Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 醫學檢驗暨生物技術學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70844
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor方偉宏(Wei-Horng Fang)
dc.contributor.authorKuei-Ching Linen
dc.contributor.author林貴卿zh_TW
dc.date.accessioned2021-06-17T04:40:42Z-
dc.date.available2018-08-30
dc.date.copyright2018-08-30
dc.date.issued2018
dc.date.submitted2018-08-06
dc.identifier.citationBebenek, K., and Kunkel, T.A. (1995). Analyzing fidelity of DNA polymerases. Methods in enzymology 262, 217-232.
Bonk, T., and Humeny, A. (2001). MALDI-TOF-MS analysis of protein and DNA. The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry 7, 6-12.
Calos, M.P., and Miller, J.H. (1981). Genetic and sequence analysis of frameshift mutations induced by ICR-191. J Mol Biol 153, 39-64.
Carver, T.E., Jr., Hochstrasser, R.A., and Millar, D.P. (1994). Proofreading DNA: recognition of aberrant DNA termini by the Klenow fragment of DNA polymerase I. Proc Natl Acad Sci U S A 91, 10670-10674.
Cowart, M., Gibson, K.J., Allen, D.J., and Benkovic, S.J. (1989). DNA substrate structural requirements for the exonuclease and polymerase activities of prokaryotic and phage DNA polymerases. Biochemistry 28, 1975-1983.
Drake, J.W. (1991). A constant rate of spontaneous mutation in DNA-based microbes. Proc Natl Acad Sci U S A 88, 7160-7164.
Duval, A., Gayet, J., Zhou, X.-P., Iacopetta, B., Thomas, G., and Hamelin, R. (1999). Frequent Frameshift Mutations of the <em>TCF-4</em> Gene in Colorectal Cancers with Microsatellite Instability. Cancer Research 59, 4213.
Freese, E. (1959). THE DIFFERENCE BETWEEN SPONTANEOUS AND BASE-ANALOGUE INDUCED MUTATIONS OF PHAGE T4. Proceedings of the National Academy of Sciences of the United States of America 45, 622-633.
Fu, D.J., Tang, K., Braun, A., Reuter, D., Darnhofer-Demar, B., Little, D.P., O'Donnell, M.J., Cantor, C.R., and Koster, H. (1998). Sequencing exons 5 to 8 of the p53 gene by MALDI-TOF mass spectrometry. Nature biotechnology 16, 381-384.
Garcia-Diaz, M., and Kunkel, T.A. (2006). Mechanism of a genetic glissando: structural biology of indel mutations. Trends Biochem Sci 31, 206-214.
Griffin, T.J., and Smith, L.M. (2000). Single-nucleotide polymorphism analysis by MALDI-TOF mass spectrometry. Trends in biotechnology 18, 77-84.
Gulston, M., and Knowland, J. (1999). Illumination of human keratinocytes in the presence of the sunscreen ingredient Padimate-O and through an SPF-15 sunscreen reduces direct photodamage to DNA but increases strand breaks. Mutat Res 444, 49-60.
Haff, L.A., and Smirnov, I.P. (1997). Single-nucleotide polymorphism identification assays using a thermostable DNA polymerase and delayed extraction MALDI-TOF mass spectrometry. Genome research 7, 378-388.
Kokoska, R.J., Bebenek, K., Boudsocq, F., Woodgate, R., and Kunkel, T.A. (2002). Low fidelity DNA synthesis by a y family DNA polymerase due to misalignment in the active site. J Biol Chem 277, 19633-19638.
Koster, H., Tang, K., Fu, D.J., Braun, A., van den Boom, D., Smith, C.L., Cotter, R.J., and Cantor, C.R. (1996). A strategy for rapid and efficient DNA sequencing by mass spectrometry. Nature biotechnology 14, 1123-1128.
Kroutil, L.C., Register, K., Bebenek, K., and Kunkel, T.A. (1996). Exonucleolytic proofreading during replication of repetitive DNA. Biochemistry 35, 1046-1053.
Kunkel, T.A., Patel, S.S., and Johnson, K.A. (1994). Error-prone replication of repeated DNA sequences by T7 DNA polymerase in the absence of its processivity subunit. Proc Natl Acad Sci U S A 91, 6830-6834.
Lam, W.C., Van der Schans, E.J., Sowers, L.C., and Millar, D.P. (1999). Interaction of DNA polymerase I (Klenow fragment) with DNA substrates containing extrahelical bases: implications for proofreading of frameshift errors during DNA synthesis. Biochemistry 38, 2661-2668.
Langen, H., Berndt, P., Roder, D., Cairns, N., Lubec, G., and Fountoulakis, M. (1999). Two-dimensional map of human brain proteins. Electrophoresis 20, 907-916.
Ling, H., Boudsocq, F., Woodgate, R., and Yang, W. (2004). Snapshots of replication through an abasic lesion; structural basis for base substitutions and frameshifts. Mol Cell 13, 751-762.
Loft, S., and Poulsen, H.E. (1996). Cancer risk and oxidative DNA damage in man. J Mol Med (Berl) 74, 297-312.
Marky, L.A., and Breslauer, K.J. (1987). Calculating thermodynamic data for transitions of any molecularity from equilibrium melting curves. Biopolymers 26, 1601-1620.
Minetti, C.A., Remeta, D.P., Dickstein, R., and Breslauer, K.J. (2010). Energetic signatures of single base bulges: thermodynamic consequences and biological implications. Nucleic Acids Res 38, 97-116.
Moldovan, G.L., Pfander, B., and Jentsch, S. (2007). PCNA, the maestro of the replication fork. Cell 129, 665-679.
Nordhoff, E., Ingendoh, A., Cramer, R., Overberg, A., Stahl, B., Karas, M., Hillenkamp, F., and Crain, P.F. (1992). Matrix-assisted laser desorption/ionization mass spectrometry of nucleic acids with wavelengths in the ultraviolet and infrared. Rapid communications in mass spectrometry : RCM 6, 771-776.
Reha-Krantz, L.J. (2010). DNA polymerase proofreading: Multiple roles maintain genome stability. Biochim Biophys Acta 1804, 1049-1063.
Rubakhin, S.S., Li, L., Moroz, T.P., and Sweedler, J.V. (1999). Characterization of the Aplysia californica cerebral ganglion F cluster. Journal of neurophysiology 81, 1251-1260.
Schaaper, R.M. (1993). Base selection, proofreading, and mismatch repair during DNA replication in Escherichia coli. J Biol Chem 268, 23762-23765.
Streisinger, G., Okada, Y., Emrich, J., Newton, J., Tsugita, A., Terzaghi, E., and Inouye, M. (1966). Frameshift mutations and the genetic code. This paper is dedicated to Professor Theodosius Dobzhansky on the occasion of his 66th birthday. Cold Spring Harbor symposia on quantitative biology 31, 77-84.
Su, K.-Y., Goodman, S.D., Lai, H.-M., Yen, R.-S., Hu, W.-Y., Cheng, W.-C., Lin, L.-I., Yang, Y.-C., and Fang, W.-H. (2018a). Proofreading and DNA Repair Assay Using Single Nucleotide Extension and MALDI-TOF Mass Spectrometry Analysis. JoVE, e57862.
Su, K.Y., Lai, H.M., Goodman, S.D., Hu, W.Y., Cheng, W.C., Lin, L.I., Yang, Y.C., and Fang, W.H. (2018b). Application of single nucleotide extension and MALDI-TOF mass spectrometry in proofreading and DNA repair assay. DNA Repair (Amst) 61, 63-75.
Tabor, S., and Richardson, C.C. (1995). A single residue in DNA polymerases of the Escherichia coli DNA polymerase I family is critical for distinguishing between deoxy- and dideoxyribonucleotides. Proceedings of the National Academy of Sciences 92, 6339.
Thibodeau, S.N., Bren, G., and Schaid, D. (1993). Microsatellite instability in cancer of the proximal colon. Science (New York, NY) 260, 816-819.
Tolson, D.A., and Nicholson, N.H. (1998). Sequencing RNA by a combination of exonuclease digestion and uridine specific chemical cleavage using MALDI-TOF. Nucleic Acids Res 26, 446-451.
Tost, J., and Gut, I.G. (2005). Genotyping single nucleotide polymorphisms by MALDI mass spectrometry in clinical applications. Clinical biochemistry 38, 335-350.
Tran, H.T., Keen, J.D., Kricker, M., Resnick, M.A., and Gordenin, D.A. (1997). Hypermutability of homonucleotide runs in mismatch repair and DNA polymerase proofreading yeast mutants. Molecular and cellular biology 17, 2859-2865.
Wong, I., Patel, S.S., and Johnson, K.A. (1991). An induced-fit kinetic mechanism for DNA replication fidelity: direct measurement by single-turnover kinetics. Biochemistry 30, 526-537.
賴虹名 (2017). 單一核苷酸延伸法和質譜儀應用於第一型DNA聚合酶校正活性分析.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70844-
dc.description.abstract小量核苷酸的插入/缺失是DNA複製時常見的點突變,會引發框架位移的移碼突變且與癌症的發生有關。插入/缺失的產生,常常因為在DNA重複序列的區域容易出現DNA滑動。一般DNA複製時出現錯誤,會由聚合酶進行校正,但是DNA聚合酶對插入/缺失的校正效能,卻會因為重複序列的不同而有所差異。當出現插入/缺失環狀結構,若環的位置距離引子3’端較遠,可能無法被聚合酶的校正活性辨識及修復,而且因為引子股的3’端有正確的雙股配對,末端結構較穩定,可能會被DNA聚合酶視為正確的受質,而繼續做引子延伸。
為了要瞭解校正活性修復插入/缺失環的情形,我們在DNA上設計插入/缺失錯誤進行校正活性反應。在引子股3’末端倒數不同的位置上設計單一核苷酸插入/缺失錯誤,再以Klenow fragment及ddNTP進行校正反應,再以質譜儀分析校正效能。結果發現引子3’末端倒數5個核苷酸以內的插入/缺失錯誤都可以被校正,引子3’末端倒數第6以後位置的插入/缺失錯誤則難以被校正。
接著分別在寡核苷酸序列的模板股以及引子股設計4個、10個與15個重複A-T序列的DNA 受質,也就是滑動股DNA,黏合之後重複核苷酸上會形成單一插入/缺失錯誤環結構,再以Klenow fragment及ddNTP進行校正。發現4個核苷酸重複序列上,單一插入/缺失錯誤可以被Klenow fragment校正。在10個核苷酸重複序列上,單一插入/缺失錯誤同樣傾向形成在靠近引子3’端的地方,大部分可以被校正,若在引子3’末端加上2至3個正確配對的核苷酸使引子末端的結構較穩定,則有少量的插入/缺失錯誤可以逃離校正。在15個重複序列的引子3’端加上3個正確配對的核苷酸,重複核苷酸上的單一插入/缺失錯誤可以形成在遠離引子3’端的內部,可逃離Klenow fragment的校正。
除了校正活性,也使用3 '往5 '端外切酶活性缺乏的Klenow fragment (3'→5' exo-)與dATP、dGTP 、dTTP進行聚合反應,由於Klenow fragment (3'→5'exo-)在缺乏dCTP的情形下聚合酶延伸到模板股的G之前便會停止聚合。結果發現當DNA末端為錯誤配對時,Klenow fragment (3'→5'exo-)無法做引子延伸,表示聚合酶可以偵測引子末端錯誤。當使用10個重複核苷酸上單一插入/缺失錯誤的DNA作為反應受質時,可以觀察到引子延伸訊號,表示在10個重複序列上插入/缺失錯誤可能形成在遠離引子3’端的內部,並且引子末端有多個正確配對的核苷酸使結構穩定,因此聚合酶無法偵測到引子內部的插入/缺失錯誤。
zh_TW
dc.description.abstractInsertion/deletion mismatch is a common point mutation during DNA replication, being associated to human disease such as cancer. Strand slippage known as repetitive sequence may lead to insertion/deletion mutation. DNA polymerase proofreads errors and the proofreading efficiency depends on the contents of repetitive sequence during DNA replication. It’s been known that insertion/deletion loops occurring upstream from the primer terminus may not be proofread by DNA polymerase since the matched paring of primer terminus will be recognized as correct substrate for extension by DNA polymerase. In order to understand the proofreading efficiency of insertion/deletion loop, we designed oligonucleotides containing insertion/deletion to perform proofreading assay.
We examined proofreading of the Klenow fragment (KF) with DNA containing single nucleotide insertion/deletion loop at different position. Proofreading products were analyzed by matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF MS). The result indicated that insertion/deletion error within five nucleotides upstream from primer terminus could be proofread. The insertion/deletion error from six to nine nucleotides upstream of primer terminus escaped proofread.
We further tested the proofreading efficiency to insertion/deletion loop in slippage strand using DNA substrates containing insertion/deletion loop in four, ten and fifteen repetitive sequence. Adding KF and ddNTPs, we found that insertion/deletion loop in both the four and ten repetitive sequences could be proofread by KF. However addition of two or three matched nucleotides at primer terminus of ten repetitive sequence, some insertion/deletion loops escaped proofreading.
We also examined interference of insertion/deletion mismatch to polymerase activity. We used the KF(3'→5' exo-), dATP, dGTP and dTTP for the assay. In the reaction lack of dCTP, the primer extension of KF (3'→5' exo-) would be terminated at the position opposite to a guanine in template. We found KF(3'→5' exo-) could not extend primer with a terminal mismatch. However, in the ten repetitive sequence containing an insertion/deletion mismatch could be extended by KF(3'→5' exo-). We conclude that when insertion/deletion loop form at the position over four nucleotides upstream from the primer terminus in repetitive sequence could escape proofreading.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T04:40:42Z (GMT). No. of bitstreams: 1
ntu-107-R05424003-1.pdf: 3093231 bytes, checksum: f919a9c9d961b61bf4f34840aa87b494 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents誌謝 I
中文摘要 II
Abstract IV
總目次 VI
圖目次 VIII
表目次 IX
附錄目次 X
縮寫表 XI
第一章 研究背景 1
1.1 點突變 1
1.2 插入/缺失突變的產生 2
1.3 插入/缺失錯誤的修復路徑 3
1.4 基質協助雷射去吸附離子化-飛行時間質譜儀 (Matrix-Assisted Laser Desorption Ionization-Time Of Flight Mass Spectrometry ; MALDI-TOF MS) 5
1.5 DNA插入/缺失錯誤校正分析方法 6
1.6 研究動機 8
第二章 材料與方法 10
2.1 DNA序列 10
2.2 酵素 10
2.3 核苷酸 10
2.4 校正能力測定 10
2.5 MALDI-TOF MS 11
2.6 產物百分比計算 12
第三章 結果 13
3.1 DNA序列核苷酸數目與頻譜圖訊號強度關係 13
3.2 缺失錯誤之校正-聚合能力分析 13
3.3 插入錯誤之校正能力分析 15
3.4 4個重複核苷酸上單一插入/缺失錯誤之校正能力分析 16
3.5 10個重複核苷酸上單一插入/缺失錯誤之校正能力分析 17
3.6 15個重複核苷酸上單一插入/缺失錯誤之校正能力分析 18
3.7 末端錯誤配對之聚合能力分析 19
3.8 插入錯誤之聚合能力分析 20
3.9 10個重複核苷酸上單一插入/缺失錯誤之聚合能力分析 21
第四章 討論 23
參考文獻 51
附錄 54
dc.language.isozh-TW
dc.title質譜儀應用於插入/缺失錯誤校正活性分析zh_TW
dc.titleProofreading assay of insertion/deletion loops using MALDI-TOF mass spectrometryen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee許濤,蔡芷季,蘇剛毅,楊雅倩
dc.subject.keyword插入/缺失錯誤,DNA滑動,聚合?校正活性反應,聚合?聚合活性反應,Klenow fragment,質譜儀,zh_TW
dc.subject.keywordinsertion/deletion loop,strand slippage,proofreading activity,polymerization activity,Klenow fragment,MALDI-TOF MS,en
dc.relation.page57
dc.identifier.doi10.6342/NTU201802586
dc.rights.note有償授權
dc.date.accepted2018-08-06
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept醫學檢驗暨生物技術學研究所zh_TW
顯示於系所單位:醫學檢驗暨生物技術學系

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  目前未授權公開取用
3.02 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved