請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70824完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳俊宏(Jiun-Hong Chen) | |
| dc.contributor.author | Meng-Wei Lin | en |
| dc.contributor.author | 林孟緯 | zh_TW |
| dc.date.accessioned | 2021-06-17T04:39:54Z | - |
| dc.date.available | 2021-08-19 | |
| dc.date.copyright | 2018-08-19 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-08-07 | |
| dc.identifier.citation | Bone, Q., Pulsford, A., & Chubb, A. D. (1981). Squid mantle muscle. journal of the
Marine Biological Association of the United Kingdom, 61(2), 327-342. Boucher-Rodoni, R., & Mangold, K. (1989). Respiration and nitrogen excretion by the squid Loligo forbesi. Marine Biology, 103(3), 333-338. Caldwell, R. L., Ross, R., Rodaniche, A., & Huffard, C. L. (2015). Behavior and body patterns of the larger pacific striped octopus. PloS one, 10(8), e0134152. Clifford, A. M., Goss, G. G., & Wilkie, M. P. (2015). Adaptations of a deep sea scavenger: high ammonia tolerance and active NH4+ excretion by the Pacific hagfish (Eptatretus stoutii). Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 182, 64-74. Evans, D. H., Piermarini, P. M., & Choe, K. P. (2005). The multifunctional fish gill: dominant site of gas exchange, osmoregulation, acid-base regulation, and excretion of nitrogenous waste. Physiological reviews, 85(1), 97-177. Hu, M. Y., Guh, Y. J., Stumpp, M., Lee, J. R., Chen, R. D., Sung, P. H., Chen, Y. C., & Tseng, Y. C. (2014). Branchial NH4+-dependent acid–base transport mechanisms and energy metabolism of squid (Sepioteuthis lessoniana) affected by seawater acidification. Frontiers in zoology, 11(1), 55. Hu, M. Y., Sung, P. H., Guh, Y. J., Lee, J. R., Hwang, P. P., Weihrauch, D., & Tseng, Y. C. (2017). Perfused Gills Reveal Fundamental Principles of pH Regulation and Ammonia Homeostasis in the Cephalopod Octopus vulgaris. Frontiers in physiology, 8, 162. Kayes, R. J. (1973). The daily activity pattern of Octopus vulgar is in a natural habitat. Marine & Freshwater Behaviour & Phy, 2(1-4), 337-343. Liu, S. T., Tsung, L., Horng, J. L., & Lin, L. Y. (2013). Proton-facilitated ammonia excretion by ionocytes of medaka (Oryzias latipes) acclimated to seawater. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 305(3), R242-R251. Lee, P. G. (1995). Nutrition of cephalopods: fueling the system. Marine and Freshwater Behaviour and Physiology, 25(1-3), 35-51. Nishi, T., & Forgac, M. (2002). The vacuolar (H+)-ATPases—nature's most versatile proton pumps. Nature reviews Molecular cell biology, 3(2), 94. Mather, J. A., Griebel, U., & Byrne, R. A. (2010). Squid dances: an ethogram of postures and actions of Sepioteuthis sepioidea squid with a muscular hydrostatic system. Marine and Freshwater Behaviour and Physiology, 43(1), 45-61. O'Dor, R. (2002). Telemetered cephalopod energetics: swimming, soaring, and blimping. Integrative and Comparative Biology, 42(5), 1065-1070. O’Dor, R. K. (2013). How squid swim and fly. Canadian journal of zoology, 91(6), 413-419. Potts, W. T. W. (1965). Ammonia excretion in Octopus dofleini. Comparative biochemistry and physiology, 14(2), 339-355. Randall, D. J., & Ip, Y. K. (2006). Ammonia as a respiratory gas in water and air-breathing fishes. Respiratory physiology & neurobiology, 154(1-2), 216-225. Seibel, B. A., Goffredi, S. K., Thuesen, E. V., Childress, J. J., & Robison, B. H. (2004). Ammonium content and buoyancy in midwater cephalopods. Journal of Experimental Marine Biology and Ecology, 313(2), 375-387. Scheel, D., & Bisson, L. (2012). Movement patterns of giant Pacific octopuses, Enteroctopus dofleini (Wülker, 1910). Journal of Experimental Marine Biology and Ecology, 416, 21-31. Tovey, K. J., & Brauner, C. J. (2017). Effects of water ionic composition on acid– base regulation in rainbow trout, during hypercarbia at rest and during sustained exercise. Journal of Comparative Physiology B, 1-10. Sung, P.-H. (2016). comparative studies of extra-renal organs in cephalopods: ammonia excretion in gills. (Master thesis), College of Life Science National Taiwan University. Tseng, Y. C., Hu, M. Y., Stumpp, M., Lin, L. Y., Melzner, F., & Hwang, P. P. (2013). CO2-driven seawater acidification differentially affects development and molecular plasticity along life history of fish (Oryzias latipes). Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 165(2), 119-130. Villanueva, R., Perricone, V., & Fiorito, G. (2017). Cephalopods as predators: a short journey among behavioral flexibilities, adaptions, and feeding habits. Frontiers in physiology, 8, 598. Webber, D. M., Aitken, J. P., & O'Dor, R. K. (2000). Costs of locomotion and vertic dynamics of cephalopods and fish. Physiological and Biochemical Zoology, 73(6), 651-662. Wells, M. J. (1990). Oxygen extraction and jet propulsion in cephalopods. Canadian Journal of Zoology, 68(4), 815-824. Weihrauch, D., Ziegler, A., Siebers, D., & Towle, D. W. (2002). Active ammonia excretion across the gills of the green shore crab Carcinus maenas: participation of Na+/K+-ATPase, V-type H+-ATPase and functional microtubules. Journal of experimental biology, 205(18), 2765-2775. Weiner, I. D., & Verlander, J. W. (2016). Recent Advances in Renal Ammonia Metabolism and Transport. Current opinion in nephrology and hypertension, 25(5), 436. Wells, M. J. (1990). Oxygen extraction and jet propulsion in cephalopods. Canadian Journal of Zoology, 68(4), 815-824. Wood, C. M., Pärt, P. E. T. E. R., & Wright, P. A. (1995). Ammonia and urea metabolism in relation to gill function and acid-base balance in a marine elasmobranch, the spiny dogfish (Squalus acanthias). Journal of Experimental Biology, 198(7), 1545-1558. Wood, J. W., Day, C. L., Lee, P., & O'Dor, R. K. (2000). CephBase: testing ideas for cephalopod and other species-level databases. Oceanography, 13(3), 14-20 Wright, P. A., & Wood, C. M. (2009). A new paradigm for ammonia excretion in aquatic animals: role of Rhesus (Rh) glycoproteins. Journal of Experimental Biology, 212(15), 2303-2312. Wright, P. A., Wood, C. M., & Wilson, J. M. (2014). Rh vs pH: the role of Rhesus glycoproteins in renal ammonia excretion during metabolic acidosis in a freshwater teleost fish. Journal of Experimental Biology, jeb-098640. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70824 | - |
| dc.description.abstract | 卓越的運動能力與補食技巧是頭足類動物成為海洋中頂尖掠食者的關鍵,根據棲地與行為模式,頭足類動物可區分為爬行移動(例如:章魚)以及噴射移動(例如:烏賊)等運動模式。這些模式可能導致頭足類動物發展出不同的代謝、酸鹼與氨的調節機制。本研究發現普通章魚(Octopus vulgaris)血液中的含氨濃度是萊氏擬烏賊 (Sepioteuthis lessoniana) 的十倍以上;然而,萊氏擬烏賊往體內運送氨的速率卻是普通章魚的兩倍以上。此外,利用離體灌流的藥理實驗發現:章魚的鰓表皮細胞,會同時運用主動與被動運輸模式進行酸與氨的調節;然而萊氏擬烏賊的鰓表皮細胞僅會運用主動運輸維持體液恆定。根據以上結果我推論:頭足類動物會因為棲地與運動型態的差異,導致產生不同的代謝、酸與氨等調節機制。 | zh_TW |
| dc.description.abstract | Advanced neural systems and athletic swimming mode enable cephalopods to behave as apex predators in the ocean system. According to their habitats and life styles, they can be divided into crawl and jet-propulsion behavior patterns, thus resulting diverse mechanisms of acid-base and ammonia regulations. In this study, I observed that common octopus (Octopus vulgaris) could accumulate ammonia in blood 10 times higher than bigfin reef squid (Sepioteuthis lessoniana). Moreover, ammonia transport rate (circulating from ctenidial veins to body tissue) in S. lessoniana is two times faster than that of O. vulgaris. Inhibition of apical and basolateral Na+/H+ exchangers (NHEs) by ethylisopropyl amiloride (EIPA) showed significant disruption of H+ and ammonia excretory processes in gills of common octopus, but not in squid. However, inhibition of vacuolar-type H+-ATPase (VHA) by bafilomycin significantly disrupts H+ and ammonia excretion in gills of both animals. Accordingly, jet-propulsion squids prefer active transport for acid/NH4+ transport, while crawling octopus utilize both passive and active transport for homeostasis. Thus, squids may have developed more efficient ammonia-excretory machinery than octopus to avoid nitrogenous toxic effects in blood. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T04:39:54Z (GMT). No. of bitstreams: 1 ntu-107-R05b21041-1.pdf: 2838582 bytes, checksum: 408f68d89795900fd741797f3dee76ac (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 摘要…………………………………………………………………………...………2
Abstract……………………………………………………………………………….3 Introduction…………………………………………………………………………..5 The coleoid cephalopods……………………………………………………………………………..5 The different lifestyles among the coleoid cephalopods………………………...…………………...6 Acid-base regulation in coleoid cephalopods…………………………...…………………………...7 Nitrogenous wastes/products from cephalopods…………………........................................................8 Purpose and hypothesis………………………………………………………………………………10 Materials and methods…………………………………………………...…………12 Experimental animals…………………………….…………………………………………………..12 Preparation of perfusion salines …………………………………………………………………...12 Gill perfusion experiments ………………………………………………………………………...13 Oxygen consumption test …………………........................................................................................15 Examination of amino acids content ………………………………………………...…………16 Statistical analyses …………………………………….………………………………...…………16 Results……………………………………………………………………………….18 The resting metabolic appearances of O. vulgaris and S. lessoniana ……………………...………..18 Ammonium concentration in hemolymph of O. vulgaris and S. lessoniana………………………...18 Free amino acid analysis in hemolymph of O. vulgaris and S. lessoniana ………………………...19 Ex-vivo estimations of the ammonium transport patterns of gills by perfusion approaches………...20 Determination of the roles of sodium-hydrogen exchanger (NHE) in ammonium and acid-base homeostasis for cephalopod gills…………………………………………………………………….20 Determination of the roles of vacuolar H+ ATPase (VHA) in ammonium and acid-base homeostasis for cephalopod gills…………………………………………………………………………....……..22 Discussion……………………………………………………………………………25 The distinctive strategies for NH4+/proton homeostasis in cephalopods…………..…..25 The proton and ammonium transport machineries in branchial epithelium of O. vulgaris and S. lessoniana…………………………………………………...……..30 Conclusion…………………………………………………………………………...34 References…………………………………………………………………………...36 Figures…………………………………..…………………………………………42 | |
| dc.language.iso | zh-TW | |
| dc.subject | 頭足類動物 | zh_TW |
| dc.subject | 氨調節 | zh_TW |
| dc.subject | 酸鹼調節 | zh_TW |
| dc.subject | 離體灌流藥理實驗 | zh_TW |
| dc.subject | gill | en |
| dc.subject | cephalopods | en |
| dc.subject | perfusion | en |
| dc.subject | homeostasis | en |
| dc.subject | acid/NH4+ transport machineries | en |
| dc.title | 比較頭足類動物的鰓部對於酸與氨的調節運輸機轉 | zh_TW |
| dc.title | Comparative evaluations of proton and ammonium transport mechanisms in branchial epithelium of cephalopods | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 黃鵬鵬(Pung-Pung Hwang),曾庸哲(Yung-Che Tseng) | |
| dc.contributor.oralexamcommittee | 焦傳金 | |
| dc.subject.keyword | 頭足類動物,離體灌流藥理實驗,酸鹼調節,氨調節, | zh_TW |
| dc.subject.keyword | cephalopods,gill,perfusion,homeostasis,acid/NH4+ transport machineries, | en |
| dc.relation.page | 57 | |
| dc.identifier.doi | 10.6342/NTU201802539 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2018-08-07 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 生命科學系 | zh_TW |
| 顯示於系所單位: | 生命科學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf 未授權公開取用 | 2.77 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
