Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70760
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor劉格非(Ko-Fei Liu)
dc.contributor.authorYu Chenen
dc.contributor.author陳語zh_TW
dc.date.accessioned2021-06-17T04:37:29Z-
dc.date.available2020-09-29
dc.date.copyright2020-09-29
dc.date.issued2020
dc.date.submitted2020-08-24
dc.identifier.citationAbancó, C., Hürlimann, M., Fritschi, B., Graf, C., and Moya,J. (2012). Transformation of ground vibration signal for debris flow monitoring and detection in alarm systems.,Sensors,12(4), 4870-4891.
Arattano, M. (1999), On the use of seismic detectors as monitoringand warning systems for debris flows., Natural Hazards,20, 19-213.
Huang, Y. M., Fang, Y. M., and Yin, H. Y(2019): The vibrational characteristics of debris flow in Taiwan, 7th Intemnational Conference on Debris-Flow Hazards Mitigation, Golden, Colorado, USA, 116-123.
Huang, C.J., Yin, H.Y. Chen, C.Y., Yeh, C.H., and Wang,C.H. (2007). “Ground vibrations produced by rock motions and debris flows.” Journal of Geophysical Research, 112,F02014.
Jose Pujol (2003),Elastic Wave Propagation and Generation in Seismology,Cambridge University Press.
Kogelnig, A., Hibl, J., Surinach, E., Vilajosana, L, Zhang, S., Yun, N., and McArdell, B.(2011) A study of infrasonic signals of debris flow., 5th Int. Conf. on Debris-Flow Hazards:Mitigation, Mechanics, Prediction and Assessment, Padua, Italy
Mizuyama, T., Oda, A., Laronne, J.B., Nonaka, M., and Matsuoka,M. (2010). Laboratory tests of a Japanese pipe geophonefor continuous acoustic monitoring of coarse bedload,U.S. Geological Survey Scientific Investigations Report 2010-5091.
柏青山(1995),對彈性波理論中應力邊界條件的異議,長春地質學院學報,25(1),117-120
范留明,李寧(2005),軟弱夾層的透射模型及其隔震特性研究,岩石力學與工程學報,24(14),2456-2460.
方耀民、李秉乾、周天穎、張桂芳、連惠邦、林裕益、連榮吉、尹孝元 (2008),小波轉換應用於土石流地聲分析-以愛玉子溪事件為例,中華水土保持學報,39(1),27-44。
高金方(1988),振動計量測試基礎,宇航計測技術,40(4),69-70。
黃清哲、孫坤池、陳潮億、尹孝元 (2007),不同型態土石流地聲特性之實驗研究,中華水土保持學報,38(4),417-430。
李舜酩、郭海東、李殿榮(2013),振動信號處理方法綜述,儀器儀錶學報,39(8),1908。
劉格非、李欣輯 (1999),地聲探測器應用於土石流之初步研究,中華水土保持學報,30(4),263-272。
劉寶,蘇謙,趙文輝,劉亭,周珩(2017),P波在飽和粗顆粒夾層介面上的反射和透射,西南交通大學學報,52(2),2280-287
羅福龍,易碧金,羅蘭兵(2005),地震檢波器技術及應用,物探裝備,15(1),7。
王文良(2005), I /O System Four 全數位遙測地震儀的性能、特點及與以往地震儀器的對比,物探裝備,15(4),232-245。
汪越勝,于桂蘭,章梓茂,馮仰德(2000),複雜介面(介面層)條件下的彈性波傳播問題研究綜述,力學進展,30(3),378-387
尤雲祥,繆國平,程建生(2005),兩層流體中水波在垂直薄板上的反射與透射,力學學報,37(5),329-341
魏士超、劉格非、黃亦敏、方耀民、尹孝元、黃效禹、林建良(2018),愛玉子溪土石流之地動訊號特性與警戒方法之探討,中華水土保持學報,49,77-88。
周憲德、楊祥霖、李璟芳、黃郅軒 (2015),火炎山土石流之流動型態與地聲特性分析,中華水土保持學報,46(2)
張海瀾(2007),理論聲學,高等教育出版社。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70760-
dc.description.abstract土石流作為一種較為常見的自然災害,每次發生都會對工程和人們生活造成影響。為防止土石流造成的災害,人們在土石流的高發地修建堤壩,並建立觀測站對土石流進行監測預警。
地聲探測器(Geophone)是常用的土石流監測儀器之一,人們通過它的幫助在監測和預警土石流的方面已有了大量的成果。但地聲探測器(Geophone)通常埋設在堤壩內部,而聲波傳入堤壩後,會在堤壩內部的邊界上不斷反射,這使得地聲探測器(Geophone)所檢測到的振動信號是多個反射波疊加後的結果。而堤壩內多個反射波疊加產生的能量與土石流本身的聯繫,至今少有結論。本文嘗試從理論模型出發,探討地聲從土石流進入大壩過程中的特性,最終通過實驗進行驗證。
通過對以往文獻的回顧,確定了在實際應用當中,地聲探測器(Geophone)所採集的數據常選用振幅作為研究對象,在此基礎上更延伸出了時域分析、頻域分析和時頻域分析,同時得到了土石流產生信號所在的頻段。
為了得到理論模型中的振幅參數,本文在假設土石流介質是一種連續且各項同性的介質後,引入基礎的應力應變理論,從運動方程著手,推導出土石流介質中的波動方程。為了解算波動方程,本文分析了土石流介質上層和底層,以及大壩左右兩邊的邊界條件。以大壩的左右兩邊的邊界將介質劃為三個區域,通過分離變量和三角函數的正交推導出了三個區域之間波的振幅比。
為了驗證推導求得的振幅比,本研究通過實驗室水槽,模擬了土石流翻越大壩的情形,並用地聲實際測量了大壩前和大壩內部的振動信號。採集到的振動信號,以頻域和時頻域分析為主,與理論相結合,得到大壩前和大壩內的能量比值。並通過討論大壩的介質和寬度,得到了大壩介質遠大於土石流介質時,沒有信號能夠進入到大壩中,以及隨著大壩的寬度變寬,共振頻率將會向低頻移動的結論。
zh_TW
dc.description.abstractAs a common natural disaster, debris flow will affect the engineering and people's life every time. In order to prevent the disasters, people build dams in the place of high incidence areas ,and set up observation stations to observe and warn debris flow.
Geophone is one of the common instruments for observe debris flow.For it’s help,people has achieved a lot in observing and warning.However,Geophone is usually embedded in the dam, and the sound wave will reflect continuously on the boundary of the dam after it is transmitted into the dam.It causes that the vibration signal detected by the geophone is the reflected waves after superposition. However, there are few conclusions about the relationship between the reflected waves after superposition and debris flow. Based on the theoretical model,this paper wants to discuss features about sound wave entering from debris flow to dam.And finally it will be proved by experiment.
After reviewing the previous literature, in actual event,the amplitude is often selected as the research object in the data collected by the geophone. On this basis,people find the time-domain analysis, frequency-domain analysis and time-frequency-domain analysis. At the same time,we get the frequency range of debres flow.
In order to fine the amplitude in the theoretical model, this paper assumes that the debris flow is continuous and isotropic.And than,it derives the wave equation in debris flow from stress-strain theory and the motion equation.This wave equation will be solved by two kinds of boundary conditions.One kind is upper and lower layers of the debris flow,the other kind is left and right sides of the dam.The whole medium is divided into three areas by the boundary of the left and right sides of the dam and these three have different amplitude ratio.We need use separation of variables and orthogonality of trigonometric functions to solve it.
The method of prove amplitude ratio we calculate,this paper also analysis the data from laboratory.Geophones are used in model of dam and riverbed to get data.And the signals are mainly analyzed in frequency domain and time-frequency domain.By calculating energy ratio,we contrast it with amplitude ratio from the wave equation. By discussing the medium and width of the dam, it is concluded that when the dam medium is much larger than the earth rock flow medium, no signal can enter the dam.And the resonance frequency will move to low frequency as the dam width becomes wider.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T04:37:29Z (GMT). No. of bitstreams: 1
U0001-2008202018491600.pdf: 3073008 bytes, checksum: e70ace66a9fe7af9c29a4370181d629f (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents口試委員審定書 I
誌謝 II
摘要 III
Abstract IV
目錄 VI
圖目錄 VIII
第一章 緒論 1
1.1研究背景和研究目的 1
1.2研究思路和章節概要 2
第二章 文獻回顧 3
2.1地聲的工作原理 3
2.2地聲的數據分析 3
2.3小結 5
第三章 基本理論與控制方程 6
3.1基礎理論 6
3.2控制方程 9
3.3邊界條件和時間條件 10
3.4分離變量 11
3.5控制方程的初步解 15
3.6大壩邊界與波的振幅 16
3.7反射係數和透射係數 22
3.8大壩中波的疊加 23
3.9小結 25
第四章 實驗數據分析 27
4.1實驗內容 27
4.2實驗數據 30
4.3大壩材質讀消能的影響 36
4.4實驗中的共振現象與大壩厚度的討論 38
4.5小結 39
第五章 結語 40
參考文獻 41
dc.language.isozh-TW
dc.subject地聲zh_TW
dc.subject時頻譜圖zh_TW
dc.subject反射波zh_TW
dc.subject土石流zh_TW
dc.subject波動方程zh_TW
dc.subjectWave equationen
dc.subjectReflected waveen
dc.subjectTime-frequecy spectrogramen
dc.subjectGeophoneen
dc.subjectDebris flowen
dc.title論地聲能量在壩體中的傳遞zh_TW
dc.titlePropagation of Acoutic Sound in Damen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee周憲德(Hsien-Ter Chou),陳樹群(Su-Chin Chen),詹錢登(Chyan-Deng Jan)
dc.subject.keyword土石流,波動方程,地聲,反射波,時頻譜圖,zh_TW
dc.subject.keywordDebris flow,Wave equation,Geophone,Reflected wave,Time-frequecy spectrogram,en
dc.relation.page43
dc.identifier.doi10.6342/NTU202004150
dc.rights.note有償授權
dc.date.accepted2020-08-25
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept土木工程學研究所zh_TW
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
U0001-2008202018491600.pdf
  未授權公開取用
3 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved