Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生命科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70824
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳俊宏(Jiun-Hong Chen)
dc.contributor.authorMeng-Wei Linen
dc.contributor.author林孟緯zh_TW
dc.date.accessioned2021-06-17T04:39:54Z-
dc.date.available2021-08-19
dc.date.copyright2018-08-19
dc.date.issued2018
dc.date.submitted2018-08-07
dc.identifier.citationBone, Q., Pulsford, A., & Chubb, A. D. (1981). Squid mantle muscle. journal of the
Marine Biological Association of the United Kingdom, 61(2), 327-342.
Boucher-Rodoni, R., & Mangold, K. (1989). Respiration and nitrogen excretion by
the squid Loligo forbesi. Marine Biology, 103(3), 333-338.
Caldwell, R. L., Ross, R., Rodaniche, A., & Huffard, C. L. (2015). Behavior and body
patterns of the larger pacific striped octopus. PloS one, 10(8), e0134152.
Clifford, A. M., Goss, G. G., & Wilkie, M. P. (2015). Adaptations of a deep sea
scavenger: high ammonia tolerance and active NH4+ excretion by the Pacific
hagfish (Eptatretus stoutii). Comparative Biochemistry and Physiology Part A:
Molecular & Integrative Physiology, 182, 64-74.
Evans, D. H., Piermarini, P. M., & Choe, K. P. (2005). The multifunctional fish gill:
dominant site of gas exchange, osmoregulation, acid-base regulation, and
excretion of nitrogenous waste. Physiological reviews, 85(1), 97-177.
Hu, M. Y., Guh, Y. J., Stumpp, M., Lee, J. R., Chen, R. D., Sung, P. H., Chen, Y. C.,
& Tseng, Y. C. (2014). Branchial NH4+-dependent acid–base transport
mechanisms and energy metabolism of squid (Sepioteuthis lessoniana)
affected by seawater acidification. Frontiers in zoology, 11(1), 55.
Hu, M. Y., Sung, P. H., Guh, Y. J., Lee, J. R., Hwang, P. P., Weihrauch, D., & Tseng,
Y. C. (2017). Perfused Gills Reveal Fundamental Principles of pH
Regulation and Ammonia Homeostasis in the Cephalopod Octopus
vulgaris. Frontiers in physiology, 8, 162.
Kayes, R. J. (1973). The daily activity pattern of Octopus vulgar is in a natural
habitat. Marine & Freshwater Behaviour & Phy, 2(1-4), 337-343.
Liu, S. T., Tsung, L., Horng, J. L., & Lin, L. Y. (2013). Proton-facilitated ammonia
excretion by ionocytes of medaka (Oryzias latipes) acclimated to
seawater. American Journal of Physiology-Regulatory, Integrative and
Comparative Physiology, 305(3), R242-R251.
Lee, P. G. (1995). Nutrition of cephalopods: fueling the system. Marine and
Freshwater Behaviour and Physiology, 25(1-3), 35-51.
Nishi, T., & Forgac, M. (2002). The vacuolar (H+)-ATPases—nature's most versatile
proton pumps. Nature reviews Molecular cell biology, 3(2), 94.
Mather, J. A., Griebel, U., & Byrne, R. A. (2010). Squid dances: an ethogram of
postures and actions of Sepioteuthis sepioidea squid with a muscular
hydrostatic system. Marine and Freshwater Behaviour and Physiology, 43(1),
45-61.
O'Dor, R. (2002). Telemetered cephalopod energetics: swimming, soaring, and
blimping. Integrative and Comparative Biology, 42(5), 1065-1070.
O’Dor, R. K. (2013). How squid swim and fly. Canadian journal of zoology, 91(6),
413-419.
Potts, W. T. W. (1965). Ammonia excretion in Octopus dofleini. Comparative
biochemistry and physiology, 14(2), 339-355.
Randall, D. J., & Ip, Y. K. (2006). Ammonia as a respiratory gas in water and
air-breathing fishes. Respiratory physiology & neurobiology, 154(1-2),
216-225.
Seibel, B. A., Goffredi, S. K., Thuesen, E. V., Childress, J. J., & Robison, B. H.
(2004). Ammonium content and buoyancy in midwater cephalopods. Journal
of Experimental Marine Biology and Ecology, 313(2), 375-387.
Scheel, D., & Bisson, L. (2012). Movement patterns of giant Pacific octopuses,
Enteroctopus dofleini (Wülker, 1910). Journal of Experimental Marine
Biology and Ecology, 416, 21-31.
Tovey, K. J., & Brauner, C. J. (2017). Effects of water ionic composition on acid–
base regulation in rainbow trout, during hypercarbia at rest and during
sustained exercise. Journal of Comparative Physiology B, 1-10.
Sung, P.-H. (2016). comparative studies of extra-renal organs in cephalopods: ammonia excretion in gills. (Master thesis), College of Life Science National Taiwan University.
Tseng, Y. C., Hu, M. Y., Stumpp, M., Lin, L. Y., Melzner, F., & Hwang, P. P. (2013).
CO2-driven seawater acidification differentially affects development and
molecular plasticity along life history of fish (Oryzias latipes). Comparative
Biochemistry and Physiology Part A: Molecular & Integrative
Physiology, 165(2), 119-130.
Villanueva, R., Perricone, V., & Fiorito, G. (2017). Cephalopods as predators: a short
journey among behavioral flexibilities, adaptions, and feeding
habits. Frontiers in physiology, 8, 598.
Webber, D. M., Aitken, J. P., & O'Dor, R. K. (2000). Costs of locomotion and vertic
dynamics of cephalopods and fish. Physiological and Biochemical
Zoology, 73(6), 651-662.
Wells, M. J. (1990). Oxygen extraction and jet propulsion in cephalopods. Canadian
Journal of Zoology, 68(4), 815-824.
Weihrauch, D., Ziegler, A., Siebers, D., & Towle, D. W. (2002). Active ammonia
excretion across the gills of the green shore crab Carcinus maenas:
participation of Na+/K+-ATPase, V-type H+-ATPase and functional
microtubules. Journal of experimental biology, 205(18), 2765-2775.
Weiner, I. D., & Verlander, J. W. (2016). Recent Advances in Renal Ammonia
Metabolism and Transport. Current opinion in nephrology and
hypertension, 25(5), 436.
Wells, M. J. (1990). Oxygen extraction and jet propulsion in cephalopods. Canadian
Journal of Zoology, 68(4), 815-824.
Wood, C. M., Pärt, P. E. T. E. R., & Wright, P. A. (1995). Ammonia and urea
metabolism in relation to gill function and acid-base balance in a marine
elasmobranch, the spiny dogfish (Squalus acanthias). Journal of Experimental
Biology, 198(7), 1545-1558.
Wood, J. W., Day, C. L., Lee, P., & O'Dor, R. K. (2000). CephBase: testing ideas for
cephalopod and other species-level databases. Oceanography, 13(3), 14-20
Wright, P. A., & Wood, C. M. (2009). A new paradigm for ammonia excretion in
aquatic animals: role of Rhesus (Rh) glycoproteins. Journal of Experimental
Biology, 212(15), 2303-2312.
Wright, P. A., Wood, C. M., & Wilson, J. M. (2014). Rh vs pH: the role of Rhesus
glycoproteins in renal ammonia excretion during metabolic acidosis in a
freshwater teleost fish. Journal of Experimental Biology, jeb-098640.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70824-
dc.description.abstract卓越的運動能力與補食技巧是頭足類動物成為海洋中頂尖掠食者的關鍵,根據棲地與行為模式,頭足類動物可區分為爬行移動(例如:章魚)以及噴射移動(例如:烏賊)等運動模式。這些模式可能導致頭足類動物發展出不同的代謝、酸鹼與氨的調節機制。本研究發現普通章魚(Octopus vulgaris)血液中的含氨濃度是萊氏擬烏賊 (Sepioteuthis lessoniana) 的十倍以上;然而,萊氏擬烏賊往體內運送氨的速率卻是普通章魚的兩倍以上。此外,利用離體灌流的藥理實驗發現:章魚的鰓表皮細胞,會同時運用主動與被動運輸模式進行酸與氨的調節;然而萊氏擬烏賊的鰓表皮細胞僅會運用主動運輸維持體液恆定。根據以上結果我推論:頭足類動物會因為棲地與運動型態的差異,導致產生不同的代謝、酸與氨等調節機制。zh_TW
dc.description.abstractAdvanced neural systems and athletic swimming mode enable cephalopods to behave as apex predators in the ocean system. According to their habitats and life styles, they can be divided into crawl and jet-propulsion behavior patterns, thus resulting diverse mechanisms of acid-base and ammonia regulations. In this study, I observed that common octopus (Octopus vulgaris) could accumulate ammonia in blood 10 times higher than bigfin reef squid (Sepioteuthis lessoniana). Moreover, ammonia transport rate (circulating from ctenidial veins to body tissue) in S. lessoniana is two times faster than that of O. vulgaris. Inhibition of apical and basolateral Na+/H+ exchangers (NHEs) by ethylisopropyl amiloride (EIPA) showed significant disruption of H+ and ammonia excretory processes in gills of common octopus, but not in squid. However, inhibition of vacuolar-type H+-ATPase (VHA) by bafilomycin significantly disrupts H+ and ammonia excretion in gills of both animals. Accordingly, jet-propulsion squids prefer active transport for acid/NH4+ transport, while crawling octopus utilize both passive and active transport for homeostasis. Thus, squids may have developed more efficient ammonia-excretory machinery than octopus to avoid nitrogenous toxic effects in blood.en
dc.description.provenanceMade available in DSpace on 2021-06-17T04:39:54Z (GMT). No. of bitstreams: 1
ntu-107-R05b21041-1.pdf: 2838582 bytes, checksum: 408f68d89795900fd741797f3dee76ac (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents摘要…………………………………………………………………………...………2
Abstract……………………………………………………………………………….3
Introduction…………………………………………………………………………..5
The coleoid cephalopods……………………………………………………………………………..5
The different lifestyles among the coleoid cephalopods………………………...…………………...6
Acid-base regulation in coleoid cephalopods…………………………...…………………………...7
Nitrogenous wastes/products from cephalopods…………………........................................................8
Purpose and hypothesis………………………………………………………………………………10
Materials and methods…………………………………………………...…………12
Experimental animals…………………………….…………………………………………………..12
Preparation of perfusion salines …………………………………………………………………...12
Gill perfusion experiments ………………………………………………………………………...13
Oxygen consumption test …………………........................................................................................15
Examination of amino acids content ………………………………………………...…………16
Statistical analyses …………………………………….………………………………...…………16
Results……………………………………………………………………………….18
The resting metabolic appearances of O. vulgaris and S. lessoniana ……………………...………..18
Ammonium concentration in hemolymph of O. vulgaris and S. lessoniana………………………...18
Free amino acid analysis in hemolymph of O. vulgaris and S. lessoniana ………………………...19
Ex-vivo estimations of the ammonium transport patterns of gills by perfusion approaches………...20
Determination of the roles of sodium-hydrogen exchanger (NHE) in ammonium and acid-base
homeostasis for cephalopod gills…………………………………………………………………….20
Determination of the roles of vacuolar H+ ATPase (VHA) in ammonium and acid-base homeostasis
for cephalopod gills…………………………………………………………………………....……..22
Discussion……………………………………………………………………………25
The distinctive strategies for NH4+/proton homeostasis in cephalopods…………..…..25
The proton and ammonium transport machineries in branchial epithelium of O.
vulgaris and S. lessoniana…………………………………………………...……..30
Conclusion…………………………………………………………………………...34
References…………………………………………………………………………...36
Figures…………………………………..…………………………………………42
dc.language.isozh-TW
dc.subject頭足類動物zh_TW
dc.subject氨調節zh_TW
dc.subject酸鹼調節zh_TW
dc.subject離體灌流藥理實驗zh_TW
dc.subjectgillen
dc.subjectcephalopodsen
dc.subjectperfusionen
dc.subjecthomeostasisen
dc.subjectacid/NH4+ transport machineriesen
dc.title比較頭足類動物的鰓部對於酸與氨的調節運輸機轉zh_TW
dc.titleComparative evaluations of proton and ammonium transport mechanisms in branchial epithelium of cephalopodsen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.coadvisor黃鵬鵬(Pung-Pung Hwang),曾庸哲(Yung-Che Tseng)
dc.contributor.oralexamcommittee焦傳金
dc.subject.keyword頭足類動物,離體灌流藥理實驗,酸鹼調節,氨調節,zh_TW
dc.subject.keywordcephalopods,gill,perfusion,homeostasis,acid/NH4+ transport machineries,en
dc.relation.page57
dc.identifier.doi10.6342/NTU201802539
dc.rights.note有償授權
dc.date.accepted2018-08-07
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生命科學系zh_TW
顯示於系所單位:生命科學系

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
2.77 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved