Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 毒理學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70847
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor姜至剛
dc.contributor.authorCai-Qin Xiaoen
dc.contributor.author肖彩琴zh_TW
dc.date.accessioned2021-06-17T04:40:49Z-
dc.date.available2021-08-30
dc.date.copyright2018-08-30
dc.date.issued2018
dc.date.submitted2018-08-06
dc.identifier.citation1. Mortality GBD, and Causes of Death C. Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980-2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet. 2016;388(10053):1459-544.
2. McGill HC, Jr., McMahan CA, and Gidding SS. Preventing heart disease in the 21st century: implications of the Pathobiological Determinants of Atherosclerosis in Youth (PDAY) study. Circulation. 2008;117(9):1216-27.
3. van Herpen NA, and Schrauwen-Hinderling VB. Lipid accumulation in non-adipose tissue and lipotoxicity. Physiol Behav. 2008;94(2):231-41.
4. Lykidis A, and Jackowski S. Regulation of mammalian cell membrane biosynthesis. Prog Nucleic Acid Res Mol Biol. 2001;65:361-93.
5. Grynberg A, and Demaison L. Fatty acid oxidation in the heart. J Cardiovasc Pharmacol. 1996;28 Suppl 1:S11-7.
6. Yang R, and Barouch LA. Leptin signaling and obesity: cardiovascular consequences. Circ Res. 2007;101(6):545-59.
7. Lee Y, Hirose H, Ohneda M, Johnson JH, McGarry JD, and Unger RH. Beta-cell lipotoxicity in the pathogenesis of non-insulin-dependent diabetes mellitus of obese rats: impairment in adipocyte-beta-cell relationships. Proc Natl Acad Sci U S A. 1994;91(23):10878-82.
8. Zhou YT, Grayburn P, Karim A, Shimabukuro M, Higa M, Baetens D, et al. Lipotoxic heart disease in obese rats: implications for human obesity. Proc Natl Acad Sci U S A. 2000;97(4):1784-9.
9. Poitout V, and Robertson RP. Glucolipotoxicity: fuel excess and beta-cell dysfunction. Endocr Rev. 2008;29(3):351-66.
10. Szendroedi J, Frossard M, Klein N, Bieglmayer C, Wagner O, Pacini G, et al. Lipid-induced insulin resistance is not mediated by impaired transcapillary transport of insulin and glucose in humans. Diabetes. 2012;61(12):3176-80.
11. Wei Y, Wang D, and Pagliassotti MJ. Saturated fatty acid-mediated endoplasmic reticulum stress and apoptosis are augmented by trans-10, cis-12-conjugated linoleic acid in liver cells. Mol Cell Biochem. 2007;303(1-2):105-13.
12. Ducharme NA, and Bickel PE. Lipid droplets in lipogenesis and lipolysis. Endocrinology. 2008;149(3):942-9.
13. Glatz JF, Luiken JJ, and Bonen A. Membrane fatty acid transporters as regulators of lipid metabolism: implications for metabolic disease. Physiol Rev. 2010;90(1):367-417.
14. Jump DB. Fatty acid regulation of gene transcription. Crit Rev Clin Lab Sci. 2004;41(1):41-78.
15. Chokshi A, Drosatos K, Cheema FH, Ji R, Khawaja T, Yu S, et al. Ventricular assist device implantation corrects myocardial lipotoxicity, reverses insulin resistance, and normalizes cardiac metabolism in patients with advanced heart failure. Circulation. 2012;125(23):2844-53.
16. Garbarino J, and Sturley SL. Saturated with fat: new perspectives on lipotoxicity. Curr Opin Clin Nutr Metab Care. 2009;12(2):110-6.
17. Mozaffarian D, Katan MB, Ascherio A, Stampfer MJ, and Willett WC. Trans fatty acids and cardiovascular disease. N Engl J Med. 2006;354(15):1601-13.
18. Wende AR, Symons JD, and Abel ED. Mechanisms of lipotoxicity in the cardiovascular system. Curr Hypertens Rep. 2012;14(6):517-31.
19. Zong G, Li Y, Wanders AJ, Alssema M, Zock PL, Willett WC, et al. Intake of individual saturated fatty acids and risk of coronary heart disease in US men and women: two prospective longitudinal cohort studies. BMJ. 2016;355:i5796.
20. Slawik M, and Vidal-Puig AJ. Lipotoxicity, overnutrition and energy metabolism in aging. Ageing Res Rev. 2006;5(2):144-64.
21. Del Prato S. Role of glucotoxicity and lipotoxicity in the pathophysiology of Type 2 diabetes mellitus and emerging treatment strategies. Diabet Med. 2009;26(12):1185-92.
22. Lelliott C, and Vidal-Puig AJ. Lipotoxicity, an imbalance between lipogenesis de novo and fatty acid oxidation. Int J Obes Relat Metab Disord. 2004;28 Suppl 4:S22-8.
23. Knopp RH, Retzlaff B, Walden C, Fish B, Buck B, and McCann B. One-year effects of increasingly fat-restricted, carbohydrate-enriched diets on lipoprotein levels in free-living subjects. Proc Soc Exp Biol Med. 2000;225(3):191-9.
24. Donnelly KL, Smith CI, Schwarzenberg SJ, Jessurun J, Boldt MD, and Parks EJ. Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. J Clin Invest. 2005;115(5):1343-51.
25. Carta G, Murru E, Banni S, and Manca C. Palmitic Acid: Physiological Role, Metabolism and Nutritional Implications. Front Physiol. 2017;8:902.
26. German JB. Dietary lipids from an evolutionary perspective: sources, structures and functions. Matern Child Nutr. 2011;7 Suppl 2:2-16.
27. Abdelmagid SA, Clarke SE, Nielsen DE, Badawi A, El-Sohemy A, Mutch DM, et al. Comprehensive profiling of plasma fatty acid concentrations in young healthy Canadian adults. PLoS One. 2015;10(2):e0116195.
28. Diet, nutrition and the prevention of chronic diseases. World Health Organ Tech Rep Ser. 2003;916:i-viii, 1-149, backcover.
29. Ohlsson L. Dairy products and plasma cholesterol levels. Food Nutr Res. 2010;54.
30. Deng H, Chu X, Song Z, Deng X, Xu H, Ye Y, et al. MicroRNA-1185 Induces Endothelial Cell Apoptosis by Targeting UVRAG and KRIT1. Cell Physiol Biochem. 2017;41(6):2171-82.
31. Broniarek I, Koziel A, and Jarmuszkiewicz W. The effect of chronic exposure to high palmitic acid concentrations on the aerobic metabolism of human endothelial EA.hy926 cells. Pflugers Arch. 2016;468(9):1541-54.
32. Wang Y, Qian Y, Fang Q, Zhong P, Li W, Wang L, et al. Saturated palmitic acid induces myocardial inflammatory injuries through direct binding to TLR4 accessory protein MD2. Nat Commun. 2017;8:13997.
33. Ghosh A, Gao L, Thakur A, Siu PM, and Lai CWK. Role of free fatty acids in endothelial dysfunction. J Biomed Sci. 2017;24(1):50.
34. Smith SR, and Wilson PW. Free fatty acids and atherosclerosis--guilty or innocent? J Clin Endocrinol Metab. 2006;91(7):2506-8.
35. Birse RT, and Bodmer R. Lipotoxicity and cardiac dysfunction in mammals and Drosophila. Crit Rev Biochem Mol Biol. 2011;46(5):376-85.
36. Pilz S, Scharnagl H, Tiran B, Seelhorst U, Wellnitz B, Boehm BO, et al. Free fatty acids are independently associated with all-cause and cardiovascular mortality in subjects with coronary artery disease. J Clin Endocrinol Metab. 2006;91(7):2542-7.
37. Aird WC. Endothelium as an organ system. Crit Care Med. 2004;32(5 Suppl):S271-9.
38. Rafii S, Butler JM, and Ding BS. Angiocrine functions of organ-specific endothelial cells. Nature. 2016;529(7586):316-25.
39. Tripathy D, Mohanty P, Dhindsa S, Syed T, Ghanim H, Aljada A, et al. Elevation of free fatty acids induces inflammation and impairs vascular reactivity in healthy subjects. Diabetes. 2003;52(12):2882-7.
40. Cheang WS, Tian XY, Wong WT, Lau CW, Lee SS, Chen ZY, et al. Metformin protects endothelial function in diet-induced obese mice by inhibition of endoplasmic reticulum stress through 5' adenosine monophosphate-activated protein kinase-peroxisome proliferator-activated receptor delta pathway. Arterioscler Thromb Vasc Biol. 2014;34(4):830-6.
41. Khan MJ, Rizwan Alam M, Waldeck-Weiermair M, Karsten F, Groschner L, Riederer M, et al. Inhibition of autophagy rescues palmitic acid-induced necroptosis of endothelial cells. J Biol Chem. 2012;287(25):21110-20.
42. Wang XL, Zhang L, Youker K, Zhang MX, Wang J, LeMaire SA, et al. Free fatty acids inhibit insulin signaling-stimulated endothelial nitric oxide synthase activation through upregulating PTEN or inhibiting Akt kinase. Diabetes. 2006;55(8):2301-10.
43. Capurso C, and Capurso A. From excess adiposity to insulin resistance: the role of free fatty acids. Vascul Pharmacol. 2012;57(2-4):91-7.
44. Virdis A. Endothelial Dysfunction in Obesity: Role of Inflammation. High Blood Press Cardiovasc Prev. 2016;23(2):83-5.
45. Hou YC, Janczuk A, and Wang PG. Current trends in the development of nitric oxide donors. Curr Pharm Des. 1999;5(6):417-41.
46. Forstermann U, and Munzel T. Endothelial nitric oxide synthase in vascular disease: from marvel to menace. Circulation. 2006;113(13):1708-14.
47. Forstermann U, and Sessa WC. Nitric oxide synthases: regulation and function. Eur Heart J. 2012;33(7):829-37, 37a-37d.
48. Donato AJ, Morgan RG, Walker AE, and Lesniewski LA. Cellular and molecular biology of aging endothelial cells. J Mol Cell Cardiol. 2015;89(Pt B):122-35.
49. Kim F, Tysseling KA, Rice J, Pham M, Haji L, Gallis BM, et al. Free fatty acid impairment of nitric oxide production in endothelial cells is mediated by IKKbeta. Arterioscler Thromb Vasc Biol. 2005;25(5):989-94.
50. Lee CH, Lee SD, Ou HC, Lai SC, and Cheng YJ. Eicosapentaenoic acid protects against palmitic acid-induced endothelial dysfunction via activation of the AMPK/eNOS pathway. Int J Mol Sci. 2014;15(6):10334-49.
51. Schild L, Dombrowski F, Lendeckel U, Schulz C, Gardemann A, and Keilhoff G. Impairment of endothelial nitric oxide synthase causes abnormal fat and glycogen deposition in liver. Biochim Biophys Acta. 2008;1782(3):180-7.
52. Ashida N, Senbanerjee S, Kodama S, Foo SY, Coggins M, Spencer JA, et al. IKKbeta regulates essential functions of the vascular endothelium through kinase-dependent and -independent pathways. Nat Commun. 2011;2:318.
53. Searles CD. Transcriptional and posttranscriptional regulation of endothelial nitric oxide synthase expression. Am J Physiol Cell Physiol. 2006;291(5):C803-16.
54. Michaelis UR. Mechanisms of endothelial cell migration. Cell Mol Life Sci. 2014;71(21):4131-48.
55. Lamalice L, Le Boeuf F, and Huot J. Endothelial cell migration during angiogenesis. Circ Res. 2007;100(6):782-94.
56. Jeong HW, Hernandez-Rodriguez B, Kim J, Kim KP, Enriquez-Gasca R, Yoon J, et al. Transcriptional regulation of endothelial cell behavior during sprouting angiogenesis. Nat Commun. 2017;8(1):726.
57. Park C, Kim TM, and Malik AB. Transcriptional regulation of endothelial cell and vascular development. Circ Res. 2013;112(10):1380-400.
58. Weis SM, and Cheresh DA. Tumor angiogenesis: molecular pathways and therapeutic targets. Nat Med. 2011;17(11):1359-70.
59. Moulton KS. Angiogenesis in atherosclerosis: gathering evidence beyond speculation. Curr Opin Lipidol. 2006;17(5):548-55.
60. Yuan L, Mao Y, Luo W, Wu W, Xu H, Wang XL, et al. Palmitic acid dysregulates the Hippo-YAP pathway and inhibits angiogenesis by inducing mitochondrial damage and activating the cytosolic DNA sensor cGAS-STING-IRF3 signaling mechanism. J Biol Chem. 2017;292(36):15002-15.
61. Okumura N, Kitahara M, Okuda H, Hashimoto K, Ueda E, Nakahara M, et al. Sustained Activation of the Unfolded Protein Response Induces Cell Death in Fuchs' Endothelial Corneal Dystrophy. Invest Ophthalmol Vis Sci. 2017;58(9):3697-707.
62. Brown MK, and Naidoo N. The endoplasmic reticulum stress response in aging and age-related diseases. Front Physiol. 2012;3:263.
63. Cox JS, Shamu CE, and Walter P. Transcriptional induction of genes encoding endoplasmic reticulum resident proteins requires a transmembrane protein kinase. Cell. 1993;73(6):1197-206.
64. Shi Y, Vattem KM, Sood R, An J, Liang J, Stramm L, et al. Identification and characterization of pancreatic eukaryotic initiation factor 2 alpha-subunit kinase, PEK, involved in translational control. Mol Cell Biol. 1998;18(12):7499-509.
65. Yoshida H, Haze K, Yanagi H, Yura T, and Mori K. Identification of the cis-acting endoplasmic reticulum stress response element responsible for transcriptional induction of mammalian glucose-regulated proteins. Involvement of basic leucine zipper transcription factors. J Biol Chem. 1998;273(50):33741-9.
66. Gardner BM, and Walter P. Unfolded proteins are Ire1-activating ligands that directly induce the unfolded protein response. Science. 2011;333(6051):1891-4.
67. McCullough KD, Martindale JL, Klotz LO, Aw TY, and Holbrook NJ. Gadd153 sensitizes cells to endoplasmic reticulum stress by down-regulating Bcl2 and perturbing the cellular redox state. Mol Cell Biol. 2001;21(4):1249-59.
68. Lee AH, Chu GC, Iwakoshi NN, and Glimcher LH. XBP-1 is required for biogenesis of cellular secretory machinery of exocrine glands. EMBO J. 2005;24(24):4368-80.
69. Maurel M, Chevet E, Tavernier J, and Gerlo S. Getting RIDD of RNA: IRE1 in cell fate regulation. Trends Biochem Sci. 2014;39(5):245-54.
70. Harding HP, Zhang Y, and Ron D. Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature. 1999;397(6716):271-4.
71. Zinszner H, Kuroda M, Wang X, Batchvarova N, Lightfoot RT, Remotti H, et al. CHOP is implicated in programmed cell death in response to impaired function of the endoplasmic reticulum. Genes Dev. 1998;12(7):982-95.
72. Ye J, Rawson RB, Komuro R, Chen X, Dave UP, Prywes R, et al. ER stress induces cleavage of membrane-bound ATF6 by the same proteases that process SREBPs. Mol Cell. 2000;6(6):1355-64.
73. Vekich JA, Belmont PJ, Thuerauf DJ, and Glembotski CC. Protein disulfide isomerase-associated 6 is an ATF6-inducible ER stress response protein that protects cardiac myocytes from ischemia/reperfusion-mediated cell death. J Mol Cell Cardiol. 2012;53(2):259-67.
74. Walter P, and Ron D. The unfolded protein response: from stress pathway to homeostatic regulation. Science. 2011;334(6059):1081-6.
75. Upton JP, Wang L, Han D, Wang ES, Huskey NE, Lim L, et al. IRE1alpha cleaves select microRNAs during ER stress to derepress translation of proapoptotic Caspase-2. Science. 2012;338(6108):818-22.
76. Lee J, Sun C, Zhou Y, Lee J, Gokalp D, Herrema H, et al. p38 MAPK-mediated regulation of Xbp1s is crucial for glucose homeostasis. Nat Med. 2011;17(10):1251-60.
77. Wang ZV, Deng Y, Gao N, Pedrozo Z, Li DL, Morales CR, et al. Spliced X-box binding protein 1 couples the unfolded protein response to hexosamine biosynthetic pathway. Cell. 2014;156(6):1179-92.
78. Duan Q, Ni L, Wang P, Chen C, Yang L, Ma B, et al. Deregulation of XBP1 expression contributes to myocardial vascular endothelial growth factor-A expression and angiogenesis during cardiac hypertrophy in vivo. Aging Cell. 2016;15(4):625-33.
79. Tampakakis E, Tabit CE, Holbrook M, Linder EA, Berk BD, Frame AA, et al. Intravenous Lipid Infusion Induces Endoplasmic Reticulum Stress in Endothelial Cells and Blood Mononuclear Cells of Healthy Adults. J Am Heart Assoc. 2016;5(1).
80. Zeng L, Xiao Q, Chen M, Margariti A, Martin D, Ivetic A, et al. Vascular endothelial cell growth-activated XBP1 splicing in endothelial cells is crucial for angiogenesis. Circulation. 2013;127(16):1712-22.
81. Margariti A, Li H, Chen T, Martin D, Vizcay-Barrena G, Alam S, et al. XBP1 mRNA splicing triggers an autophagic response in endothelial cells through BECLIN-1 transcriptional activation. J Biol Chem. 2013;288(2):859-72.
82. Maedler K, Oberholzer J, Bucher P, Spinas GA, and Donath MY. Monounsaturated fatty acids prevent the deleterious effects of palmitate and high glucose on human pancreatic beta-cell turnover and function. Diabetes. 2003;52(3):726-33.
83. Listenberger LL, Ory DS, and Schaffer JE. Palmitate-induced apoptosis can occur through a ceramide-independent pathway. J Biol Chem. 2001;276(18):14890-5.
84. Gustavo Vazquez-Jimenez J, Chavez-Reyes J, Romero-Garcia T, Zarain-Herzberg A, Valdes-Flores J, Manuel Galindo-Rosales J, et al. Palmitic acid but not palmitoleic acid induces insulin resistance in a human endothelial cell line by decreasing SERCA pump expression. Cell Signal. 2016;28(1):53-9.
85. Li M, Baumeister P, Roy B, Phan T, Foti D, Luo S, et al. ATF6 as a transcription activator of the endoplasmic reticulum stress element: thapsigargin stress-induced changes and synergistic interactions with NF-Y and YY1. Mol Cell Biol. 2000;20(14):5096-106.
86. Nishitoh H. CHOP is a multifunctional transcription factor in the ER stress response. J Biochem. 2012;151(3):217-9.
87. Li Y, Guo Y, Tang J, Jiang J, and Chen Z. New insights into the roles of CHOP-induced apoptosis in ER stress. Acta Biochim Biophys Sin (Shanghai). 2014;46(8):629-40.
88. Breier G, Albrecht U, Sterrer S, and Risau W. Expression of vascular endothelial growth factor during embryonic angiogenesis and endothelial cell differentiation. Development. 1992;114(2):521-32.
89. Goth MI, Hubina E, Raptis S, Nagy GM, and Toth BE. Physiological and pathological angiogenesis in the endocrine system. Microsc Res Tech. 2003;60(1):98-106.
90. Herbert SP, and Stainier DY. Molecular control of endothelial cell behaviour during blood vessel morphogenesis. Nat Rev Mol Cell Biol. 2011;12(9):551-64.
91. Eilken HM, and Adams RH. Dynamics of endothelial cell behavior in sprouting angiogenesis. Curr Opin Cell Biol. 2010;22(5):617-25.
92. Tufanli O, Telkoparan Akillilar P, Acosta-Alvear D, Kocaturk B, Onat UI, Hamid SM, et al. Targeting IRE1 with small molecules counteracts progression of atherosclerosis. Proc Natl Acad Sci U S A. 2017;114(8):E1395-E404.
93. Wu T, Zhao F, Gao B, Tan C, Yagishita N, Nakajima T, et al. Hrd1 suppresses Nrf2-mediated cellular protection during liver cirrhosis. Genes Dev. 2014;28(7):708-22.
94. Wu FL, Liu WY, Van Poucke S, Braddock M, Jin WM, Xiao J, et al. Targeting endoplasmic reticulum stress in liver disease. Expert Rev Gastroenterol Hepatol. 2016;10(9):1041-52.
95. Bright MD, Itzhak DN, Wardell CP, Morgan GJ, and Davies FE. Cleavage of BLOC1S1 mRNA by IRE1 Is Sequence Specific, Temporally Separate from XBP1 Splicing, and Dispensable for Cell Viability under Acute Endoplasmic Reticulum Stress. Mol Cell Biol. 2015;35(12):2186-202.
96. Zhang L, Nosak C, Sollazzo P, Odisho T, and Volchuk A. IRE1 inhibition perturbs the unfolded protein response in a pancreatic beta-cell line expressing mutant proinsulin, but does not sensitize the cells to apoptosis. BMC Cell Biol. 2014;15:29.
97. Murohara T, Witzenbichler B, Spyridopoulos I, Asahara T, Ding B, Sullivan A, et al. Role of endothelial nitric oxide synthase in endothelial cell migration. Arterioscler Thromb Vasc Biol. 1999;19(5):1156-61.
98. Zhao Y, Li Y, Luo P, Gao Y, Yang J, Lao KH, et al. XBP1 splicing triggers miR-150 transfer from smooth muscle cells to endothelial cells via extracellular vesicles. Sci Rep. 2016;6:28627.
99. Romero-Ramirez L, Cao H, Nelson D, Hammond E, Lee AH, Yoshida H, et al. XBP1 is essential for survival under hypoxic conditions and is required for tumor growth. Cancer Res. 2004;64(17):5943-7.
100. Jolma A, Yan J, Whitington T, Toivonen J, Nitta KR, Rastas P, et al. DNA-binding specificities of human transcription factors. Cell. 2013;152(1-2):327-39.
101. Cui W, Ma J, Wang X, Yang W, Zhang J, and Ji Q. Free fatty acid induces endoplasmic reticulum stress and apoptosis of beta-cells by Ca2+/calpain-2 pathways. PLoS One. 2013;8(3):e59921.
102. Lu X, Drocco J, and Wieschaus EF. Cell cycle regulation via inter-nuclear communication during the early embryonic development of Drosophila melanogaster. Cell Cycle. 2010;9(14):2908-10.
103. Liou HC, Boothby MR, Finn PW, Davidon R, Nabavi N, Zeleznik-Le NJ, et al. A new member of the leucine zipper class of proteins that binds to the HLA DR alpha promoter. Science. 1990;247(4950):1581-4.
104. Xu X, Qimuge A, Wang H, Xing C, Gu Y, Liu S, et al. IRE1alpha/XBP1s branch of UPR links HIF1alpha activation to mediate ANGII-dependent endothelial dysfunction under particulate matter (PM) 2.5 exposure. Sci Rep. 2017;7(1):13507.
105. Zeng L, Zampetaki A, Margariti A, Pepe AE, Alam S, Martin D, et al. Sustained activation of XBP1 splicing leads to endothelial apoptosis and atherosclerosis development in response to disturbed flow. Proc Natl Acad Sci U S A. 2009;106(20):8326-31.
106. Li J, Wang JJ, and Zhang SX. Preconditioning with endoplasmic reticulum stress mitigates retinal endothelial inflammation via activation of X-box binding protein 1. J Biol Chem. 2011;286(6):4912-21.
107. Song Y, Shen H, Du W, and Goldstein DR. Inhibition of x-box binding protein 1 reduces tunicamycin-induced apoptosis in aged murine macrophages. Aging Cell. 2013;12(5):794-801.
108. Hollien J, Lin JH, Li H, Stevens N, Walter P, and Weissman JS. Regulated Ire1-dependent decay of messenger RNAs in mammalian cells. J Cell Biol. 2009;186(3):323-31.
109. So JS, Hur KY, Tarrio M, Ruda V, Frank-Kamenetsky M, Fitzgerald K, et al. Silencing of lipid metabolism genes through IRE1alpha-mediated mRNA decay lowers plasma lipids in mice. Cell Metab. 2012;16(4):487-99.
110. Cross BC, Bond PJ, Sadowski PG, Jha BK, Zak J, Goodman JM, et al. The molecular basis for selective inhibition of unconventional mRNA splicing by an IRE1-binding small molecule. Proc Natl Acad Sci U S A. 2012;109(15):E869-78.
111. Stewart C, Estrada A, Kim P, Wang D, Wei Y, Gentile C, et al. Regulation of IRE1alpha by the small molecule inhibitor 4mu8c in hepatoma cells. Endoplasmic Reticulum Stress Dis. 2017;4(1):1-10.
112. Lu M, Lawrence DA, Marsters S, Acosta-Alvear D, Kimmig P, Mendez AS, et al. Opposing unfolded-protein-response signals converge on death receptor 5 to control apoptosis. Science. 2014;345(6192):98-101.
113. Zhang Y, Janssens SP, Wingler K, Schmidt HH, and Moens AL. Modulating endothelial nitric oxide synthase: a new cardiovascular therapeutic strategy. Am J Physiol Heart Circ Physiol. 2011;301(3):H634-46.
114. Levy AS, Chung JC, Kroetsch JT, and Rush JW. Nitric oxide and coronary vascular endothelium adaptations in hypertension. Vasc Health Risk Manag. 2009;5:1075-87.
115. Richey JM. The vascular endothelium, a benign restrictive barrier? NO! Role of nitric oxide in regulating insulin action. Diabetes. 2013;62(12):4006-8.
116. Di Pietro N, Marcovecchio ML, Di Silvestre S, de Giorgis T, Cordone VGP, Lanuti P, et al. Plasma from pre-pubertal obese children impairs insulin stimulated Nitric Oxide (NO) bioavailability in endothelial cells: Role of ER stress. Mol Cell Endocrinol. 2017;443:52-62.
117. Laumonnier Y, Nadaud S, Agrapart M, and Soubrier F. Characterization of an upstream enhancer region in the promoter of the human endothelial nitric-oxide synthase gene. J Biol Chem. 2000;275(52):40732-41.
118. Yang J, Xu J, Danniel M, Wang X, Wang W, Zeng L, et al. The interaction between XBP1 and eNOS contributes to endothelial cell migration. Exp Cell Res. 2018;363(2):262-70.
119. Rajendran P, Rengarajan T, Thangavel J, Nishigaki Y, Sakthisekaran D, Sethi G, et al. The vascular endothelium and human diseases. Int J Biol Sci. 2013;9(10):1057-69.
120. Taddei S, Virdis A, Ghiadoni L, Magagna A, and Salvetti A. Vitamin C improves endothelium-dependent vasodilation by restoring nitric oxide activity in essential hypertension. Circulation. 1998;97(22):2222-9.
121. Landmesser U, Hornig B, and Drexler H. Endothelial function: a critical determinant in atherosclerosis? Circulation. 2004;109(21 Suppl 1):II27-33.
122. Moskowitz MA, Lo EH, and Iadecola C. The science of stroke: mechanisms in search of treatments. Neuron. 2010;67(2):181-98.
123. Kerr PM, Tam R, Ondrusova K, Mittal R, Narang D, Tran CH, et al. Endothelial feedback and the myoendothelial projection. Microcirculation. 2012;19(5):416-22.
124. Wang P, Xu TY, Guan YF, Zhao Y, Li ZY, Lan XH, et al. Vascular smooth muscle cell apoptosis is an early trigger for hypothyroid atherosclerosis. Cardiovasc Res. 2014;102(3):448-59.
125. Kisanuki YY, Hammer RE, Miyazaki J, Williams SC, Richardson JA, and Yanagisawa M. Tie2-Cre transgenic mice: a new model for endothelial cell-lineage analysis in vivo. Dev Biol. 2001;230(2):230-42.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70847-
dc.description.abstract心血管疾病(cardiovascular diseases, CVDs)是目前全球最常見的死因之一,且罹患心血管相關疾病的人口呈逐年增長的趨勢,而主要引起這些疾病的危險因子包括:飲食,肥胖,高血壓,高血脂和糖尿病等。其中,飲食中的飽和脂肪酸(saturated fatty acids)被認為是引發心血管疾病的重要元兇。血液中過量的飽和脂肪酸會堆積在非脂肪組織進而造成組織病變,又稱為脂質毒性(lipotoxicity)。過去有許多研究指出血管內皮細胞的功能異常(endothelial dysfunction)是引發心血管疾病和心血管相關併發症的病理開端。另一方面,最近十年有諸多研究發現未折疊蛋白反應(unfolded protein response, UPR)在心血管疾病中扮演重要的角色。IRE1α-XBP1s 是UPR中主要的分支之一,在動物實驗中證實XBP1s (spliced X-box-binding protein 1)的缺失會影響血管新生(angiogenesis)。最新一項臨床研究顯示增加健康受試者血中的遊離脂肪酸會誘導保護性UPR反應,其中XBP1s表現量快速增加。但目前針對XBP1s在脂質毒性引起的早期內皮功能異常中扮演的角色和調控機制仍未被釐清。本研究利用一種典型的病理性飽和脂肪酸棕櫚酸(palmitic acid, PA)來誘導臍靜脈內皮細胞(Human umbilical vein endothelial cells, HUVECs)功能異常,從而探討XBP1s在此過程中的調控角色。實驗結果顯示內皮細胞在0.25 mM PA濃度下不會影響細胞存活率,並且PA處理的內皮細胞中XBP1s mRNA與蛋白質的表現量顯著增加。但是,在傷口癒合實驗和成管實驗結果顯示在 0.25 mM PA曝露下內皮細胞功能受到顯著影響。接著我們借由4μ8C(一種選擇性IRE1抑制劑)和shRNA抑制細胞中XBP1s 的表現,以進一步研究XBP1s在PA誘導的內皮功能異常中扮演的調控角色。結果顯示內皮細胞在4μ8C或shXBP1s處理能明顯降低PA誘發的 XBP1s的表達。同時,XBP1s之後抑制,血管內皮功能受到更嚴重的影響。另外, 實驗進一步發現0.25 mM PA不會影響eNOS (endothelial nitric oxide synthase) 表達,但抑制內皮細胞中XBP1s 的表現後,eNOS 的mRNA 穩定性和蛋白質表現也隨之顯著降低。總結,本實驗證明作為適應性UPR路徑中的訊號傳遞分子XBP1s在內皮細胞具有對抗脂質毒性的能力,未來有可能作為預防脂毒性誘導的心血管疾病的治療策略。zh_TW
dc.description.abstractCardiovascular diseases (CVDs) account for the major causes of mortality all over the world. Recently, saturated free fatty acids (FFA) are strongly correlated with metabolic syndromes and are well-known risk factors of CVDs. The accumulation of excess FFA in non-adipose tissue causes lipotoxicity. Endothelial dysfunction is suggested as the first step in multiple CVDs progression. On the anther hand, the unfolded protein response (UPR) initiate three pathways in response to the endoplasmic reticulum (ER) stress, which promote cell survival and restore cellular homeostasis. The IRE1α-XBP1 pathway axis is one of the major branches of adaptive UPR. Briefly, phosphorylated IRE1 has endoribonuclease activity to splice X-box binding protein 1 (XBP1) mRNA alternatively. Spliced XBP-1 (XBP1s) is a stress-inducible transcription factor that is essential for cell survival under stress conditions. A recent clinical study reported improved FFA induce the adaptive UPR with increased XBP1s expression in endothelial cells. Nevertheless, the role of XBP1s in the regulation of endothelial function and the underlying mechanism are still unclear. The aim of this study was to investigate potential regulatory mechanisms of XBP1s in endothelial function under the exposure of palmitic acid (PA), a typical pathological FFA. The impact of PA on endothelial function was evaluated by cell proliferation, wound healing and tube formation assays. Our preliminary results showed that PA did not compromise cell viability at the concentration of 0.25mM, and the XBP1s protein and mRNA level was significantly increased in PA-treated human umbilical vein endothelial cells (HUVECs). Furthermore, as expected, PA revealed anti-angiogenicity in wound healing and tube formation. We then treated cells with 4μ8C, an IRE1 RNase inhibitor which selectively inactivates XBP1 splicing, or lentivirus-shXBP1s to investigate whether XBP1s involved in PA-induced endothelial dysfunction. The data showed that both 4μ8C and lentivirus-shXBP1s treatment remarkably decreased XBP1s mRNA and protein in PA-treated HUVECs, and retarded cell migration and tube formation, and also affected the expression of eNOS protein and mRNA stability. Database analysis indicated that eNOS is a possible target gene of XBP1s. Taken together, we demonstrated that XBP1s, a critical adaptive UPR signaling, probably exert a protective role to against lipotoxicity. It might be a new protective therapy to prevent lipotoxiciy-induced CVDs.en
dc.description.provenanceMade available in DSpace on 2021-06-17T04:40:49Z (GMT). No. of bitstreams: 1
ntu-107-R05447013-1.pdf: 2591225 bytes, checksum: a8f1fb08b8a71d956e0a4c23d02ba818 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents口試委員審定書 I
誌謝 II
Content IV
中文摘要 VI
Abstract VIII
Abbreviations X
1. Introduction 1
1.1 Cardiovascular Diseases 1
1.2 Lipotoxicity 1
1.2.1 Free Fatty Acids and Palmitic acid 2
1.3 Lipotoxicity and cardiovascular diseases 3
1.4 Mechanisms of Lipotoxicity in endothelial dysfunction 4
1.4.1 Endothelial nitric oxide synthase 5
1.4.2 Endothelial cell migration 6
1.5 Endoplasmic reticulum stress and unfolded protein response 6
1.5.1 XBP1s in cardiovascular disease 9
2. Aim 10
3. Materials and methods 11
3.1 Cell culture 11
3.2 Preparation of Bovine Serum Albumin (BSA)-Conjugated Palmitate 11
3.3 Western blotting analysis 12
3.4 Wound healing migration assay 13
3.5 Tube formation assay 14
3.6 Total RNA extraction and cDNA synthesis 15
3.7 Quantitative Real-time Polymerase Chain Reaction (qRT- PCR) 15
3.8 MTS Assay 16
3.9 Lentivirus production 17
3.10 shRNA lentiviral infection 18
3.11 Oil Red O Staining 18
3.12 Statistical Analysis 19
4. Results 20
4.1 BSA-conjugated PA induces ER stress in HUVECs 20
4.2 The 0.25mM PA does not affect the survival of HUVECs 21
4.3 PA impacts endothelial function of HUVECs 21
4.4 XBP1s plays a protective role in endothelial function under PA exposure 22
4.5 XBP1 deficiency affects endothelial function 23
4.6 Silencing of XBP1s attenuates the expression of eNOS in HUVECs 24
5. Discussion 26
6. Conclusion 32
7. Future perspectives 33
7.1 Luciferase activity assay 33
7.2 Hindlimb ischemia in endothelial cells specific knockout mice 33
8. References 34
9. Figures and Figure Legends 53
dc.language.isoen
dc.subject棕櫚酸zh_TW
dc.subject心血管疾病zh_TW
dc.subject脂質毒性zh_TW
dc.subject血管內皮細胞zh_TW
dc.subject未折疊蛋白反應zh_TW
dc.subject內皮細胞型一氧化氮合成?zh_TW
dc.subjectfree fatty acidsen
dc.subjectpalmitic aciden
dc.subjectER stressen
dc.subjectXBP1en
dc.subjectendothelial dysfunctionen
dc.title剪接型XBP1在棕櫚酸引發的血管內皮脂毒性中扮演之角色zh_TW
dc.titleRoles of spliced XBP1 in palmitic acid-induced endothelial lipotoxicityen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee劉興華,蕭水銀,許美玲
dc.subject.keyword心血管疾病,脂質毒性,血管內皮細胞,未折疊蛋白反應,內皮細胞型一氧化氮合成?,棕櫚酸,zh_TW
dc.subject.keywordfree fatty acids,palmitic acid,ER stress,XBP1,endothelial dysfunction,en
dc.relation.page67
dc.identifier.doi10.6342/NTU201802025
dc.rights.note有償授權
dc.date.accepted2018-08-06
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept毒理學研究所zh_TW
顯示於系所單位:毒理學研究所

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
2.53 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved