請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70820
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳明汝(Ming-Ju Chen) | |
dc.contributor.author | Yi-Lu Wu | en |
dc.contributor.author | 吳藝璐 | zh_TW |
dc.date.accessioned | 2021-06-17T04:39:44Z | - |
dc.date.available | 2028-12-31 | |
dc.date.copyright | 2018-08-07 | |
dc.date.issued | 2018 | |
dc.date.submitted | 2018-08-07 | |
dc.identifier.citation | 中華民國國家標準。2003。食用油脂檢驗法-酸價之測定,CNS 3647 N6082。經濟部國家檢驗局,臺北市。
中華民國國家標準。2017。人造奶油,CNS 761 N5010。經濟部國家檢驗局,臺北市。 中華民國國家標準。2017。奶油,CNS 2877 N5085。經濟部國家檢驗局,臺北市。 林慶文。2006。乳品加工學(第三版),第313及314頁。華香園出版社,臺北市。 Angulo, L., E. Lopez, and C. Lema. 1993. Microflora present in kefir grains of the Galician region (north-west of Spain). J. Dairy Res. 60:263-267. AOCS Official method Cd 11b-9. 2009. Determination of mono- and diglycerides by capillary gas chromatography. In: Official Methods and Recommended Practices of the American Oil Chemists’ Society, 6th ed. AOCS Press, Urbana, IL, USA. Aravindan, R., P. Anbumathi, and T. Viruthagiri. 2007. Lipase applications in food industry. Indian J. Biotechnol. 6:141-158. Bakhshi, N., S. Soleimanian-Zad, and M. Sheikh-Zeinoddin. 2017. Dynamic surface tension measurement for the screening of biosurfactants produced by Lactobacillus plantarum subsp. plantarum PTCC 1896. Enzyme. Microb. Technol. 101:1-8. doi:org/10.1016/j.enzmictec.2017.02.010. Brígida, Ana I. S., P. F. F. Amaral, M. A. Z. Coelho, and L. R. B. Goncalves. 2014. Lipase from Yarrowia lipolytica: Production, characterization and application as an industrial biocatalyst. J. Mol. Catal., B Enzym. 101:148-158. doi:org/10.1016/j.molcatb.2013.11.016. Brosius, J., M. L. Palmer, P. J. Kennedy, and H. F. Noller. 1978. Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli. Proc. Natl. Acad. Sci. U. S. A. 75:4801-4805. doi:org/10.1073/pnas.75.10.4801. Barriuso, J., M. E. Vaquero, A. Prieto, and M. J. Martínez. 2016. Structural traits and catalytic versatility of the lipases from the Candida rugosa-like family: A review. Biotechnol. Adv. 34:874-885. doi:org/10.1016/j.biotechadv.2016.05.004. Caggianiello, G., M. Kleerebezem, and G. Spano. 2016. Exopolysaccharides produced by lactic acid bacteria: from health-promoting benefits to stress tolerance mechanisms. Appl. Microbiol. Biotechnol. 100: 3877-3886. doi:org/10.1007/s00253-016-7471-2. Charoenchai, C., G. H. Fleet, P. A. Henschke, and B. E. N. Todd. 1997. Screening of non‐Saccharomyces wine yeasts for the presence of extracellular hydrolytic enzymes. Aust. J. Grape Wine Res. 3:2-8. doi:org/10.1111/j.1755-0238.1997.tb00109.x. Cheong, L. Z., C. P. Tan, K. Long, M. S. A. Yusoff, N. Arifin, and S. K. Lo. 2007. Production of a diacylglycerol-enriched palm olein using lipase-catalyzed partial hydrolysis: Optimisation using response surface methodology. Food Chem. 105:1614-1622. doi:org/10.1016/j.foodchem.2007.03.070. Choudhury, P. and B. Bhunia. 2015. Industrial application of lipase: a review. Biopharm. J. 1:41-47. Colla, L. M., J. Rizzardi, M. H. Pinto, C. O. Reinehr, T. E. Bertolin, and J. A. V. Costa. 2010. Simultaneous production of lipases and biosurfactants by submerged and solid-state bioprocesses. Bioresour. Technol. 101:8308-8314. doi:org/10.1016/j.biortech.2010.05.086. Deosarkar, S. S., C. D. Khedkar, and S. D. Kalyankar. 2016. Butter: Manufacture. In: B. Caballero, P. M. Finglas, and F. Toldrá, editor, Encyclopedia of Food and Health. Academic Press, San Diego, CA, USA. p. 529-534. Dickinson, E. 1993. Towards more natural emulsifiers. Trends Food Sci. Tech. 4:330-334. doi:org/10.1016/0924-2244(93)90103-H. El-Sawah, M. M. A., A. A. Sherief, and S. M. Bayoumy. 1995. Enzymatic properties of lipase and characteristics production by Lactobacillus delbrueckii subsp, bulgaricus. Antonie van Leeuwenhoek 67:357-362. Esteban-Torres, M., J. M. Landete, I. Reverón, L. Santamaría, B. de las Rivasa, and R. Muñoza. 2015. A Lactobacillus plantarum esterase active on a broad range of phenolic Esters. Appl. Environ. Microbiol. 81:3235-3242. doi:10.1128/AEM.00323-15. Esteban-Torres, M., I. Reverón, J. M. Landete, B. de las Rivasa, and R. Muñoza. 2016. The Lp_3561 and Lp_3562 enzymes support a functional divergence process in the lipase/esterase toolkit from Lactobacillus plantarum. Front. Microbiol. 7:1118. doi:org/10.3389/fmicb.2016.01118. Felsenstein, J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783-791. doi:10.2307/2408678. Feltes, M. M. C., D. Oliveira, J. M. Block, and J. L. Ninow. 2013. The production, benefits, and applications of monoacylglycerols and diacylglycerols of nutritional interest. Food Bioproc. Tech. 6:17-35. doi:10.1007/s11947-012-0836-3. Ferreira-Dias, S., A. C. Correia, F. O. Baptista, and M. M. R. da Fonseca. 2001. Contribution of response surface design to the development of glycerolysis systems catalyzed by commercial immobilized lipases. J. Mol. Catal., B Enzym. 11:699-711. Ferrer, C., F. Colom, S. Frasés, E. Mulet, J. L. Abad, and J. L. Alió. 2001. Detection and identification of fungal pathogens by PCR and by ITS2 and 5.8S ribosomal DNA typing in ocular infections. J. Clin. Microbiol. 39:2873-2879. doi:10.1128/JCM.39.8.2873-2879.2001. Fickers, P., J. M. Nicaud, C. Gaillardin, J. Destain, and P. Thonart. 2004. Carbon and nitrogen sources modulate lipase production in the yeast Yarrowia lipolytica. J. Appl. Microbiol. 96:742-749. doi:10.1111/j.1365-2672.2004.02190.x. Fox, P. F. 2011. Bovine milk. In: J. W. Fuquay, editor, Encyclopedia of Dairy Sciences (Second Edition). Academic Press, San Diego, CA, USA. p. 478-483. Fregolente P.B.L., Fregolente L.V., Pinto G.M.F., Batistella B.C., Wolf-Maciel M.R., Filho R.M. 2008. Monoglycerides and diglycerides synthesis in a solvent-free system by lipase-catalyzed glycerolysis. In: Adney W.S., McMillan J.D., Mielenz J., Klasson K.T., editor, Biotechnology for Fuels and Chemicals. Humana Press, New York, NY, USA. p. 285-292. Gandhi, N. N. 1997. Applications of lipase. J. Amer. Oil Chem. Soc. 74:621-634. doi:org/10.1007/s11746-997-0194-x. Gao, X. G., S. G. Cao, and K. C. Zhang. 2000. Production, properties and application to nonaqueous enzymatic catalysis of lipase from a newly isolated Pseudomonas strain. Enzyme Microb. Technol. 27:74-82. García-Silvera, E. E., F. Martínez-Morales, B. Bertrand, D. Morales-Guzmán, N. S. Rosas-Galván, R. León-Rodríguez, and M. R. Trejo-Hernández. 2017. Production and application of a thermostable lipase from Serratia marcescens in detergent formulation and biodiesel production. Biotechnol. Appl. Biochem. 65:156-172. doi:10.1002/bab.1565. Garlapati, V. K. and R. Banerjee. 2010. Optimization of lipase production using differential evolution. Biotechnol. Bioprocess Eng. 15:254-260. doi:10.1007/s12257-009-0163-3. Ghattas, N., F. Abidi, S. Galai, M. N. Marzouki, and A. B. Salah. 2014. Monoolein production by triglycerides hydrolysis using immobilized Rhizopus oryzae lipase. Int. J. Biol. Macromol. 68:1-6. doi:org/10.1016/j.ijbiomac.2014.04.017. Ghikas, D. V., V. N. Kouvelis, and M. A. Typas. 2010. Phylogenetic and biogeographic implications inferred by mitochondrial intergenic region analyses and ITS1-5.8S-ITS2 of the entomopathogenic fungi Beauveria bassiana and B. brongniartii. BMC Microbiol. 10:174. doi:org/10.1186/1471-2180-10-174. Godoy, M. G., M. L. E. Gutarra, A. M. Castro, O. L. T. Machado, and D. M. G. Freire. 2011. Adding value to a toxic residue from the biodiesel industry: production of two distinct pool of lipases from Penicillium simplicissimum in castor bean waste. J. Ind. Microbiol. Biotechnol. 38:945-953. doi:10.1007/s10295-010-0865-8. Goswami, D., J. K. Basu, and S. De. 2013. Lipase applications in oil hydrolysis with a case study on castor oil: a review. Crit. Rev. Biotechnol. 33:81-96. doi:org/10.3109/07388551.2012.672319. Groenewald, M., T. Boekhout, C. Neuve ́glise, C. Gaillardin, P. W. M. van Dijck, and M. Wyss. 2014. Yarrowia lipolytica: Safety assessment of an oleaginous yeast with a great industrial potential. Crit. Rev. Microbiol. 40:187-206. doi:10.3109/1040841X.2013.770386. Guerzoni, M. E., R. Lanciotti, L. Vannini, F. Galgano, F. Favati, F. Gardini, and G. Suzzi. 2001. Variability of the lipolytic activity in Yarrowia lipolytica and its dependence on environmental conditions. Int. J. Food Microbiol. 69:79-89. doi:org/10.1016/S0168-1605(01)00575-X. Guidone, A., T. Zotta, R. P. Ross, C. Stanton, M. C. Rea, E. Parente, and A. Ricciardi. 2014. Functional properties of Lactobacillus plantarum strains: A multivariate screening study. Food Sci. Technol. 56:69-76. doi:org/10.1016/j.lwt.2013.10.036. Harrigan, W. F. 1998. Sampling methods for selection and examination of microbial colonies. In: Harrigan, W. F., editor, Laboratory methods in food microbiology. Academic Press, San Diego, CA, USA. p. 89-91. Hasan, F., A. A. Shah, and A. Hameed. 2006. Industrial applications of microbial lipases. Enzyme Microb. Technol. 39:235-251. doi:org/10.1016/j.enzmictec.2005.10.016. Hasan, F., A. A. Shah, and A. Hameed. 2009. Methods for detection and characterization of lipases: A comprehensive review. Biotechnol. Adv. 27:782-798. doi:10.1016/j.biotechadv.2009.06.001. Hasenhuettl, G. L., 2008a. Overview of food emulsifiers. In: Hasenhuettl, G. L. and R. W. Hartel, editor, Food emulsifiers and their applications. Springer Science+Business Media, LLC, New York, NY, USA. p. 1-9. Hasenhuettl, G. L., 2008b. Synthesis and commercial preparation of food emulsifiers. In: Hasenhuettl, G. L. and R. W. Hartel, editor, Food emulsifiers and their applications. Springer Science+Business Media, LLC, New York, NY, USA. p. 10-37. Hiol, A., M. D. Jonzo, N. Rugani, D. Druet, L. Sarda, and L. C. Comeau. 2000. Purification and characterization of an extracellular lipase from a thermophilic Rhizopus oryzae strain isolated from palm fruit. Enzyme Microb. Technol. 26:421-430. doi:org/10.1016/S0141-0229(99)00173-8. Holmberg, K. and E. Osterberg. 1988. Enzymatic preparation of monoglycerides in microemulsion. J. Am. Oil Chem. Soc. 65:1544. doi:org/10.1007/BF02898325. Hřibová, E., J. Čížková, P. Christelová, S. Taudien, E.de Langhe, and J. Doležel. 2011. The ITS1-5.8S-ITS2 sequence region in the Musaceae: Structure, diversity and use in molecular phylogeny. PLoS ONE 6:e17863. doi:org/10.1371/journal.pone.0017863. International Union of Pure and Applied Chemistry (IUPAC). 1972. Manuel on Colloid and Surface Science. Butterworths, London, United Kingdom. Jaeger, K. and M. T. Reetzb. 1998. Microbial lipases form versatile tools for biotechnology. Trends Biotechnol. 16:396-403. doi:org/10.1016/S0167-7799(98)01195-0. Javed, S., F. Azeem, S. Hussain, L. Rasul, M. H. Siddique, M. Riaz, M. Afzal, A. Kouser, and H. Nadeem. 2017. Bacterial lipases: A review on purification and characterization. Prog. Biophys. Mol. Biol. 132:23-34. doi:org/10.1016/j.pbiomolbio.2017.07.014. Júnior, S. J. H., J. N. R. Ract, L. A. Gioielli, and M. Vitolo. 2018. Conversion of triolein into mono- and diacylglycerols by immobilized lipase. Arab. J. Sci. Eng. 43:2247-2255. doi:10.1007/s13369-017-2635-7. Kamzolova, S. V., I. G. Morgunov, A. Aurich, O. A. Perevoznikova, N. V. Shishkanova, U. Stottmeister, and T. V. Finogenova. 2005. Lipase secretion and citric acid production in Yarrowia lipolytica yeast grown on animal and vegetable fat. Food Technol. Biotechnol. 43:113-122. Khor, H. T., N. H. Tan, and C. L. Chua. 1986. Lipase-catalyzed hydrolysis of palm oil. J. Am. Oil Chem. Soc. 63:538-540. Kimura, M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16:111-120. doi:10.1007/BF01731581. Klijn, N., A. H. Weerkamp, and W. M. de Vos. 1991. Identification of mesophilic lactic acid bacteria by using polymerase chain reaction-amplified variable regions of 16S rRNA and specific DNA probes. Appl. Environ. Microbiol. 57:3390-3393. Koehler, A. P., K. Chu, E. T. S. Houang, and A. F. B. Cheng. 1999. Simple, reliable, and cost-effective yeast identification scheme for the clinical laboratory. J. Clin. Microbiol. 37:422-426. Kouker, G. and K. E. Jaeger. 1987. Specific and sensitive plate assay for bacterial lipases. Appl. Environ. Microbiol. 53:211-213. Kristensen, J. B., X. Xu, H. Mu. 2005. Diacylglycerol synthesis by enzymatic glycerolysis: Screening of commercially available lipases. J. Am. Oil Chem. Soc. 82:329-334. Kumar, S., Stecher, G. and Tamura, K. 2016. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33:1870-1874. doi:org/10.1093/molbev/msw054. Laughon, B. E., S. A. Syed, and W. J. Loesche. 1982. API ZYM system for identification of Bacteroides spp., Capnocytophaga spp., and spirochetes of oral origin. J. Clin. Microbiol. 15:97-102. Ledesma-Amaro, R. and J. M. Nicaud. 2016. Yarrowia lipolytica as a biotechnological chassis to produce usual and unusual fatty acids. Prog. Lipid Res. 61:40-50. doi:org/10.1016/j.plipres.2015.12.001. Li, P., Q. Gu., and Q. Zhou. 2016. Complete genome sequence of Lactobacillus plantarum LZ206, a potential probiotic strain with antimicrobial activity against food-borne pathogenic microorganisms. J. Biotechnol. 238:52-55. doi:org/10.1016/j.jbiotec.2016.09.012. Li, Q., X. Yu, Y. Yang, and X. Liu. 2018. Simple determination of diacylglycerols using thin layer chromatography and visible spectrophotometry. Food Anal. Methods. 11:236-242. doi:10.1007/s12161-017-0993-0. Liu, F. and C. Tang. 2014. Phytosterol colloidal particles as pickering stabilizers for emulsions. J. Agric. Food Chem. 62:5133-5141. doi:10.1021/jf404930c. Lopes, D. B., L. P. Fraga, L. F. Fleuri, and G. A. Macedo. 2011. Lipase and esterase - to what extent can this classification be applied accurately? Food Sci. Technol. 31:608-613. doi:org/10.1590/S0101-20612011000300009. Madhu, A.N. and S. G. Prapulla. 2014. Evaluation and functional characterization of a biosurfactant produced by Lactobacillus plantarum CFR 2194. Appl. Biochem. Biotechnol. 172:1777-1789. doi:org/10.1007/s12010-013-0649-5. Mayordomo, I., F. Randez-Gil, and J. A. Prieto. 2000. Isolation, purification, and characterization of a cold-active lipase from Aspergillus nidulans. J. Agric. Food Chem. 48:105-109. doi:10.1021/jf9903354. Mba, O. I., M. Dumont, and M. Ngadi. 2015. Palm oil: Processing, characterization and utilization in the food industry - A review. Food Biosci. 10:26-41. doi:org/10.1016/j.fbio.2015.01.003. Mehta, A., U. Bodh, and R. Gupta. 2017. Fungal lipases: a review. J. Biotech Res. 8:58-77. Meyers, S. A., S. L. Cuppett, and R. W. Hutkins. 1996. Lipase production by lactic acid bacteria and activity on butter oil. Food Microbiol. 13:383-389. doi:org/10.1006/fmic.1996.0044. Mobarak-Qamsari, E., R. Kasra-Kermanshahi, and Z. Moosavi-nejad. 2011. Isolation and identification of a novel, lipase-producing bacterium, Pseudomnas aeruginosa KM110. Iran J. Microbiol. 3:92-98. Moftah, O. A. S., S. Grbavčić, M. Žuža, N. Luković, D. Bezbradica, and Z. Knežević-Jugović. 2012. Adding value to the oil cake as a waste from oil processing industry: production of lipase and protease by Candida utilis in solid state fermentation. Appl. Biochem. Biotechnol. 166:348-364. doi:10.1007/s12010-011-9429-2. Morales-Medina, R., M. Munio, A. Guadix, E. M. Guadix, and F. Camacho. 2018. A lumped model of the lipase catalyzed hydrolysis of sardine oil to maximize polyunsaturated fatty acids content in acylglycerols. Food Chem. 240:286-294. doi:org/10.1016/j.foodchem.2017.07.030. Morikawa, M., Y. Hirata, and T. Imanaka. 2000. A study on the structure-function relationship of lipopeptide biosurfactant. Biochim. Biophys. Acta. 1488:211-218. Mortensen, B. K. 2011. Milk fat-based spreads. In: J. W. Fuquay, editor, Encyclopedia of Dairy Sciences (Second Edition). Academic Press, San Diego, CA, USA. p. 522-527. doi:org/10.1016/B978-0-12-374407-4.00329-0. Nagao, A. and M. Kito. 1989. Synthesis of O-Acyl-L-Homoserine by lipase. J. Am. Oil Chem. Soc. 66:710-713. Nagy, E., D. Dlauchy, A. O. Medeiros, G. Péter, and C. A. Rosa. 2014. Yarrowia porcina sp. nov. and Yarrowia bubula f.a. sp. nov., two yeast species from meat and river sediment. Antonie Van Leeuwenhoek 105:697-707. doi:org/10.1007/s10482-014-0125-4. Naser, S. M., F. L. Thompson, B. Hoste, D. Gevers, P. Dawyndt, M. Vancanneyt, and J. Swings. 2005a. Application of multilocus sequence analysis (MLSA) for rapid identification of Enterococcus species based on rpoA and pheS genes. Microbiology 151:2141-2150. doi:10.1099/mic.0.27840-0. Naser, S., F. L. Thompson, B. Hoste, D. Gevers, K. Vandemeulebroecke, I. Cleenwerck, C. C. Thompson, M. Vancanneyt and J. Swings. 2005b. Phylogeny and identification of Enterococci using atpA gene sequence analysis. J. Clin. Microbiol. 43:2224-2230. Naser, S. M., P. Dawyndt, B. Hoste, D. Gevers, K. Vandemeulebroecke, I. Cleenwerck, M. Vancanneyt, and J. Swings. 2007. Identification of lactobacilli by pheS and rpoA gene sequence analyses. Int. J. Syst. Evol. Microbiol. 57:2777-2789. doi:10.1099/ijs.0.64711-0. Nicaud, J. 2012. Yarrowia lipolytica. Yeast. 29:409-418. doi: org/10.1002/yea.2921 Nieuwenhuyzen, W. V. 1981. The industrial uses of special lecithins: A review. J. Am. Oil Chem. Soc. 58:886-888. Ozturkoglu-Budak, S., A. Wiebenga, P. A. Bron, R. P. de Vries. 2016. Protease and lipase activities of fungal and bacterial strains derived from an artisanal raw ewe's milk cheese. Int. J. Food Microbiol. 237:17-27. doi:org/10.1016/j.ijfoodmicro.2016.08.007. Papamanoli, E., N. Tzanetakis, E. Litopoulou-Tzanetaki, and P. Kotzekidou. 2003. Characterization of lactic acid bacteria isolated from a Greek dry-fermented sausage in respect of their technological and probiotic properties. Meat Sci. 65:859-867. doi:org/10.1016/S0309-1740(02)00292-9. Pedersen, T. B., F. K. Vogensen, and Y. Ardö. 2016. Effect of heterofermentative lactic acid bacteria of DL-starters in initial ripening of semi-hard cheese. Int. Dairy J. 57:72-79. doi:org/10.1016/j.idairyj.2016.02.041. Plkorny, J. 2005. Fats and oils: Science and applications. In: Hui, Y. H, editor, Handbook of Food Science, Technology, and Engineering. CRC press, Boca Raton, FL, USA. p. 34-19. Pignède, G., H. Wang, F. Fudalej, C. Gaillardin, M. Seman, and J. Nicaud. 2000. Characterization of an extracellular lipase encoded by LIP2 in Yarrowia lipolytica. J. Bacteriol. 182:2802-2810. Posorske, L. H. 1984. Industrial-scale application of enzymes to the fats and oil industry. J. Am. Oil Chem. Soc. 61:1758-1760. Pujato, S. A., D. M. Guglielmotti, M. Martínez-García, A. Quiberoni, and F. J. M. Mojica. 2017. Leuconostoc mesenteroides and Leuconostoc pseudomesenteroides bacteriophages: Genomics and cross-species host ranges. Int. J. Food Microbiol. 257:128-137. doi:org/10.1016/j.ijfoodmicro.2017.06.009. Reis, P., K. Holmberg, H. Watzke, M. E. Leser, and R. Miller. 2009. Lipases at interfaces: A review. Adv. Colloid Interface Sci. 147-148:237-250. doi:org/10.1016/j.cis.2008.06.001. Rij, N. J. W. K. 2013. General classification of the yeasts. In: Rij, N. J. W. K., editor, The Yeasts: A Taxonomic Study. Elsevier science publishers B. V., Amsterdam, The Netherlands. p. 1-12. Rydhag, L. and I. Wilton. 1981. The function of phospholipids of soybean lecithin in emulsions. J. Am. Oil Chem. Soc. 58:830. doi:org/10.1007/BF02665591. Saitou, N. and Nei, M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4:406-425. doi:10.1093/oxfordjournals.molbev.a040454. Sakiyama, T., T. Yoshimi, A. Miyake, M. Umeoka, A. Tanaka, S. Ozaki, and K. Nakanishi. 2001. Purification and characterization of a monoacylglycerol lipase from Pseudomonas sp. LP7315. J. Biosci. Bioeng. 91:27-32. doi:org/10.1016/S1389-1723(01)80106-7. Salihu, A., Md. Z. Alam, M. I. A. Karim, and H. M. Salleh. 2011. Optimization of lipase production by Candida cylindracea in palm oil mill effluent based medium using statistical experimental design. J. Mol. Catal., B Enzym. 69:66-73. doi:org/10.1016/j.molcatb.2010.12.012. Salihu, A., Md. Z. Alama, M. I. A. Karima, and H. M. Salleh. 2012a. Lipase production: An insight in the utilization of renewable agricultural residues. Resour. Conserv. Recycl. 58:36-44. doi:org/10.1016/j.resconrec.2011.10.007. Salihu, A., Md. Z. Alam, M. I. A. Karim, and H. M. Salleh. 2012b. Characterization of Candida cylindracea lipase produced from palm oil mill effluent based medium. Int. J. Chem. Biochem. Sci. 2:24-31. Samad M. Y. A., C. N. A. Razak, A. B. Salleh, W. M. Z. W. Yunus, K. Ampon and M. Basri. 1989. A plate assay for primary screening of lipase activity. J. Microbiol. Methods 9:51-56. Samad, M. Y. A., A. B. Salleh, C. N. A. Razak, K. Ampon, W. M. Z. W. Yunus, and M. Basri. 1990. A lipase from a newly isolated thermophilic Rhizopus rhizopodiformis. World J. Microbiol. Biotechnol. 6:390-394. Satou, C., H. Goto, Y. Yamazaki, K. Saitou, S. Matsumoto, O. Takahashi, Y. Miyazaki, K. Ikuta, and Y. Yajima. 2017. Modified gas chromatographic method to determine monoacylglycerol and diacylglycerol contents in edible fats and oils. J. Oleo Sci. 66:601-606. doi:org/10.5650/jos.ess16143. Schultz, S., G. Wagner, K. Urban, and J. Ulrich. 2004. High‐pressure homogenization as a process for emulsion formation. Chem. Eng. Technol. 27:361-368. doi:org/10.1002/ceat.200406111. Sharma, R., Y. Chisti, and U. C. Banerjee. 2001. Production, purification, characterization, and applications of lipases. Biotechnol. Adv. 19:627-662. doi:org/10.1016/S0734-9750(01)00086-6. Sharma, P., N. Sharma, S. Pathania, and S. Handa. 2017. Purification and characterization of lipase by Bacillus methylotrophicus PS3 under submerged fermentation and its application in detergent industry. J. Genet. Eng Biotechnol. 15:369-377. doi:org/10.1016/j.jgeb.2017.06.007. Sugihara, A., T. Senoo, A. Enoki, Y. Shimada, T. Nagao, and Y. Tominaga. 1995. Purification and characterization of a lipase from Pichia burtonii. Appl. Microbiol. Biotechnol. 43:277-181. doi:org/10.1007/BF00172824. Tan, T., M. Zhang, B. Wang, C. Ying, and L. Deng. 2003. Screening of high lipase producing Candida sp. and production of lipase by fermentation. Process Biochem. 39:459-465. doi:org/10.1016/S0032-9592(03)00091-8. Taylor, M. W. and A. K. H. MacGibbon. 2011. Fatty acids. In: J. W. Fuquay, editor, Encyclopedia of Dairy Sciences (Second Edition). Academic Press, San Diego, CA, USA. p. 655-659. Thomson, C. A., P. J. Delaquis, and G. Mazza. 1999. Detection and measurement of microbial lipase activity: A review. Crit. Rev. Food Sci. Nutr. 39:165-187. Tommaso, G., B. S. de Moraes, G. C. Macedo, G. S. Silva, and E. S. Kamimura. 2010. Production of lipase from Candida rugosa using cheese whey through experimental design and surface response methodology. Food Bioprocess Tech. 4:1473-1481. doi:10.1007/s11947-010-0432-3. Vandamme, P., K. D. Bruyne, and B. Pot. 2014. Phylogenetics and systematics. In: Holzapfel, W. H. and B. J. B. Wood, editor, Lactic Acid Bacteria. John Wiley & Sons, Ltd., Hoboken, NJ, USA. p. 31-44. Ventura, M., V. Meylan, and R. Zink. 2003. Identification and tracing of Bifidobacterium species by use of enterobacterial repetitive intergenic consensus sequences. Appl. Environ. Microb. 69:4296-4301. doi:10.1128/AEM.69.7.4296-4301.2003. Walter, V., C. Syldatk, and R. Hausmann. 2010. Screening concepts for the isolation of biosurfactant producing microorganisms. In: Sen, Ramkrishna, editor, Biosurfactants. Springer Science+Business Media, LLC, New York, NY, USA. p. 1-13. Watanabe, K., J. Fujimoto, M. Sasamoto, J. Dugersuren, T. Tumursuh, and S. Demberel 2008. Diversity of lactic acid bacteria and yeasts in Airag and Tarag, traditional fermented milk products of Mongolia. World J. Microbiol. Biotechnol. 24:1313-1325. doi:10.1007/s11274-007-9604-3. Wiedermann, L. H. 1978. Margarine and margarine oil, formulation and control. J. Am. Oil Chem. Soc. 55:823-829. Yan, Y., X. Zhang, and D. Chen. 2013. Enhanced catalysis of Yarrowia lipolytica lipase LIP2 immobilized on macroporous resin and its application in enrichment of polyunsaturated fatty acids. Bioresour. Technol. 131:179-187. doi:org/10.1016/j.biortech.2012.12.092. Yang, Y., F. Feng, Q. Zhou, F. Zhao, R. Du, Z. Zhou, and Y. Han. 2018. Isolation, purification and characterization of exopolysaccharide produced by Leuconostoc pseudomesenteroides YF32 from soybean paste. Int. J. Biol. Macromol. 114:529-535. doi:org/10.1016/j.ijbiomac.2018.03.162. Zhang, H., X. Xu, J. Nilsson, H. Mu, J. Adler-Nissen, and C. Høy. 2001. Production of margarine fats by enzymatic interesterification with silica-granulated Thermomyces lanuginosa lipase in a large-scale study. J. Amer. Oil Chem. Soc. 78:57-64. doi:org/10.1007/s11746-001-0220-4. Zhou, Q., F. Feng, Y. Yang, F. Zhao, R. Du, Z. Zhou, and Y. Han. 2018. Characterization of a dextran produced by Leuconostoc pseudomesenteroides XG5 from homemade wine. Int. J. Biol. Macromol. 107:2234-2241. doi:org/10.1016/j.ijbiomac.2017.10.098. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70820 | - |
dc.description.abstract | 人造奶油 (margarine) 是常見的奶油替代品,為世界上許多地區的日常食物,可用於烹調、烘焙與調味等。與奶油不同,人造奶油需要添加食品添加劑將油相及水相混合均勻,單酸甘油酯 (monoglyceride) 及雙酸甘油酯 (diglyceride) 為廣泛使用之食品乳化劑。近年食安意識抬頭,各種食安事件促使消費者關注飲食安全,並逐漸傾向選擇配方簡單及添加物少之食品,這種新的食品趨勢被歸納為潔淨標示 (clean label) 。目前市售人造奶油包含許多化學合成之食品添加劑,因此希望利用來自微生物之生物性脂肪酶 (lipase, triacylglycerol acylhydrolases) 切解棕櫚油中的三酸甘油酯 (triglyceride) 生產脂肪酸甘油酯做為乳化基質。然而,大部分脂肪酶生產之微生物不屬於公認安全 (generally recognized as safe, GRAS) 的分類,且不允許用於食品中。本研究之目的為篩選出具分解棕櫚油產生乳化劑之脂肪酶的GRAS微生物,以減少食品添加劑的使用。
自市售奶油分離之46株分離菌株及自克弗爾發酵乳及康門貝爾乾酪分離之124株分離菌株中,分別以革蘭氏染色 (Gram staining) 及油滴乳化試驗 (oil spreading assay) 篩選生產脂肪酶且具乳化能力之革蘭氏陽性菌 (Gram-positive bacteria) 及酵母菌 (yeast) ,初篩選25株及58株具乳化能力的細菌及酵母菌後,藉由腸桿菌基因間重複序列聚合酶連鎖反應 (Enterobacterial repetitive intergenic consensus polymerase chain reaction, ERIC-PCR) 進行分類 (typing) ,排除重複菌株。以滴定法測定18株細菌及1%商業用脂肪酶的脂肪酶活性,細菌處理組以經破菌處理之菌液上清液作為粗脂肪酶,最終選擇了平均活性較佳的B043 (40.67±2.40 U/mL) 及B013 (32.67±13.91 U/mL) 作為候選菌株。此外,17株酵母菌則以API ZYM商業套組篩選,留下具脂肪酶相關酵素活性的10株酵母菌,以脂肪酶活性分析商業套組測定脂肪酶活性,選擇與實際製程應用之0.58%商業脂肪酶 (61.80±21.24 U/L) 無顯著差異的CC11 (82.13±7.84 U/L) 及CC05 (39.93±9.05 U/L) 兩株酵母菌作為候選菌株。 經16S rRNA基因及持家基因 (housekeeping gene) 序列分析,與National Center for Biotechnology Information (NCBI) 資料庫進行BLAST分析,並根據neighbor-joining法繪製系統分類樹,B043均具有100%的支持度 (bootstrap value) 被認為屬於Leuconostoc pseudomesenteroides,B013之pheS及rpoA系統分類樹分別具有100%及93%的支持度被認為屬於Lactobacillus plantarum subsp. plantarum。酵母菌則以內轉錄間隔區1 (internal transcribed spacers 1) 、5.8S rRNA及內轉錄間隔區2區域定序結果繪製系統分類樹,CC05具有100%的支持度被認為屬於Yarrowia lipolytica,CC11具有100%的支持度被認為屬於Candida cylindracea。經菌種鑑定後確定四株候選株均為GRAS菌株。 將Y. lipolytica CC05、C. cylindracea CC11、Lb. plantarum subsp. plantarum B013和Leu. pseudomesenteroides B043之粗脂肪酶與0.58%商業酵素同時進行水解反應測試,測定酸價的改變,以薄層液相分析 (thin-layer chromatography, TLC) 進行定性,再以膠體管柱層析 (column chromatography) 進行定量,商業酵素具有顯著較高的水解能力 (53.77±4.44 mg KOH/g) ,而微生物粗脂肪酶處理組之間,Y. lipolytica CC05之酸價 (5.58±0.77 mg KOH/g) 顯著高於其他菌株粗脂肪酶處理組 (P<0.05) ,經過定性及定量後,切解液之組成為三酸甘油酯、雙酸甘油酯及單酸甘油酯分別為85.21%、10.66%及1.31%,水解程度無商業酵素強效,然而確實產生出單酸甘油酯,證實Y. lipolytica CC05具有水解棕櫚油生產乳化劑之能力。 本研究從食品分離純化之微生物,經過篩選之GRAS菌株,Y. lipolytica CC05,具有水解棕櫚油產生脂肪酸甘油酯之能力,希望未來將Y. lipolytica CC05經適當培養提升脂肪酶產量及活性,分解棕櫚油中的三酸甘油酯產生的脂肪酸甘油酯做為乳化基質,應用於人造奶油製程,減少化學食品添加劑的使用,創造符合市場需求之無添加產品,以迎合目前食安意識抬頭、潔競標示觀念盛行的社會現況。 | zh_TW |
dc.description.abstract | Margarine is a common replacement for butter. As a water-in-oil emulsion, margarine needs emulsifiers to homogenize oil with its water-soluble components. However, to keep up with the worldwide trend of clean label, usage of food additives should be reduced. Using lipases (triacylglycerol acylhydrolases) to produce monoglyceride and diglyceride to replace chemical emulsifiers may be a novel solution. Nevertheless, most lipase-producing microorganisms are not generally recognized as safe (GRAS) and are not allowed in food products. Thus, in the present study, we aim to screen lipase-producing GRAS microorganisms to reduce the usage of food additives in margarine processing.
First, 46 isolates from butter and 124 isolates from kefir and Camembert cheese were pre-selected for their emulsion activity by oil spreading assay. We identified 25 Gram-positive bacteria and 58 yeasts with emulsifying activities. We further typed these isolates using Enterobacterial repetitive intergenic consensus polymerase chain reaction (ERIC-PCR) and kept 18 Gram-positive bacteria and 17 yeasts as representative strains. After typing, we screened the crude lipases of the Gram-positive bacteria by their lipase activities with titration method. As a result, bacteria strains B043 and B013 showed the highest activities, 40.67±2.40 U/mL and 32.67±13.91 U/mL, respectively. We also tested the enzymatic activities of the yeasts with the API ZYM kit and quantified the lipase activities of 10 positive strains with lipase activity kit. Lipase activities of yeast strains CC11 (82.13±7.84 U/L) and CC05 (39.93±9.05 U/L) showed no significant difference when compared to the 0.58% commercial lipase (61.80±21.24 U/L) used for commercial margarine production (P>0.05). In summary, two bacteria and two yeasts were chosen for further investigation by their lipase activities. We identified the 2 bacteria using 16S rRNA gene and housekeeping gene analysis. The sequence analysis-based phylogenetic tree constructed by the neighbor-joining method confirmed isolate B043 as Leuconostoc pseudomesenteroides with 100% pheS and rpoA gene sequence similarity and confirmed isolate B013 as Lactobacillus plantarum subsp. plantarum with 100% and 93% pheS gene and rpoA gene sequence similarity, respectively. We also identified the 2 yeasts using internal transcribed spacers 1, 5.8S rRNA, and internal transcribed spacers 2 (ITS1-5.8S-ITS2) region sequence analysis, which confirmed isolate CC05 as Yarrowia lipolytica with 100% sequence similarity and confirmed isolate CC11 as Candida cylindracea with 100% sequence similarity. These strains are all generally recognized as safe (GRAS). We further compared the crude lipases from the four selected strains with 0.58% commercial lipase on their hydrolyzing abilities with acid value analysis in palm oil to ensure that they could be applied in margarine production. While 0.58% commercial lipase had the highest acid value (53.77±4.44 mg KOH/g), Y. lipolytica CC05 had the highest acid value (5.58±0.77 mg KOH/g) among the four microorganisms (P<0.05). We also assessed their monoglyceride and diglyceride producing abilities with thin-layer chromatography (TLC) and column chromatography. Components of hydrolyzed product by crude lipase from Y. lipolytica CC05 were 85.21% triglyceride, 10.66% diglyceride, and 1.31% monoglyceride. These results showed the potential of Y. lipolytica CC05 as an emulsifier producer. In the future, we will further enhance the production and activity of the lipase from Y. lipolytica CC05 by optimizing culture condition and purifying the enzyme. The final aim of this study is to develop a novel lipase that could be applied in margarine production to reduce its usage of food additives, keeping pace with the clean label world trend. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T04:39:44Z (GMT). No. of bitstreams: 1 ntu-107-R05626007-1.pdf: 2945992 bytes, checksum: bc10a5ee1e7f0203d47d8c185316f8e8 (MD5) Previous issue date: 2018 | en |
dc.description.tableofcontents | 中文摘要 i
英文摘要 iii 目錄 v 圖目錄 viii 表目錄 ix 前言 1 壹、文獻探討 2 一、奶油及人造奶油 2 (一)奶油 2 (二)人造奶油 2 二、乳化作用 5 三、化學乳化劑替代技術 11 (一)天然乳化物質 11 (二)物理性乳化技術 11 (三)酵素生物技術 12 四、微生物脂肪酶 14 (一)篩選脂肪酶微生物之方法 15 (二)脂肪酶於食品及食用油脂的應用 18 五、小結 24 貳、材料與方法 25 一、研究材料 25 (一)原料及採樣樣品 25 (二)商業培養基 25 (三)藥品配製 25 二、試驗設計 26 三、研究方法 28 (一)收集具乳化潛力之微生物 28 (二)菌種鑑定 39 (三)篩選具脂肪酶應用潛力的菌株 46 (四)統計分析 49 參、研究結果 50 一、篩選具乳化潛力之微生物 50 (一)菌株培養、革蘭氏染色及油滴乳化試驗 50 (二)分離菌株之ERIC-PCR分類結果 50 (三)以滴定法測定細菌脂肪酶活性 51 (四)藉由API ZYM商業套組分析酵母菌酵素 52 (五)藉由脂肪酶活性分析商業套組分析酵母菌脂肪酶活性 52 二、菌種鑑定 64 (一)乳酸菌 64 1. 16S rRNA基因定序 64 2. 持家基因定序 64 (二)酵母菌 65 1. ITS1-5.8S-ITS2區域定序 65 三、篩選具脂肪酶應用潛力的菌株 72 (一)切解液之酸價 72 (二)脂肪酸甘油酯之定性 72 (三)脂肪酸甘油酯之定量 72 (四)氣相層析質譜儀結果 73 肆、討論 80 伍、結論 84 陸、附錄 85 柒、參考文獻 90 | |
dc.language.iso | zh-TW | |
dc.title | 自食品中分離鑑定可產生脂肪酶之微生物應用於製造人造奶油 | zh_TW |
dc.title | Isolation and identification of lipase-producing microorganisms from food for margarine production | en |
dc.type | Thesis | |
dc.date.schoolyear | 106-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 葉安義(An-I Yeh),廖啟成(Chii-Cherng Liao),王聖耀(Sheng-Yao Wang),李冠逸(Kuan-Yi Li) | |
dc.subject.keyword | 乳酸菌,酵母菌,人造奶油,脂肪?,公認安全, | zh_TW |
dc.subject.keyword | Lactic acid bacteria,yeast,margarine,lipase,GRAS, | en |
dc.relation.page | 104 | |
dc.identifier.doi | 10.6342/NTU201801315 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2018-08-07 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 動物科學技術學研究所 | zh_TW |
顯示於系所單位: | 動物科學技術學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-107-1.pdf 目前未授權公開取用 | 2.88 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。