Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 資訊管理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70810
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林永松(Yeong-Sung Lin)
dc.contributor.authorHsin-Hong Linen
dc.contributor.author林鑫宏zh_TW
dc.date.accessioned2021-06-17T04:39:21Z-
dc.date.available2021-08-08
dc.date.copyright2018-08-08
dc.date.issued2018
dc.date.submitted2018-08-07
dc.identifier.citationReferences
[1] D. Brown, and N. Hayes, Influencer Marketing: Who really influences your customers?, Routledge, 2008.
[2] Influencer Marketing Hub, “What is Influencer Marketing: An in Depth Look at Marketing’s Next Big Thing,” [Online]. Available: https://influencermarketinghub.com/what-is-influencer-marketing/. [Accessed: July 09, 2018].
[3] E. Bakshy et al. “Everyone's an influencer: quantifying influence on Twitter,” in Proceedings of the fourth ACM international conference on Web search and data mining, pp. 65-74, ACM, 2011.
[4] Google Trends, [Online]. Available: https://trends.google.com/trends/explore?q=influencer%20marketing&geo=US. [Accessed July 09, 2018].
[5] Reuters Institute, “Reuters Institute Digital News Report 2017,” [Online]. Available: http://www.digitalnewsreport.org/. [Accessed July 09, 2018].
[6] Merriam-webster.com, “Definition of Crowdfunding,” [Online]. Available: https://www.merriam-webster.com/dictionary/crowdfunding/. [Accessed July 09, 2018].
[7] Forbes, “Why Every Startup Should Host A Crowdfunding Campaign,” [Online]. Available: https://www.forbes.com/sites/ajayyadav/2018/01/30/why-every-startup-should-host-a-crowdfunding-campaign/#35a4a88069ca/. [Accessed July 09, 2018].
[8] Business Insider, “The 17 Most Successful Kickstarter Projects of All Time and Where They Are Today,” [Online]. Available: https://www.mysanantonio.com/technology/businessinsider/article/The-14-most-successful-Kickstarter-projects-of-8075813.php/. [Accessed July 09, 2018].
[9] Izea.com, [Online]. Available: https://izea.com/. [Accessed July 09, 2018].
[10] Followerwonk.com, [Online]. Available: https://followerwonk.com/. [Accessed July 09, 2018].
[11] Y.M. Li et al. 'Discovering Influencers for Marketing in the Blogosphere,' Information Sciences, 181.23, pp. 5143-5157, 2011.
[12] L.C. Freeman. 'Centrality in Social Networks Conceptual Clarification,' Social Networks 1, no. 3, pp. 215-239, 1978.
[13] S. Wasserman, and K. Faust. Social Network Analysis: Methods and Applications Vol. 8, Cambridge University Press, 1994.
[14] P. Lawrence et al. “The PageRank Citation Ranking: Bringing Order to The Web,” Stanford InfoLab, 1999.
[15] E. Bakshy et al. “The Role of Social Networks in Information Diffusion,” in Proceedings of the 21st International Conference on World Wide Web, ACM, 2012, pp. 519-528.
[16] E. Sun et al. “Gesundheit! Modeling Contagion through Facebook News Feed,” in ICWSM, 2009.
[17] E. Bakshy et al. “Social Influence and the Diffusion of User-Created Content,” in Proceedings of The 10th ACM Conference on Electronic Commerce, ACM, 2009, pp. 325-334.
[18] D. Gruhl et al. “Information Diffusion through Blogspace,” in Proceedings of The 13th International Conference on World Wide Web, ACM, 2004, pp. 491-501.
 
[19] E. Adar and A. A. Lada. “Tracking information epidemics in blogspace,” in 2005 IEEE/WIC/ACM International Conference on Web Intelligence, France.
[20] I. Anger and C. Kittl. “Measuring Influence on Twitter,” in Proceedings of the 11th International Conference on Knowledge Management and Knowledge Technologies. ACM, 2011.
[21] H. Kwak et al. “What is Twitter, A Social Network or A News Media?,” in Proceedings of the 19th International Conference on World Wide Web, ACM, 2010, pp. 591-600.
[22] M. Cha et al. “Measuring User Influence in Twitter: The Million Follower Fallacy,” in ICWSM 10, 2010, pp. 10-17.
[23] J. Weng et al. “Twitterrank: Finding Topic-Sensitive Influential Twitterers,” in Proceedings of The Third ACM International Conference on Web Search and Data Mining, ACM, 2010, pp. 261-270.
[24] K. Subbian et al. “Supervised Rank Aggregation for Predicting Influencers in Twitter,” in Privacy, Security, Risk and Trust (PASSAT) and 2011 IEEE Third International Conference on Social Computing (SocialCom), 2011 IEEE Third International Conference on, IEEE, 2011, pp. 661-665.
[25] J.D. Campo-Ávila et al. 'Analizying Factors to Increase the Influence of A Twitter User,' in Highlights in Practical Applications of Agents and Multiagent Systems, pp. 69-76. Springer, Berlin, Heidelberg, 2011.
[26] Merriam-webster.com, “Definition of Trustworthy”, [Online]. Available: https://www.merriam-webster.com/dictionary/trustworthy/.
[Accessed July 09, 2018].
 
[27] S. Stieglitz and L. Dang-Xuan. “Emotions and Information Diffusion in Social Media—Sentiment of Microblogs and Sharing Behavior,” in Journal of Management Information Systems”, 2013, pp. 217-248.
[28] C. Hutto and E. Gilbert. “VaderSentiment Analysis”, 2014
[29] Statista.com “Distribution of unsuccessfully funded projects on crowdfunding platform Kickstarter as of April 2018, by share of funding reached”, [Online]. Available: https://www.statista.com/statistics/251732/overview-of-unsuccessfully-funded-projects-on-crowdfunding-platform-kickstarter/.
[Accessed August 03, 2018].
[30] J. Devillers. “Strengths and Weaknesses of the Backpropagation Neural Network in QSAR and QSPR Studies. Neural Networks in QSAR and Drug Design,” 1996.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70810-
dc.description.abstract為了累積用戶,並達到募集公司初期資本之目的,許多新創公司會選擇將自己 的產品/ 服務作為專案於群眾募資網站上線。以美國知名募資網站(Kickstarter) 為例,每日上線專案更是超過千餘件,如何制定推廣策略,並從眾多專案中脫穎而 出,是所有新創公司必須考量的首要關鍵。然而,新創公司資源有限,傳統的數位 廣告推廣方式費用高昂,且轉換率偏低,容易受到廣告屏蔽(Ad block)服務的影 響。現今,影響力行銷(Influencer Marketing)儼然成為新創公司推廣募資專案的 優先策略。影響力行銷泛指企業在社群網路中找出關鍵影響者(Key Influencers), 與其合作行銷活動,推廣產品/服務的過程。本研究將於知名社群服務提供商推特 (Twitter)上蒐集資料,並以所有討論群眾募資活動的推特使用者做為分析標的, 透過類神經網路網路(Artificial Neural Networks)技術分析高達 20 維度的用戶資 訊,同時比較知名推特用戶影響力評比服務(Followerwonk)之用戶影響力等級, 訓練出一系統模型,本研究之貢獻為提供一更即時、經濟的預測模型,找出社群網 路上的關鍵影響者,促使專案成功。zh_TW
dc.description.abstractResource and time management is an important topic for a brand to develop its marketing strategy, so brands should focus on the tasks that are most profitable. Influencer marketing allows brands to leverage the influencer’s ability to engage highly relevant audiences and create authentic contents. Although influencer marketing is profitable and efficient, it comes with a unique set of challenges that can impact the results of a brand’s marketing campaign, how to identify the right influencers is one of them.
In this thesis, a neural network model has been constructed to rank potential influencers for crowdfunding campaigns on Twitter. We applied the social authority value, a mechanism developed by Followerwonk, one of the most popular Twitter marketing platforms in the United States to examine the influential strength of a Twitter user. We found our model a cost-efficient and effective model for identifying categorical influencers. Also, 13 out of 20 different factors of Twitter influence had been evaluated as significant for measuring the influential strength, which improved time-efficiency of evaluating a potential influencer.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T04:39:21Z (GMT). No. of bitstreams: 1
ntu-107-R05725048-1.pdf: 535315 bytes, checksum: e2064d9c0cd579a5438a47547c48b784 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents論文摘要 i
Thesis Abstract ii
Table of Contents iii
List of Figures v
List of Tables vi
Chapter 1 Introduction 1
1.1 The Age of Influencer Marketing 1
1.2 Startup Companies and Crowdfunding 2
1.3 Identifying Influencers on Twitter 3
1.4 The Difficulties 4
1.5 The Thesis Structures 5
Chapter 2 Related Work 6
2.1 Measuring Influence on Blogosphere 6
2.2 Measuring Influence on Twitter 7
2.3 Machining Learning for Influencer Identification 8
Chapter 3 Influence Factors 9
3.1 Network-based Factors 10
3.1.1 Popularity 10
3.1.2 Trustworthy 11
3.2 Activeness-based Factors 12
3.2.1 Passive Interaction 12
3.2.2 Active Interaction 13
3.3 Content-based Factors 14
3.3.1 Content Analysis 15
3.3.2 Types of Media 16
Chapter 4 Experiments 17
4.1 Data Collection 18
4.2 Experiment Design 19
4.3 Structure of Back-propagate Neural Network 21
Chapter 5 Results and Discussion 22
5.1 Results 22
5.2 Feature Selection 25
5.2.1 Backward Elimination 25
5.2.2 Eliminate Activeness-based Factors 26
5.3 Observing the Impact of Categories 27
5.3.1 Eliminate Tweets without URLs 27
Chapter 6 Conclusions and Future Work 29
References 31
dc.language.isoen
dc.title運用類神經網路技術於發掘對群眾募資活動有影響力推特使
用者之研究
zh_TW
dc.titleUtilizing Artificial Neural Networks to Identify Influencers for Crowdfunding Campaigns on Twitteren
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee呂俊賢(Chun-Hsien Lu),鍾順平(Shun-Ping Chung),莊東穎(Tong-Ying Juang),林宜隆(I-Long Lin)
dc.subject.keyword社群網路分析,影響力行銷,類神經網路,語意分析,zh_TW
dc.subject.keywordSocial Media Analysis,Influencer Marketing,Artificial Neural Network,Sentiment Analysis,en
dc.relation.page34
dc.identifier.doi10.6342/NTU201802674
dc.rights.note有償授權
dc.date.accepted2018-08-07
dc.contributor.author-college管理學院zh_TW
dc.contributor.author-dept資訊管理學研究所zh_TW
顯示於系所單位:資訊管理學系

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  目前未授權公開取用
522.77 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved