Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊網路與多媒體研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70807
標題: 基於身份超解析之卷積類神經網路的人臉超解析
Super-Identity Convolutional Neural Network for Face Hallucination
作者: Kaipeng Zhang
張凱鵬
指導教授: 徐宏民
關鍵字: 身份超解析,人臉超解析,卷積類神經網路,
Super-Identity,Face Hallucination,Convolutional Neural Network,
出版年 : 2018
學位: 碩士
摘要: 人臉超解析是一個生成任務,它目標是對低解析度的人臉超解析。而人在觀察一個人臉的時候會下意識地著重在人臉的身份資訊上。然而現有的人臉超解析方法都忽略了身份資訊的恢復。本論文提出身份超解析網路來對身份資訊進行恢復。特別地,我們定義了一個身份超解析損失函數來衡量超解析人臉和高解析度人臉的身份資訊的差異。這種差異的度量是在超球度量空間上進行。然而,直接使用這個損失函數會導致一個動態的域分叉問題。這是由於超解析度域和真實高解度域之間存在很大的差距。為了克服這個問題,我們提出了域整合訓練方法。它可以為這兩個不同的域建立一個魯棒的身份度量空間。通過充分的實驗驗證,我們的方法在放大12x14像素的人臉八倍的時候比其它方法取得更好的視覺效果。此外,我們的方法顯著地提升了低分辨度人臉的可辨識能度。
Face hallucination is a generative task to super-resolve the facial image with low resolution while human perception of face heavily relies on identity information. However, previous face hallucination approaches largely ignore facial identity recovery. This paper proposes Super-Identity Convolutional Neural Network (SICNN) to recover identity information for generating faces closed to the real identity. Specifically, we define a super-identity loss to measure the identity difference between a hallucinated face and its corresponding high-resolution face within the hypersphere identity metric space. However, directly using this loss will lead to a Dynamic Domain Divergence problem, which is caused by the large margin between the high-resolution domain and the hallucination domain. To overcome this challenge, we present a domain-integrated training approach by constructing a robust identity metric for faces from these two domains. Extensive experimental evaluations demonstrate that the proposed SICNN achieves superior hallucination visual quality over the state-of-the-art methods on a challenging task to super-resolve 12x14 faces with an 8x upscaling factor. In addition, SICNN significantly improves the recognizability of ultra-low-resolution faces.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70807
DOI: 10.6342/NTU201802101
全文授權: 有償授權
顯示於系所單位:資訊網路與多媒體研究所

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
3 MBAdobe PDF
顯示文件完整紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved