosolic fumarase, is essential for acclimation to low temperature in Arabidopsis thaliana. Plant Physiol. 172: 118-127. Fang Q, Wang Q, Mao H, Xu J, Wang Y, Hu H, He S, Tu J, Cheng C, Tian G, Wang X, Liu X, Zhang C, and Luo K (2018) AtDIV2, an R-R-type MYB transcription factor of Arabidopsis, negatively regulates salt stress by modulating ABA signaling. Plant Cell Rep. 37: 1499-1511. Geem KR, Kim DH, Lee DW, Kwon Y, Lee J, Kim JH, and Hwang I (2019) Jasmonic acid-inducible TSA1 facilitates ER body formation. Plant J. 97: 267-280. Gutierrez-Beltran E, Moschou PN, Smertenko AP, and Bozhkov PV (2015) Tudor staphylococcal nuclease links formation of stress granules and processing bodies with mRNA catabolism in Arabidopsis. Plant Cell 27: 926-943. Hansen H and Grossmann K (2000) Auxin-induced ethylene triggers abscisic acid biosynthesis and growth inhibition. Plant Physiol. 124: 1437-1448. Harvey JJ, Lewsey MG, Patel K, Westwood J, Heimstädt S, Carr JP, and Baulcombe DC (2011) An antiviral defense role of AGO2 in plants. PLoS One 6: e14639. Hasson A, Plessis A, Blein T, Adroher B, Grigg S, Tsiantis M, Boudaoud A, Damerval C, Laufs P. Evolution and diverse roles of the CUP-SHAPED COTYLEDON genes in Arabidopsis leaf development. Plant Cell 2011, 23:54–68. Hay A, Barkoulas M, and Tsiantis M (2006) ASYMMETRIC LEAVES1 and auxin activities converge to repress BREVIPEDICELLUS expression and promote leaf development in Arabidopsis. Development 133: 3955-3961. Helizon H, Rösler-Dalton J, Gasch P, von Horsten S, Essen LO, and Zeidler M (2018) Arabidopsis phytochrome A nuclear translocation is mediated by a far-red elongated hypocotyl 1-importin complex. Plant J. 96: 1255-1268. Hord CL, Chen C, Deyoung BJ, Clark SE, and Ma H (2006) The BAM1/BAM2 receptor-like kinases are important regulators of Arabidopsis early anther development. Plant Cell 18: 1667-1680. Hu SF, Huang YH, Lin CP, Liu LYD, Hong SF, Yang CY, Lo HF, Tseng TY, Chen WY, and Lin SS (2015) Development of a Mild Viral Expression System for Gain- Of-Function Study of Phytoplasma Effector in Planta. PLOS ONE DOI:10.1371/journal.pone.0130139. Kang H, Kim SY, Song K, Sohn EJ, Lee Y, Lee DW, Hara-Nishimura I, and Hwang I (2012) Trafficking of vacuolar proteins: the crucial role of Arabidopsis vacuolar protein sorting 29 in recycling vacuolar sorting receptor. Plant Cell 24: 5058- 5073. Kasschau KD and Carrington JC (1998) A counterdefensive strategy of plant viruses: suppression of posttranscriptional gene silencing. Cell 95: 461-470. Kasschau KD, Xie Z, Allen E, Llave C, Chapman EJ, Krizan KA, and Carrington JC (2003) P1/HC-Pro, a viral suppressor of RNA silencing, interferes with Arabidopsis development and miRNA unction. Dev. Cell 4: 205-217. Kitakura S, Adamowski M, Matsuura Y, Santuari L, Kouno H, Arima K, Hardtke CS, Friml J, Kakimoto T, and Tanaka H (2017) BEN3/BIG2 ARF GEF is involved in brefeldin A-sensitive trafficking at the trans-Golgi network/early endosome in Arabidopsis thaliana. Plant Cell Physiol. 58: 1801-1811. Kobayashi H, Shoji K, Kiyokawa K, Negishi L, and Tomari Y (2019) VCP machinery mediates autophagic degradation of empty argonaute. Cell Rep. 28: 1144-1153. Kung YJ, Lin PC, Yeh SD, Hong SF, Chua NH, Liu LY, Lin CP, Huang YH, Wu HW, Chen CC, and Lin SS (2014) Genetic analyses of the FRNK motif function of Turnip mosaic virus uncover multiple and potentially interactive pathways of cross-protection. Mol. Plant Microbe Interact. 27: 944-955. Lansing H, Doering L, Fischer K, Baune MC, and Schaewen AV (2020) Analysis of potential redundancy among Arabidopsis 6-phosphogluconolactonase isoforms in peroxisomes. J. Exp. Bot. 71: 823-836. Li Y, Sun Q, Zhao T, Xiang H, Zhang X, Wu Z, Zhou C, Zhang X, Wang Y, Zhang Y, Wang X, Li D, Yu J, Dinesh-Kumar SP, and Han C (2019) Interaction between Brassica yellows virus silencing suppressor P0 and plant SKP1 facilitates stability of P0 in vivo against degradation by proteasome and autophagy pathways. New Phytol. 222: 1458-1473. Liang W, Li C, Liu F, Jiang H, Li S, Sun J, Wu X, and Li C (2009) The Arabidopsis homologs of CCR4-associated factor 1 show mRNA deadenylation activity and play a role in plant defence responses. Cell Res. 19: 307-316. Liao YT, Lin SS, Lin SJ, Sun WT, Shen BN, Cheng HP, Lin CP, Ko TP, Chen YF and Wang HC (2019) Structural insights into the interaction between phytoplasmal effector causing phyllody 1 and MADS transcription factors. The Plant Journal. 100, 706-719. Liu CT, Huang HM, Hong SF, Kuo H LL, Yang CY, Lin YY, Lin CP Lin SS (2015) Peanut witches’ broom (PnWB) phytoplasma-mediated leafy flower symptoms and abnormal vascular bundles development. Plant Signaling Behavior 10:12, e1107690. Liu K, Zou W, Gao X, Wang X, Yu Q, and Ge L (2019) Young seedlings adapt to stress by retaining starch and retarding growth through ABA-Dependent and - independent pathways in Arabidopsis. Biochem. Biophys. Res. Commun. 515: 699-705. Liu LY, Tseng HI, Lin CP, Lin YY, Huang YH, Huang CK, Chang TH, and Lin SS (2014) High-throughput transcriptome analysis of the leafy flower transition of Catharanthus roseus induced by peanut witches'-broom phytoplasma infection. Plant Cell Physiol. 55: 942-957. Liu LY, Tseng HI, Lin CP, Lin YY, Huang YH, Huang CK, Chang TH and Lin SS (2014) High-Throughput Transcriptome Analysis of the Leafy Flower Transition of Catharanthus roseus Induced by Peanut Witches’-Broom Phytoplasma Infection. Plant Cell Physiol. 55(5): 942–957 doi:10.1093/pcp/pcu029. Luo Y, Wang Z, Ji H, Fang H, Wang S, Tian L, and Li X (2013) An Arabidopsis homolog of importin β1 is required for ABA response and drought tolerance. Plant J. 75: 377-389. Martínez F and Daròs JA (2014) Tobacco etch virus protein P1 traffics to the nucleolus and associates with the host 60S ribosomal subunits during infection. J. Virol. 88: 10725-10737. Michaeli S, Clavel M, Lechner E, Viotti C, Wu J, Dubois M, Hacquard T, Derrien B, Izquierdo E, Lecorbeiller M, Bouteiller N, De Cilia J, Ziegler-Graff V, Vaucheret H, Galili G, and Genschik P (2019) The viral F-box protein P0 induces an ER-derived autophagy degradation pathway for the clearance of membrane-bound AGO1. Proc. Natl. Acad. Sci. USA 116: 22872-22883. Nakahara KS, Masuta C, Yamada S, Shimura H, Kashihara Y, Wada TS, Meguro A, Goto K, Tadamura K, Sueda K, Sekiguchi T, Shao J, Itchoda N, Matsumura T, Igarashi M, Ito K, Carthew RW, and Uyeda I (2012) Tobacco calmodulin-like protein provides secondary defense by binding to and directing degradation of virus RNA silencing suppressors. Proc. Natl. Acad. Sci. USA 109: 10113- 10118. Niu QW, Lin SS, Reyes JL, Chen KC, Wu HW, Yeh SD, and Chua NH (2006) Expression of artificial microRNAs in transgenic Arabidopsis thaliana confers virus resistance. Nat. Biotechnol. 2006: 1420-1428. Orban TI and Izaurralde E (2005) Decay of mRNAs targeted by RISC requires XRN1, the Ski complex, and the exosome. RNA 11: 459-469. Panda C, Li X, Wager A, Chen HY, and Li X (2020) An importin-beta-like protein mediates lignin-modification-induced dwarfism in Arabidopsis. Plant J.: doi: 10.1111/tpj.14701. Qin J, Wang K, Sun L, Xing H, Wang S, Li L, Chen S, Guo HS, and Zhang J (2018) The plant-specific transcription factors CBP60g and SARD1 are targeted by a Verticillium secretory protein VdSCP41 to modulate immunity. Elife 7: e34902. Sorenson RS, Deshotel MJ, Johnson K, Adler FR, and Sieburth LE (2018) Arabidopsis mRNA decay landscape arises from specialized RNA decay substrates, decapping-mediated feedback, and redundancy. Proc. Natl. Acad. Sci. USA 115: E1485-E1494. Sun Z, Guo T, Liu Y, Liu Q, and Fang Y (2015) The roles of Arabidopsis CDF2 in transcriptional and posttranscriptional regulation of primary microRNAs. PLoS Genet. 11: e1005598. Sunkar R, Kapoor A, and Zhu JK (2006) Posttranscriptional induction of two Cu/Zn superoxide dismutase genes in Arabidopsis is mediated by downregulation of miR398 and important for oxidative stress tolerance. Plant Cell 18: 2051-2065. Suzuki T, Nakajima S, Inagaki S, Hirano-Nakakita M, Matsuoka K, Demura T, Fukuda H, Morikami A, and Nakamura K (2005) TONSOKU is expressed in S phase of the cell cycle and its defect delays cell cycle progression in Arabidopsis. Plant Cell Physiol. 46: 736-742. Tsai YC, Koo Y, Delk NA, Gehl B, and Braam J (2013) Calmodulin-related CML24 interacts with ATG4b and affects autophagy progression in Arabidopsis. Plant J. 73: 325-335. Valli A, Martín-Hernández AM, López-Moya JJ, and García JA (2006) RNA silencing suppression by a second copy of the P1 serine protease of Cucumber vein yellowing ipomovirus, a member of the family Potyviridae that lacks the cysteine protease HCPro. J. Virol. 80: 10055-10063. Walley JW, Kelley DR, Nestorova G, Hirschberg DL, and Dehesh K (2010) Arabidopsis deadenylases AtCAF1a and AtCAF1b play overlapping and distinct roles in mediating environmental stress responses. Plant Physiol. 152: 866-875. Wang H and Yongyan B (1990) The expression of foreigin gene under the control of cauliflower mosaic virus 35s RNA promoter. Cell Research. 1: 1-10. Wang W, Ye R, Xin Y, Fang X, Li C, Shi H, Zhou X, and Qi Y (2011) An importin β protein negatively regulates MicroRNA activity in Arabidopsis. Plant Cell 23: 3565-3576. Wong JW and Cagney G (2010) An overview of label-free quantitation methods in proteomics by mass spectrometry. Methods Mol. Biol. 604: 273-283. Wu HW, Lin SS, Chen KC, Yeh SD, and Chua NH (2010) Discriminating mutations of HC-Pro of Zucchini yellow mosaic virus with differential effects on small RNA pathways involved in viral pathogenicity and symptom development. Mol. Plant Microbe Interact. 23: 17-28. Xu F, Xu S, Wiermer M, Zhang Y, and Li X (2012) The cyclin L homolog MOS12 and the MOS4-associated complex are required for the proper splicing of plant resistance genes. Plant J. 70: 916-928. Hu SF, Huang YH, Lin CP, Liu LYD, Hong SF, Yang CY, Lo HF, Tseng TY, Chen WY, and Lin SS (2015) Development of a Mild Viral Expression System for Gain-Of-Function Study of Phytoplasma Effector in Planta. PLOS ONE 10:e013013 Xu J and Chua NH (2009) Arabidopsis decapping 5 is required for mRNA decapping, P-body formation, and translational repression during postembryonic development. Plant Cell 21: 3270-3279. Xue S, Zou J, Liu Y, Wang M, Zhang C, and Le J (2019) Involvement of BIG5 and BIG3 in BRI1 Trafficking Reveals Diverse Functions of BIG-subfamily ARF- GEFs in Plant Growth and Gravitropism. Int. J. Mol. Sci. 20: doi: 10.3390/ijms20092339. Yan C, Yan Z, Wang Y, Yan X, and Han Y (2014) Tudor-SN, a component of stress granules, regulates growth under salt stress by modulating GA20ox3 mRNA levels in Arabidopsis. J. Exp. Bot. 65: 5933-5944. Yang C Y, Huang Y H, Lin C P, Lin Y Y, Hsu H C, Wang C N, Liu L Y, Shen B N, Lin S S (2015). MicroR396-targeted SHORT VEGETATIVE PHASE is required to repress flowering and is related to the development of abnormal flower symptoms by the Phyllody Symptoms1 effector. Plant Physiol. 168:1702-1716. Zheng X, Fahlgren N, Abbasi A, Berry JC, and Carrington JC (2019) Antiviral ARGONAUTEs against Turnip Crinkle Virus revealed by image-based trait analysis. Plant Physiol. 180: 1418-1435. Zou Y, Wang S, Zhou Y, Bai J, Huang G, Liu X, Zhang Y, Tang D, and Lu D (2018) Transcriptional regulation of the immune receptor FLS2 controls the ontogeny of plant innate immunity. Plant Cell 30: 2779-2794. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70860 | - |
dc.description.abstract | 植物菌質體(phytoplasmas)之SAP54和PHYL1效應子,會造成植物花器葉化的症狀,以致大幅減少種子的形成。為了解決花器葉化的轉基因植物產生缺少種子的困境。本研究發展出一種病毒表現系統,來表現SAP54或PHYL1蛋白。我們使用蕪菁嵌紋病毒(TuMV)的弱系病毒株TuGK,作為病毒載體。此病毒載體能感染擬南芥植物,並且不會影響植物生長發育及能快速表現PHYL1或SAP54蛋白在植物器官中。我們成功地藉由此系統,獲得大量的葉狀花組織,來研究PHYL1或SAP54所引起的花器葉化機制。TuGK除了是一種合適的病毒載體外,它的另一功能是不會干擾植物的基因靜默機制(PTGS)。基因靜默機制是植物的抗病機制之一。植物利用此來防禦自然界的病毒。而病毒是透過抑制微型核糖核酸(miRNA)和小干擾RNA(siRNA)途徑來反制植物基因靜默機制。potyvirus屬之病毒之P1/HC-Pro是第一個被發現會抑制植物基因靜默機制,故稱之基因靜默抑制子。P1/HC-Pro可透過P1蛋白酶的功能,將P1/HC-Pro切割成P1和HC-Pro兩個蛋白,以利病毒感染植物。目前對於P1蛋白的功能仍不清楚。故此論文,利用蛋白質體學分析方法,探討病毒的P1是否會與植物的蛋白相互作用,並分析P1蛋白是如何抑制植物基因靜默機制。從轉錄體和基因網絡分析中,鑑定出多個植物基因,皆與病毒之P1/HC-Pro能夠抑制植物基因靜默機制有關。另外,也發現P1 / HC-Pro轉基因植物中的AGO1蛋白會被降解。而病毒的P1會與植物的VERNALIZATION ININDENDENCE 3 / SUPERKILLER(VIP3 / SKI8)蛋白相互作用。VIP3 / SKI8是一個RNA外泌體(exosome),它的功能是當RNA誘導沉默複合物(RNA induced silencing complex-RISC)切割完後的5端RNA片段,外泌體會去降解此片段。我們推測P1與VIP3 / SKI8互動,可能會因此而促進了HC-Pro抑制植物基因靜默機制的能力。另外,根據轉錄體和基因網絡分析,鑑定出多個植物基因,包含微型核糖核酸標靶(miRNA targets),鈣訊號相關基因,植物荷爾蒙激素相關基因(JA, ET, and ABA)和防禦反應有關的基因,這些基因皆與植物基因靜默機制有關。綜合以上結果,我們透過基因遺傳學(genetic)和生物體學(omic)的方法,發現了很多植物基因靜默機制的相關基因會與病毒之P1 / HC-Pro互相調控。 | zh_TW |
dc.description.abstract | SAP54 and PHYL1 are orthologs of pathogen effectors from phytoplasmas. These effectors can cause plant leafy flowers symptoms. To study plant flowers become leafy flower, we develop a viral vector to overcome seedless problem in transgenic plants. TuGK vector from mild strain virus of turnip mosaic virus (TuMV) is a good viral vector for carrying PHYL1 or SAP54 gene. TuGK did not interfere with plant development and it can infect Arabidopsis with rapidly expressing PHYL1 or SAP54 protein. We successfully obtained large amounts of leafy flower tissues for PHYL1 or SAP54 studies from viral vector infected Arabidopsis plants. The TuGK is a suitable viral vector because it loses posttranscriptional gene silencing (PTGS) suppression ability. PTGS is one of the plant antivirus mechanism and to counteract PTGS, plant viruses have also encoded viral suppressors to interrupt PTGS by repressing the regulation of microRNA (miRNA) and short-interfering RNA (siRNA) pathways. In Potyvirus, P1/HC-Pro is the first identified viral suppressor. The HC-Pro protein gets released by the self-cleaving activity of P1. Though the entire function of P1 protein remained unclear. In this study, we investigated the mechanism of P1 enhancing PTGS suppression by identifying P1-interacting proteins using proteomic analysis approach. Moreover, we discovered several novel genes that might relate to P1/HC-Pro-mediated PTGS suppression through transcriptomes and comparative network analysis. To summaries the findings in this study, the AGO1 protein was found to be specifically degraded in turnip mosaic virus (TuMV) P1/HC-Pro transgenic plants (P1/HCTu plant). Also, it was interesting to find that P1 directly interacts with VERNALIZATION INDEPENDENCE 3/SUPERKILLER (VIP3/SKI8) that might enhance HC-Pro-mediated PTGS suppression. VIP3/SKI8 is an RNA exosome and can interfere with the degradation of RNA induced silencing complex (RISC) 5'-cleavage fragment. Furthermore, through the transcriptome approach, we discovered potentially critical genes in PTGS by the comparative network analysis, containing miRNA targets, calcium signaling genes, hormone (JA, ET, and ABA) signaling genes, and defense response genes. Taken together, through these genetic and omics methods, we exposed many critical genes related to PTGS. These new discoveries allow us to better understand viral suppressor P1/HC-Pro interaction with host PTGS mechanism. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T04:41:21Z (GMT). No. of bitstreams: 1 U0001-2008202012180400.pdf: 21743185 bytes, checksum: fb77d7efbd09782a6edbb73e1a3fbc8f (MD5) Previous issue date: 2020 | en |
dc.description.tableofcontents | 口試委員會審定書.....................................................i 中文摘要.............................................................ii Abstract............................................................iv Table of Contents...................................................vi Introduction......................................................1 Materials and methods.............................................5 Plant material and transgenic plants..............................5 Transgenic plant construction.....................................5 Construction of recombined P1/HC-Pro genes........................6 Real-times RT-PCR.................................................7 Antibody production...............................................8 Immunoprecipitation and in-solution protein digestion.............9 LC-MS/MS Analysis.................................................11 Identification and quantitation of proteome by label-free labeling methods.....12 Whole-transcriptome analysis ..............................................13 Ethylene detection................................................13 Results...........................................................14 Development of a viral expression system to rapidly study leafy flower symptom....14 P1 enhances the severity of the HCTu-mediated serrate leaf phenotype and PTGS suppression....15 HC-Pro-mediated PTGS suppression.............................18 Host P1-interacting proteins are involved in PTGS.................19 P1 and HC-Pro cause differentially expressed host proteins in transgenic plants..21 The posttranscriptional and posttranslational regulation of miRNA targets in P1/HCTu plants......23 Comparative gene-to-gene network analysis of PTGS suppression...............24 Critical genes in the Col-0 vs. P1/HCTu network that are involved in PTGS.......25 The auxin, ethylene, and ABA signaling pathway in PTGS suppression............28 Discussion......................................................29 TuGK is a suitable viral vector for PHYL1 and SAP54 transient expression....29 P1 and host proteins interaction may enhance HC-Pro-mediated PTGS suppression.....30 P1/HC-Pro of TuMV specifically primes posttranslational AGO1 degradation.....32 Network of HC-Pro-mediated PTGS suppression.............................33 Auxin and ethylene signaling in the serrated leaf phenotype............35 References.......................................................37 Figure legends.................................................49 Appendix figure..................................................60 Appendix ........................................................61 | |
dc.language.iso | en | |
dc.title | 植物菌質體誘導葉狀花之研究和探討病毒的P1蛋白對HC-Pro抑制基因靜默機制的影響 | zh_TW |
dc.title | The exploration of phytoplasma-mediated leafy flower and investigation of the effects of viral P1 on HC-Pro-mediated gene silencing suppression | en |
dc.type | Thesis | |
dc.date.schoolyear | 108-2 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 楊俊逸(Jun-Yi Yang),邱子珍(Tzyy-Jen Chiou),林劭品(Shau-Ping Lin),吳素幸(Shu-Hsing Wu),陳荷明(Ho-Ming Chen) | |
dc.subject.keyword | 植物菌質體,花器葉化,病毒載體,基因靜默機制,基因靜默抑制子, | zh_TW |
dc.subject.keyword | PTGS,P1/HC-Pro,VIP3/SKI8,SAP54,PHYL1,leafy flower,TuGK, | en |
dc.relation.page | 93 | |
dc.identifier.doi | 10.6342/NTU202004131 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2020-08-20 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 生物科技研究所 | zh_TW |
顯示於系所單位: | 生物科技研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-2008202012180400.pdf 目前未授權公開取用 | 21.23 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。