Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 醫學工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70806
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor呂東武
dc.contributor.authorGuan-Chou Chenen
dc.contributor.author陳冠州zh_TW
dc.date.accessioned2021-06-17T04:39:12Z-
dc.date.available2023-08-16
dc.date.copyright2018-08-16
dc.date.issued2018
dc.date.submitted2018-08-07
dc.identifier.citation1. Obeso JA, Rodríguez-Oroz MC, Rodríguez M, Arbizu J, Giménez-Amaya JM. The basal ganglia and disorders of movement: pathophysiological mechanisms. Physiology. 2002;17(2):51-5.
2. Nambu A, Tachibana Y, Kaneda K, Tokuno H, Takada M. Dynamic model of basal ganglia functions and Parkinson’s disease. The basal ganglia VIII: Springer; 2005. p. 307-12.
3. Fung H-C, Chen C-M, Hardy J, Singleton AB, Lee-Chen G-J, Wu Y-R. Analysis of the PINK1 gene in a cohort of patients with sporadic early-onset parkinsonism in Taiwan. Neuroscience letters. 2006;394(1):33-6.
4. Massano J, Bhatia KP. Clinical approach to Parkinson's disease: features, diagnosis, and principles of management. Cold Spring Harbor perspectives in medicine. 2012;2(6):a008870.
5. Rocha EM, De Miranda B, Sanders LH. Alpha-synuclein: pathology, mitochondrial dysfunction and neuroinflammation in Parkinson’s disease. Neurobiology of disease. 2018;109:249-57.
6. Tinetti ME, Speechley M. Prevention of falls among the elderly. New England journal of medicine. 1989;320(16):1055-9.
7. Hoehn MM, Yahr MD. Parkinsonism: Onset, progression and mortality. Neurology. 2001.
8. Fahn S. Description of Parkinson's disease as a clinical syndrome. Annals of the New York Academy of Sciences. 2003;991(1):1-14.
9. Papapetropoulos S, Mash D. Motor fluctuations and dyskinesias in advanced/end stage Parkinson’s disease: a study from a population of brain donors. Journal of neural transmission. 2007;114(3):341-5.
10. Katz M, Luciano MS, Carlson K, Luo P, Marks WJ, Jr., Larson PS, et al. Differential effects of deep brain stimulation target on motor subtypes in Parkinson's disease. Ann Neurol. 2015;77(4):710-9.
11. Lu TW, Chen HL, Chen SC. Comparisons of the lower limb kinematics between young and older adults when crossing obstacles of different heights. Gait Posture. 2006;23(4):471-9.
12. Chen HLL, T.W.; Lin, H.C. Three-dimensional kinematic analysis of stepping over obstacles in young subjects. 2004.
13. Patla A, Rietdyk S. Visual control of limb trajectory over obstacles during locomotion: effect of obstacle height and width. Gait & Posture. 1993;1(1):45-60.
14. Lamoureux E, Sparrow WA, Murphy A, Newton RU. The effects of improved strength on obstacle negotiation in community-living older adults. Gait & posture. 2003;17(3):273-83.
15. Smith L, Hunt M, Dibble L, Merryweather A, Foreman KB. Obstacle Height and Divided Attention Affects Obstacle Crossing in People with Parkinson Disease. The FASEB Journal. 2015;29(1 Supplement):705.1.
16. Liao Y-Y, Yang Y-R, Cheng S-J, Wu Y-R, Fuh J-L, Wang R-Y. Virtual reality–based training to improve obstacle-crossing performance and dynamic balance in patients with Parkinson’s disease. Neurorehabilitation and neural repair. 2015;29(7):658-67.
17. Chen H-C, Ashton-Miller JA, Alexander NB, Schultz AB. Stepping over obstacles: gait patterns of healthy young and old adults. Journal of Gerontology. 1991;46(6):M196-M203.
18. Said CM, Goldie PA, Patla AE, Culham E, Sparrow WA, Morris ME. Balance during obstacle crossing following stroke. Gait Posture. 2008;27(1):23-30.
19. Sparrow W, Shinkfield AJ, Chow S, Begg R. Characteristics of gait in stepping over obstacles. Human Movement Science. 1996;15(4):605-22.
20. Lu T-W, Yen H-C, Chen H-L. Comparisons of the inter-joint coordination between leading and trailing limbs when crossing obstacles of different heights. Gait & Posture. 2008;27(2):309-15.
21. Yen H-C, Chen H-L, Liu M-W, Liu H-C, Lu T-W. Age effects on the inter-joint coordination during obstacle-crossing. Journal of biomechanics. 2009;42(15):2501-6.
22. Huang SC, Lu TW, Chen HL, Wang TM, Chou LS. Age and height effects on the center of mass and center of pressure inclination angles during obstacle-crossing. Med Eng Phys. 2008;30(8):968-75.
23. Lu TW, Chen HL, Wang TM. Obstacle crossing in older adults with medial compartment knee osteoarthritis. Gait Posture. 2007;26(4):553-9.
24. Chou L-S, Draganich LF. Increasing obstacle height and decreasing toe-obstacle distance affect the joint moments of the stance limb differently when stepping over an obstacle. Gait & posture. 1998;8(3):186-204.
25. Chen HL, Lu TW. Comparisons of the joint moments between leading and trailing limb in young adults when stepping over obstacles. Gait Posture. 2006;23(1):69-77.
26. Lee H-J, Chou L-S. Detection of gait instability using the center of mass and center of pressure inclination angles. Archives of physical medicine and rehabilitation. 2006;87(4):569-75.
27. Huang S-C, Lu T-W, Chen H-L, Wang T-M, Chou L-S. Age and height effects on the center of mass and center of pressure inclination angles during obstacle-crossing. Medical Engineering and Physics. 2008;30(8):968-75.
28. Pandy MG, Anderson FC, Hull D. A parameter optimization approach for the optimal control of large-scale musculoskeletal systems. Journal of biomechanical engineering. 1992;114(4):450-60.
29. Chao EY-S, Rim K. Application of optimization principles in determining the applied moments in human leg joints during gait. Journal of Biomechanics. 1973;6(5):497-510.
30. Hurmuzlu Y, Basdogan C, Carollo JJ. Presenting joint kinematics of human locomotion using phase plane portraits and Poincare maps. Journal of biomechanics. 1994;27(12):1495-9.
31. Ju M-S, Mansour J. Simulation of the double limb support phase of human gait. Journal of Biomechanical Engineering. 1988;110(3):223-9.
32. Onyshko S, Winter D. A mathematical model for the dynamics of human locomotion. Journal of biomechanics. 1980;13(4):361-8.
33. Amirouche F, Ider S. Simulation and analysis of a biodynamic human model subjected to low accelerations—a correlation study. Journal of sound and vibration. 1988;123(2):281-92.
34. Hatze H. A three-dimensional multivariate model of passive human joint torques and articular boundaries. Clinical Biomechanics. 1997;12(2):128-35.
35. McFadyen BJ, Carnahan H. The superimposed adjustments for obstacle clearance and level-to-stair transition during normal human gait. Journal of Biomechanics. 1994;27(6):809.
36. Mochon S, McMahon TA. Ballistic walking. Journal of biomechanics. 1980;13(1):49-57.
37. Anderson FC, Pandy MG. A dynamic optimization solution for vertical jumping in three dimensions. Computer methods in biomechanics and biomedical engineering. 1999;2(3):201-31.
38. Anderson FC, Pandy MG. Dynamic optimization of human walking. Journal of biomechanical engineering. 2001;123(5):381-90.
39. Pandy M, Garner B, Anderson F. Optimal control of non-ballistic muscular movements: a constraint-based performance criterion for rising from a chair. Journal of Biomechanical Engineering. 1995;117(1):15-26.
40. Chou L-S, Draganich LF. Stepping over an obstacle increases the motions and moments of the joints of the trailing limb in young adults. Journal of biomechanics. 1997;30(4):331-7.
41. Armand M, Huissoon JP, Patla AE. Stepping over obstacles during locomotion: insights from multiobjective optimization on set of input parameters. IEEE Transactions on Rehabilitation Engineering. 1998;6(1):43-52.
42. Chou L, Song S, Draganich L. Predicting the kinematics and kinetics of gait based on the optimum trajectory of the swing limb. Journal of biomechanics. 1995;28(4):377-85.
43. Nubar Y, Contini R. A minimal principle in biomechanics. The bulletin of mathematical biophysics. 1961;23(4):377-91.
44. Zarrugh M. Power requirements and mechanical efficiency of treadmill walking. Journal of biomechanics. 1981;14(3):157-65.
45. Lu TW, Chen SC, Chiu HC. Best-compromise between mechanical energy expenditure and foot clearance predicts leading limb motion during obstacle-crossing. Gait Posture. 2012;36(3):552-6.
46. Sattin RW. Falls among older persons: a public health perspective. Annual review of public health. 1992;13(1):489-508.
47. Tinetti ME, Speechley M, Ginter SF. Risk factors for falls among elderly persons living in the community. New England journal of medicine. 1988;319(26):1701-7.
48. Lu T-W. Geometric and mechanical modelling of the human locomotor system: University of Oxford; 1997.
49. Veldpaus F, Woltring H, Dortmans L. A least-squares algorithm for the equiform transformation from spatial marker co-ordinates. Journal of biomechanics. 1988;21(1):45-54.
50. Lu T-W. Geometric and mechanical modelling of the human locomotor system. 1997.
51. Dempster WT. Space requirements of the seated operator: geometrical, kinematic, and mechanical aspects of the body, with special reference to the limbs. 1955.
52. Ferrarin M, Rizzone M, Bergamasco B, Lanotte M, Recalcati M, Pedotti A, et al. Effects of bilateral subthalamic stimulation on gait kinematics and kinetics in Parkinson's disease. Exp Brain Res. 2005;160(4):517-27.
53. Grillner S, Wallen P. Central Pattern Generators for Locomotion, with Special Reference to Vertebrates. Annu Rev Neurosci. 1985;8:233-61.
54. Knossalla F, Kohl Z, Winkler J, Schwab S, Schenk T, Engelhorn T, et al. High-resolution diffusion tensor-imaging indicates asymmetric microstructural disorganization within substantia nigra in early Parkinson's disease. J Clin Neurosci. 2018;50:199-202.
55. Kuo Y-S. Multi-Objective Optimal Control Strategies of the Locomotor System During Obstacle-Crossing in Patients with Parkinson's Disease. National Taiwan University Master Thesis. 2012.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70806-
dc.description.abstract帕金森氏症是一種慢性中樞神經系統退化疾病,主要原因為管控動作的基底核黑質緻密部分泌多巴胺不足所致,進而影響運動神經系統而出現動作異常,經常導致動作遲緩、肌肉僵直、靜止性震顫、姿勢不穩定等動作症狀,以至於在執行日常動作例如走路、跨越障礙物較為困難,也因常跨越失敗將導致跌倒與受傷。
帕金森氏症雖然可以透過藥物改善其症狀,但是長期服用藥物會出現藥效減退或異動症及藥物波動等副作用,因此手術的介入來輔助減緩疾病的症狀,深層腦刺激手術是目前認為最有效且最常見的手術,也有文獻指出對於手術後對於步態的改善,然而所用的評估工具多數為Hoehn and Yahr量表與統一帕金森氏症量表 (UPDRS),此評估量表常見於臨床,然而整體上較為主觀,且少以運動學和動力學觀點切入探討;此外透過正子射出斷層掃描可以準確判斷多巴胺含量,但是無法即時回饋出患者對於日常生活的影響。帕金森氏症對於雙側動作表現影響之程度有所不同,且鮮少有文獻探討比較主要患側肢段與輕微患側肢段之術前與術後之差異以及與正常老年人跨越障礙物控制策略的比較。
因此,本研究透過立體攝影技術分析帕金森氏症患者在術前與術後對於跨越障礙物的運動學參數如關節角度與動力學參數如關節力矩的差異表現,並利用多目標最佳控制方法,探討帕金森氏症患者在接受深層腦刺激術前與術後、對於不同高度之障礙物與主要與次要患側的動作控制策略,並且與正常受試者進行比較,試圖了解深層腦刺激手術對於帕金森氏症患者的差異。
在本研究的結果指出,術後的跨越步寬有所下降與跨越速度有所上升的趨勢,並且都有明顯接近正常老年人,主要原因為帕金森氏症因多巴胺分泌不足所導致動作遲緩、肌肉僵直、靜止性震顫、姿勢不穩定等動作症狀在術後有所改善。此外,在本研究中患者以主要患側關節角度而言,術前與術後除了膝關節於橫狀面前腳跨越有達到顯著大於差異外,其餘皆沒有;比起正常老年人後腳跨越時,膝關節矢狀面大於術前、髖關節額狀面小於術前,踝關節矢狀面、髖關節額狀面皆大於術後,以及在前腳跨越時,踝關節橫狀面時有顯著小於術前之差異外,膝關節橫狀面大於術後與踝關節橫狀面小於術後。在關節力矩方面,術前與術後在任何關節任何平面於前腳跨越時皆沒有顯著差異;但是於後腳跨越時,比起正常老年人,無論是術前還是術後,髖關節額狀面、膝關節額狀面以及踝關節矢狀面皆小於正常老年人。相對次要患側關節角度而言,在後腳跨越時,術前與術後也僅有在膝關節於矢狀面有顯著差異;比起正常老年人後腳跨越時,髖關節額狀面顯著大於術前、膝關節矢狀面顯著小於術前,在前腳跨越時踝關節橫狀面有顯著小於術前;在術後方面,於膝關節、踝關節矢狀面後腳跨越時與膝關節、踝關節橫狀面前腳跨越時有顯著差異,比起現有的文獻有較大的差異,目前推測術前術後僅少有差異極有可能為術前與術後相隔時間過短所致。就整體跨越障礙物控制策略而言,正常老年人與術前和術後主要患側有顯著差異,而次要患側則無。對於手術前後而言,主要患側有顯著差異,而次要患側則無,並且由於帕金森氏症為一種退化性的疾病,隨著治療時機的拖延,病況會日益加劇,患者會因為動作呈現越來越僵直,導致控制策略逐漸採取較大能量權重、降低足部間隙進行跨越障礙物,增加跨越障礙物時被障礙物絆倒之風險。
結論,本研究提供帕金森氏症患者於深層腦刺激手術前後與正常老年人之跨越障礙物控制策略比較,並且討論帕金森氏症患者主要及次要患側的差異,透過控制策略並不會受到障礙物高度的影響,推測人體動作系統會依照執行一個特定形式的跨越動作,最後期盼多目標最佳控制方法可以做為評估復健效果的一個參考依據,並且可以用來評估以及預防病患跌倒的風險。
zh_TW
dc.description.abstractParkinson's disease (PD) is a chronic degenerative disease of the central nervous system. It’s mainly caused by the lack of the dopamine secretion in the substantia nigra pars. Substantia nigra pars play an essential role in the movement. If the controls of substantia nigra pars failure, dopamine may also cause insufficient secretion affecting the central nervous motor system and lead to abnormal movements, such as slow movement, muscle rigidity, resting tremor and unstable posture control. It may have difficulty to perform routine actions such as walking and obstacles crossing, and often falls and injuries due to failure crossing.
Although PD can improve its symptoms through medication, long-term of taking medicine may have side effects such as dyskinesia or motor fluctuation. The surgical intervention can help to alleviate the symptoms of the PD. Deep brain stimulation surgery (DBS) is currently considered the most effective and most common surgery; there are also evidence-based for the improvement of movement after surgery. However, most assessment tools are Hoehn and Yahr scale and the Unified Parkinson's Disease Rating Scale (UPDRS). It may have too intuitive issue to get rids of the human factors judgment. There are also using the positron emission tomography (PET) technique can accurately determine the dopamine content, but it cannot immediately give back the patient's impact on daily life. In real life, the grade of PD may affect the bilateral sides. There are much few kinds of literature discussing the control strategies of the major and minor side limbs before and after the surgery.
Therefore, in this study, three-dimensional motion capture system techniques were used to analyze the kinematics performance parameters, such as joint angle and kinetic performance parameters joint moment while crossing obstacles before and after surgery. In this study also used the multi-objective optimal control to investigate the control strategies of patients with PD of the major side and minor side effect before and after DBS. To find out if there are any crossing obstacles key factors between DBS operation for PD and healthy subjects.
In this study showed that patients might attend to use lesser crossing width and greater crossing speed after surgery close to the normal control. It's mainly because of the insufficient secretion of dopamine that affecting the central nervous motor system and lead to slow movement and muscle rigidity. Also, on the one hand in the major side of joints angle, only knee joint in the transverse plane has reached the significant difference in pre- and postoperative group while leading leg is crossed. Compared with healthy control in joint angles, during trailing leg is crossed, preoperative patients’ knee joint angle in the sagittal plane has lesser and hip joint angle in the frontal plane has greater than controls. In postoperative patients’ ankle joint angle is lesser in the sagittal plane and hip joint angle in the frontal plane than controls. While patients' leading leg is crossed, ankle joint in the transverse plane has significantly lesser in preoperative than controls; also the transverse plane of the knee joint angle is more celebrated and in the ankle joint angle is smaller in postoperative than controls. In the joint moment, there is no significant difference between pre-op and postoperative any joint in any plane while leading leg is crossed. Compared with controls, hip and knee joint moment in frontal plane and ankle joint moment in the sagittal plane has greater than in preoperative and postoperative while trailing leg is crossed.
On the other hand in the minor side of the joint angle, there is the only knee joint angle in the sagittal plane while trailing leg is crossed reached the significant difference. Compared with healthy control in joint angle, while trailing leg is crossed, hip joint angle in the frontal plane has significantly greater and knee joint angle in the sagittal plane markedly lesser than pre-operative patients. While leading leg is crossed, ankle joint angle in the transverse plane has the smaller joint angle in controls in preoperative. In postoperative patients’ both knee and ankle joint angle in the sagittal plane while trailing leg is crossed and knee, also ankle joint angle in the transverse plane while leading leg is crossed has reached a significant lesser in postoperative patients. There may have some inconsistencies in recent research. It estimated the reasons due to the short interval between preoperative and postoperative.
As far as the overall obstacle crossing control strategy is concerned, there is a significant difference between the normal elderly and the major side before and after surgery, while the minor side is not. For the pre- and post-operative, there is a significant difference in the main affected side, but not in the minor side, moreover because Parkinson's disease is a degenerative disease, the condition of rigidity will increase with the delay of treatment. The patient will appear to adopts a more significant energy weighting, reduces the foot clearance to cross the obstacle, it may increase the risk of being tripping by the obstacle when crossing.
In conclusion, in this study provides patients with Parkinson's disease before and after deep brain stimulation surgery obstacle crossing control strategies, also discusses the differences between the major side and the minor side of patients with Parkinson's disease. In this study found that patients with Parkinson's disease have different control strategies for obstacles crossing, but not affected by the height of the obstacles. It is speculated that the human body motion system will perform a specific form of cross-over action. Finally, the multi-target optimal control method can be used as a reference for evaluating the rehabilitation effect and can be used to assess and prevent the risk of falling of the patient.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T04:39:12Z (GMT). No. of bitstreams: 1
ntu-107-R05548042-1.pdf: 3037037 bytes, checksum: 3cee6d8bf2ca76b9cfeb040fa6235099 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents誌謝 I
摘要 II
ABSTRACT IV
目錄 VI
圖目錄 X
表目錄 XII
第一章 緒論 1
第一節 研究背景 1
一、 帕金森氏症簡介 1
二、 帕金森氏症病理特徵 2
三、 帕金森氏症診斷、評估與分期 2
四、 帕金森氏症治療方法 4
第二節 文獻回顧 7
一、 跨越障礙物 7
二、 跨越障礙物端點控制 (End-point control) 7
三、 本體感覺(Proprioception)與視覺資訊(Visual information) 8
四、 跨越障礙物之運動學 (Kinematic) 分析 8
五、 跨越障礙物之力動學 (Kinetic)分析 10
六、 跨越障礙物之平衡分析 11
七、 運動系統之連桿模型 11
八、 跨越障礙物之運動系統控制策略 12
第三節 研究目的 14
第二章 材料與方法 15
第一節 受試者 15
第二節 實驗器材 17
第三節 實驗流程 18
第四節 實驗資料處理 20
一、 局部座標系統定義 20
二、 廣義/局部座標系統轉換 26
三、 測力板資訊 27
第五節 人體跨越障礙物之二維七連桿模型建立 28
一、 七連桿運動學 29
二、 七連桿力動學 30
第六節 跨越障礙物之最佳化控制 38
一、 最佳化控制方法 38
二、 單目標最佳化控制數學模型 40
三、 多目標最佳化控制數學模型 42
四、 單目標與多目標最佳化收斂軌跡示範圖 43
第七節 統計分析 45
一、 帕金森氏症之組間差異 45
二、 帕金森氏症之高度差異 45
三、 帕金森氏症之主要換側與次要患側比較 45
第三章 結果 46
第一節 帕金森氏症患者之跨越障礙物時空參數 46
一、 腳趾間隙 (Toe clearance) 46
二、 腳跟間隙 (Heel clearance) 47
三、 跨越步寬 (Crossing width) 48
四、 跨越速度 (Crossing speed) 49
第二節 帕金森氏症患者之關節角度與關節力矩 50
一、 手術前後主要患側之關節角度 50
二、 手術前後次要患側之關節角度 51
三、 主要與次要關節角度比較 52
四、 手術前後主要患側之關節力矩 54
五、 手術前後次要患側之關節力矩 55
六、 主要與次要關節力矩比較 56
第三節 帕金森氏症患者之多目標最佳化結果 58
一、 帕金森氏症患者對於障礙物高度之影響 58
二、 帕金森氏症患者對於主要與次要患側之影響 59
三、 帕金森氏症患者對於手術前後之影響 60
第四章 討論 61
第一節 帕金森氏症患者之跨越障礙物時空參數 61
一、 跨越步寬 61
二、 跨越速度 61
第二節 帕金森氏症患者之關節角度與關節力矩 62
關節角度與力矩 62
第三節 帕金森氏症患者之多目標最佳化結果 63
一、 帕金森氏症患者對於障礙物高度之影響 63
二、 腳趾間隙與腳跟間隙之比例 63
三、 帕金森氏症患者對於主要與次要患側之影響 64
四、 帕金森氏症患者對於手術前後之影響 64
五、 手術介入時機之影響 65
第五章 結論 66
本次研究限制與未來展望 66
參考文獻 67
dc.language.isozh-TW
dc.subject帕金森氏症zh_TW
dc.subject控制策略zh_TW
dc.subject深層腦刺激手術zh_TW
dc.subject藥物波動zh_TW
dc.subject異動症zh_TW
dc.subjectDyskinesiaen
dc.subjectMotor fluctuationen
dc.subjectDeep brain stimulationen
dc.subjectControl strategiesen
dc.title帕金森氏症患者接受深層腦刺激術前後於行走跨越障礙物時之動作分析zh_TW
dc.titleMotion Analysis of Patients with Parkinson's Disease During Obstacle-Crossing Before and After Deep Brain Stimulationen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳文斌,林正忠,許維君
dc.subject.keyword帕金森氏症,異動症,藥物波動,深層腦刺激手術,控制策略,zh_TW
dc.subject.keywordDyskinesia,Motor fluctuation,Deep brain stimulation,Control strategies,en
dc.relation.page70
dc.identifier.doi10.6342/NTU201802671
dc.rights.note有償授權
dc.date.accepted2018-08-07
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept醫學工程學研究所zh_TW
顯示於系所單位:醫學工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
2.97 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved