Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 植物科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7080
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林讚標
dc.contributor.authorJui-Hung Chenen
dc.contributor.author陳瑞宏zh_TW
dc.date.accessioned2021-05-17T10:18:14Z-
dc.date.available2012-03-19
dc.date.available2021-05-17T10:18:14Z-
dc.date.copyright2012-03-19
dc.date.issued2011
dc.date.submitted2012-02-09
dc.identifier.citationBai L, Zhang G, Zhou Y, Zhang Z, Wang W, Du Y, Wu Z, Song C-P (2009) Plasma membrane-associated proline-rich extensin-like receptor kinase 4, a novel regulator of Ca2+ signalling, is required for abscisic acid responses in Arabidopsis thaliana. Plant J 60: 314–327.
Chen IC, Huang IC, Liu MJ, Wang ZG, Chung SS, Hsieh HL (2007) Glutathione S-transferase interacting with far-red insensitive 219 is involved in phytochrome A-mediated signaling in Arabidopsis. Plant Physiol 143: 1189-1202
Chen J, Goldsborough PB (1994) Increased activity of γ-glutamylcysteine synthetase in tomato cells selected for cadmium tolerance. Plant Physiol 106: 233–239.
Cheng WH, Endo A, Zhou L, Penney J, Chen HC, et al. (2002) A unique short-chain dehydrogenase/reductase in Arabidopsis glucose signaling and abscisic acid biosynthesis and functions. Plant Cell 14: 2723–2743.
Cummins L, Cole DJ, Edwards R (1999) A role for glutathione transferases functioning as glutathione peroxidases in resistance to multiple herbicides in black-grass. Plant J 18: 285-292.
De Smet I, Zhang H, Inze D, Beeckman T (2006) A novel role for abscisic acid emerges from underground. Trends Plant Sci 11: 434-439.
Deng Z, Zhang X, Tang W, Oses-Prieto JA, Suzuki N, Gendron JM, Chen H, Guan S, Chalkley RJ, Peterman TK, Burlingame AL, Wang Z (2007) A proteomic study of brassinosteroid response in Arabidopsis. Mol Cell Proteomics. 6: 2058–2071.
Dixon DP, Hawkins T, Hussey PJ, Edwards R (2009) Enzyme activities and subcellular localization of members of the Arabidopsis glutathione transferase superfamily. J Exp Bot 60: 1207-1218
Edwards R, Dixon DP (2005) Plant glutathione transferases. Methods Enzymol 401: 169–18
Edwards R, Dixon DP, Walbot V (2000) Plant glutathione S-transferases: enzymes with multiple functions in sickness and in health. Trends Plant Sci 5: 193-196
Foyer CH, Noctor G (2005) Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell, 17, 1866–1875.
Foyer CH, Noctor G (2009) Redox regulation in photosynthetic organisms: signaling, acclimation, and practical implications. Antiox Red Signa 11: 861-905.
Foyer CH, Souriau N, Perret S, Lelandais M, Kunert K-J, Pruvost C, Jouanin L (1995) Overexpression of glutathione reductase but not glutathione synthetase leads to increases in antioxidant capacity and resistance to photoinhibition in poplar trees. Plant Physiol 109: 1047–1057.
Furihata T, Maruyama K, Fujita Y, Umezawa T, Yoshida R, et al. (2006) Abscisic acid-dependent multisite phosphorylation regulates the activity of a transcription activator AREB1. Proc Natl Acad Sci USA 103: 1988–1993.
Fujii H, Verslues PE, Zhu JK (2007) Identification of two protein kinases required for abscisic acid regulation of seed germination, root growth, and gene expression in Arabidopsis. Plant Cell 19: 485–494.
Gallé A, Csiszár J, Secenji M, Guóth A, Cseuz L, Tari I, Györgyey J, Erdei L (2009) Glutathione transferase activity and expression patterns during grain filling in flag leaves of wheat genotypes differing in drought tolerance: response to water deficit. J. Plant Physiol 166: 1878-1891
Grant CM, MacIver FH, Dawes IW (1996) Glutathione is an essential metabolite required for resistance to oxidative stress in the yeast Saccharomyces cerevisiae. Current Genetics 29: 511–15.
Griffith OW (1980) Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine. Anal Biochem 106: 207–212.
Hsu YT, Kao CH (2003) Role of abscisic acid in cadmium tolerance of rice
(Oryza sativa L.) seedlings. Plant Cell Environ 26: 867–874
Huang D, Wu W, Abrams SR, Cutler AJ (2008) The relationship of drought-related gene expression in Arabidopsis thaliana to hormonal and environmental factors. J Exp Bot 59: 2991–3007.
Imin N, Nizamidin M, Wu T, Rolfe BG (2007) Factors involved in root formation in Medicago truncatula. J Exp Bot 58: 439–451.
Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6: 3901-3907
Ji W, Zhu Y, Li Y, Yang L, Zhao X, Cai H, Bai X (2010) Over-expression of a glutathione S-transferase gene, GsGST, from wild soybean (Glycine soja) enhances drought and salt tolerance in transgenic tobacco. Biotechnol Lett 32: 1173-1179.
Jiang HW, Liu MJ, Chen IC, Huang CH, Chao LY, Hsieh HL (2010) A glutathione S-transferase regulated by light and hormones participates in the modulation of Arabidopsis seedling development. Plant Physiol 154: 1646-1658.
Kim MJ, Shih R, Schachtman DP (2009) A nuclear fctor regulates abscisic acid responses in Arabidopsis. Plant Physiol 151: 1433–1445.
Kitamura S, Shikazono N, Tanaka A (2004) TRANSPARENT TESTA 19 is involved in the accumulation of both anthocyanins and proanthocyaniins in Arabiopsis. Plant J 37: 104-114
Ko JH, Yang SH, Han KH (2006) Upregulation of an Arabidopsis RING-H2 gene, XERICO, confers drought tolerance through increased abscisic acid biosynthesis. Plant J 47: 343–355
Kocsy G, von Ballmoos P, Suter M, Ruegsegger A, Galli U, Szalai G, Galiba G, Brunold C (2000) Inhibition of glutathione synthesis reduces chilling tolerance in maize. Planta 211: 528–536.
Kocsy G, von Ballmoos P, Ruegsegger A, Szalai G, Galiba G, Brunold C (2001) Increasing the glutathione content in a chilling-sensitive maize genotype using safeners increased protection against chilling-induced injury. Plant Physiol 127: 1147–1156.
Konopka-Postupolska D, Clark G, Goch G, Debski J, Floras K, Cantero A, Fijolek B, Roux S, Hennig J (2009) The role of Annexin 1 in drought stress in Arabidopsis. Plant Physiol 150: 1394–1410
Kushnir S, Babiychuk E, Kampfaenkel K, Belles-Boix E, Van Montagu M, Inze D (1995) Characterisation of Arabidopsis thaliana cDNAs that render yeasts tolerant toward the thiol- oxidising drug diamide. Proc Natl Acad Sci USA 92: 10580–10584.
Lai B, Nadeau JA, Lucas J, Lee EK, Nakagawa T, et al. (2005) The Arabidopsis R2R3 MYB proteins FOUR LIPS and MYB88 restrict divisions late in the stomatal cell lineage. Plant Cell 17: 2754–2767.
Lappartient AD, Touraine B (1997) Glutathiowe-mediated regulation of ATP sulfurylase activity, SO42- uptake, and oxidative stress response in intact canola roots. Plant Physiol 114: 177-183.
Lin RC, Park HJ, Wang HY (2008) Role of Arabidopsis RAP2.4 in regulating light and ethylene-mediated developmental processes and drought stress tolerance. Mol Plant 1: 42 -57
Loggini B, Scartazza A, Brugnoli E, Navari-Izzo F (1999) Antioxidative defense system, pigment composition, and photosynthetic efficiency in two wheat cultivars subjected to drought. Plant Physiol 119: 1091–1100.
Loyall L, Uchida K, Braun S, Furuya M, Frohnmeyer H (2000) Glutathione and a UV light-induced glutathione S-transferase are involved in signalling to chalcone synthase in cell cultures. Plant J 25: 237–245.
Marrs KA (1996) The functions and regulation of glutathione S-transferases in plants. Annu Rev Plant Physiol Plant Mol Biol 47: 127-158.
Marrs KA, Walbot V (1997) Expression and RNA splicing of the maize glutathione S-transferase Bronze2 gene is regulated by cadmium and other stresses. Plant Physiol 113: 93-102.
Merlot S, Gosti F, Guerrier D, Vavasseur A, Giraudat J (2001) The ABI1and ABI2 protein phosphatases 2C act in a negative feedback regulatory loop of the abscisic acid signalling pathway. Plant J 25: 295–303.
Meyer JM (2008) The integration of glutathione homeostasis and redox signaling. J. Plant Physiol 165: 1390-1403.
Moons A (2003) Osgstu3 and osgtu4, encoding tau class glutathione S-transferases, are heavy metal- and hypoxic stress-induced and differentially salt stress-responsive in rice roots. FEBS Letters 553: 427–432
Rivero RM, Kojima M, Gepstein A, Sakakibara H, Mittler R, Gepstein S, Blumwald E (2007) Delayed leaf senescence induces extreme drought tolerance in a flowering plant. Proc Natl Acad Sci USA 104: 19631–19636.
Rouhier N, Lemaire SD, Jacquot J (2008) The role of glutathione in photosynthetic organisms: emerging functions for glutaredoxins and glutathionylation. Annu Rev Plant Biol 59: 143–66.
Roxas VP, Lodhi SA, Garrett DK, Mahan JR, Allen RD (2000) Stress tolerance in transgenic tobacco seedlings that overexpress glutathione S-transferase/ glutathione peroxidase. Plant Cell Physiol 41: 1229–1234
Sappl PG, Carroll AJ, Clifton R, Lister R, Whelan J, Millar AH, Singh KB (2009) The Arabidopsis glutathione transferase gene family displays complex stress regulation and co-silencing multiple genes results in altered metabolic sensitivity to oxidative stress. Plant J 58: 53–68.
Sharp RE, LeNoble ME (2002) ABA, ethylene and the control of shoot and root growth under water stress. J Exp Bot 53: 33-37.
Sharp RE, Poroyko V, Hejlek LG, Spollen WG, Springer GK, Bohnert HJ, Nguyen HT (2004) Root growth maintenance during water deficits: physiology to functional genomics. J Exp Bot 55: 2343–2351.
Sheehan D, Meade G, Foley VM, Dowd CA (2001) Structure, function and evolution of glutathione S-transferases: implications for classification of non-mammalian members of an ancient enzyme superfamily. Biochem J 360: 1-16.
Tausz M, Pilch B, Rennenberg H, Grill D, Herschbach C (2004) Root uptake, transport, and metabolism of externally applied glutathione in Phaseolus vulgaris seedlings. J. Plant Physiol 161: 347–349.
Tepperman JM, Zhu T, Chang HS, Wang X, Quail PH (2001) Multiple transcription-factor genes are early targets of phytochrome A signaling. Proc Natl Acad Sci USA 98: 9437-9442
Thompson AJ, Andrews J, Mulholland BJ, McKee JMT, Hilton HW, Horridge JS, Farquhar GD, Smeeton RC, Smillie IRA, Black CR, Taylor IB (2007) Overproduction of abscisic acid in tomato increases transpiration efficiency and root hydraulic conductivity and influences leaf expansion. Plant Physiol 143: 1905–1917.
Vanderauwera S, Block MD, Van de Steene N, van de Cotte B, Metzlaff M, Van Breusegem F (2007) Silencing of poly(ADP-ribose) polymerase in plants alters abiotic stress signal transduction. Proc Natl Acad Sci USA 104: 15150–15155.
Vernoux T, Wilson RC, Seeley KA, Reichheld JP, Muroy S, Brown S, Maughan SC, Cobbett CS, Van Montagu M, Inzé D, May MJ, Sung ZR (2000) The ROOT MERISTEMLESS1/CADMIUM SENSITIVE2 gene defines a glutathione-dependent pathway involved in initiation and maintenance of cell division during postembryonic root development. Plant Cell 12: 97-110.
Wellburn FAM, Creissen GP, Lake JA, Mullineaux PM, Wellburn AR (1998) Tolerance to atmospheric ozone in transgenic tobacco over-expressing glutathione synthetase in plastids. Physiol Plant 104: 623–629.
Wilson PB, Estavillo GM, Field KJ, Pornsiriwong W, Carroll AJ, Howell KA, Woo NS, Lake JA, Smith SM, Millar AH, von Caemmerer S, Pogson BJ (2009) The nucleotidase/phosphatase SAL1 is a negative regulator of drought tolerance in Arabidopsis. Plant J 58: 299-317.
Xiong L, Wang R-G, Mao G, Koczan GM (2006) Identification of drought tolerance determinants by genetic analysis of root response to drought stress and abscisic acid. Plant Physiol 142: 1065–1074.
Yu H, Chen X, Hong Y-Y, Wang Y, Xu P, Ke S-D, Liu H-Y, Zhu J-K, Oliver DJ, Xiang C-B (2008) Activated expression of an Arabidopsis HD-START protein confers drought tolerance with improved root system and reduced stomatal density. Plant Cell 20: 1134–1151.
Zhu J, Fu X, Koo YD, Zhu JK, Jenney FE Jr, Adams MW, Zhu Y, Shi H, Yun DJ, Hasegawa PM, Bressan RA (2007) An enhancer mutant of Arabidopsis salt overly sensitive 3 mediates both ion homeostasis and the oxidative stress response. Mol Cell Biol 27: 5214–5224.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7080-
dc.description.abstract麩胺基硫轉移酶 (glutathione s-transferases, GSTs) 在氧化逆境代謝中扮演一個相當重要的角色,但對於這類基因在植物體內所扮演的個別功能卻所知有限。在整個GST基因家族中GLUTATHIONE S-TRANSFERASE U17 (AtGSTU17, At1g10370) 曾有被報導其參與了光的傳導訊息調控;經由與phyA的交互作用,影響了植物體內的GSH含量,進一步影響了植物的生長發育。
本篇論文提供進一步的研究證據顯示AtGSTU17在乾旱及鹽分逆境下扮演一個重要的負調控角色。阿拉伯芥的atgstu17突變株比野生型更為耐旱及耐鹽。生理分析顯示atgstu17突變株的植物體累積了較高含量的GSH與ABA,同時在發芽時期對於ABA較不敏感,葉片的氣孔孔徑較小,較低的水分蒸發速率,根系發育更為茂盛以及較長的營養生長期等生理性狀。
為了釐清atgstu17突變株累積的ABA是否是因為GSH含量升高引起,我們對野生型澆灌GSH溶液進行研究。結果發現澆灌GSH溶液的野生型,其ABA含量較未澆灌GSH的植株高,同時顯現atgstu17突變株的生理性狀,如開花延遲,根部發育,較為耐鹽與耐旱等。進一步研究atgstu17突變株是否是因為GSH與ABA累積影響而產生了上述的生理性狀。我們將atgstu17突變株種植在L-buthionine-(S,R)-sulfoximine (BSO)溶液中。BSO是一種可以抑制植物的GSH生合成的專一性藥劑。當atgstu17突變株的GSH含量受到BSO抑制減少到與野生型相同的含量時,觀察其性狀與生理反應,如根系,開花時間與對於鹽分與乾旱的耐受性等,顯示與野生型類似。由以上實驗結果可以得到一個結論,atgstu17突變株的外表性狀是由於其植物體內含有較高的GSH與ABA所共同作用而產生的結果。同時經由DNA微陣列 (microarray) 的資料顯示許多與生長或逆境相關的轉錄調控基因受到AtGSTU17的影響而改變表現。綜合以上實驗資料結果,我們推測AtGSTU17扮演了植物逆境訊息傳導反應的負調控功能。
zh_TW
dc.description.abstractAlthough glutathione S-transferases (GSTs) are thought to play major roles in oxidative stress metabolism, little is known about the regulatory functions of GSTs. We have reported that GLUTATHIONE S-TRANSFERASE U17 (AtGSTU17, At1g10370) participates in light signaling and might modulate various aspects of development by affecting glutathione (GSH) pools via a coordinated regulation with phyA. Here we provided further evidence to support a negative role of AtGSTU17 in drought and salt stress tolerance.
When AtGSTU17 was mutated, plants were more tolerant to drought and salt stresses compared to wild-type (WT, Col-0) plants. In addition, atgstu17 accumulated higher level of GSH and abscisic acid (ABA), and exhibited hyposensitivity to ABA during seed germination, smaller stomatal apertures, a lower transpiration rate, better development of primary and lateral root systems, and longer vegetative growth.
To explore how atgstu17 accumulated higher ABA content, we grew WT in the solution containing GSH and found that plants accumulated ABA to a higher extent than plants grown in the absence of GSH, and exhibited the atgstu17 phenotypes. WT plants treated with GSH also demonstrated more tolerant to drought and salt stresses. Furthermore, the effect of GSH on root patterning and drought tolerance was confirmed by growing the atgstu17 in solution containing L-buthionine-(S,R)- sulfoximine (BSO), a specific inhibitor of GSH biosynthesis.
In conclusion, the atgstu17 phenotype can be explained by the combined effect of GSH and ABA. Microarray analysis provided evidence that expressions of many genes related to growth and stress inducible transcription factors altered in the atgstu17 mutants. We propose a role of AtGSTU17 in adaptive responses to drought and salt stresses, by functioning as a negative component of stress-mediated signal transduction pathways.
en
dc.description.provenanceMade available in DSpace on 2021-05-17T10:18:14Z (GMT). No. of bitstreams: 1
ntu-100-D92b42005-1.pdf: 5294550 bytes, checksum: f756918ac2631df69ecac8a1f6fb288c (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents中文摘要 I
ABSTRACT II
CONTENTS IV
INTRODUCTION 1
MATERIALS AND METHODS 5
Plant Material and Growth Conditions 5
Stress-tolerance Tests, Water Loss Measurement and Feeding Experiment 5
Seed Germination and Stomatal Aperture Measurements 6
Histochemical GUS Assay 7
Subcellular Localization 7
Quantification of the GSH and ABA Content 8
RNA Isolation and Quantitative Real-time (q)RT-PCR Analysis 9
Microarray Analysis 9
RESULTS 11
AtGSTU17 Gene in Arabidopsis thaliana 12
AtGSTU17 Affects Arabidopsis Developments 12
Tolerance to Drought and Salt Stresses of the atgstu17 Mutants 13
Effect of Abiotic Stresses on AtGSTU17 Gene Expression. 13
Tissue-specific expression of the AtGSTU17 protein 14
The atgstu17 Mutants Exhibit a Reduced Water Loss and Smaller Stomatal Aperture 14
The atgstu17 Mutants Show Altered Physiological Responses Regulated by ABA 15
The atgstu17 Has Higher GSH and ABA Contents Compared to WT Plant 16
Exogenous GSH Induced ABA Accumulation in Planta 17
Effects of Exogenous GSH and ABA on Seed Germination, Stomata Aperture Size, Root architecture and Stress Tolerances 17
atgstu17 Phenotypes were Abolished by GSH Synthesis Inhibitor 18
Effects of GSH and ABA on Stress Tolerances 19
Global Gene Expression in AtGSTU17-Knockout Plants Identified by a GeneChip Analysis 20
Expression of Selected Genes from the Microarray Dataset in the AtGSTU17 Mutant Lines and WT Plants 22
AtGSTU17 Regulation of ABA-Downstream and ABA-independent Gene Expressions under Dehydration Conditions 22
AtGSTU17 Induced by ABA-Dependent and -Independent Pathways under Drought Stress Treatment 23
DISCUSSION 25
atgstu17 plants accumulated higher level of GSH in shoot and root 26
AtGSTU17 Plays a Negative Role in Drought and Salt Stress Tolerance 26
The Role of GSH and ABA in Enhancing Drought and Salt Tolerance 27
GSH’s Effects on the Stomata Aperture Size and Root Patterning 29
REFERENCE 31
TABLES 39
FIGURES 50
APPDENDIX 83
dc.language.isoen
dc.title阿拉伯芥麩胺基硫轉移酶 AtGSTU17 突變株耐旱及耐鹽性狀為麩胺基與離層酸共同作用之結果zh_TW
dc.titleDrought and Salt Stress Tolerance of Arabidopsis Glutathione S-Transferase U17 Knockout Mutant are Attributed to the Combined Effect of Glutathione and Abscisic Aciden
dc.typeThesis
dc.date.schoolyear100-1
dc.description.degree博士
dc.contributor.oralexamcommittee鄭石通,謝旭亮,洪傳揚,陳虹樺,葉國楨
dc.subject.keyword麩胺基硫轉移?U17,離層酸訊息傳導,耐旱,榖胱甘&#32957,側根發育,耐鹽,zh_TW
dc.subject.keywordglutathione S-transferase U17,ABA signaling,drought tolerance,glutathione,lateral root development,salt tolerance,en
dc.relation.page90
dc.rights.note同意授權(全球公開)
dc.date.accepted2012-02-09
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept植物科學研究所zh_TW
顯示於系所單位:植物科學研究所

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf5.17 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved