Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70755
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃升龍(Sheng-Lung Huang)
dc.contributor.authorJhih-Hong Wangen
dc.contributor.author王智弘zh_TW
dc.date.accessioned2021-06-17T04:37:18Z-
dc.date.available2021-08-10
dc.date.copyright2018-08-10
dc.date.issued2018
dc.date.submitted2018-08-08
dc.identifier.citationReference
[1] R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier Domain Mode Locking: A new laser operating regime and applications for optical coherence tomography,” Opt. Express, vol. 14, pp. 3225–3237, 2006.
[2] R. Kafieh, H. Rabbani, and S. Kermani. “A review of algorithms for segmentation of optical coherence tomography from retina,” J. Med. Signals and Sens., vol. 3, pp. 45–60, 2013.
[3] http://www.litecure.com/about-photobiomodulation/photobiomodulation-glossary/
[4] K. F. Wall and A. Sanchez, “Titanium sapphire lasers,” The Lincoln Laboratory Journal, vol. 3, pp. 447–462, 1990.
[5] S. C. Wang, “Development and applications of glass-clad Ti:Al2O3 crystal fiber,” Ph.D. dissertation, National Taiwan University, Taiwan, 2016.
[6] P. Bechtold, D. Bauer, and M. Schmidt, “Beam profile deformation of fs-laser pulses during electro-optic scanning with KTN crystals,” Phys. Procedia, vol. 39,
pp. 683–692, 2012.
[7] https://chemistry.stackexchange.com/questions/9730/why-dont-molecules-of-ionic-compounds-exist
[8] http://muchong.com/html/201105/3155520.html
[9] https://refractiveindex.info/?group=CRYSTALS&material=Al2O3
[10] https://www.researchgate.net/figure/Corundum-structure-of-V2O3-The-V-ions-solid-circles-are-arranged-in-V-V-pairs-along_fig1_12350706
[11] R. Macfarlane, J. Wong, and M. Sturge, “Dynamic Jahn-Teller effect in octahedrally coordinated d1 impurity systems,” Phys. Rev., vol. 166, pp. 250–258, 1968.
[12] P. F. Moulton, “Spectroscopic and laser characteristics of Ti:Al2O3,” J. Opt. Soc. Am. B, vol. 3, no.1, pp. 125–133, 1986.
[13] P. Alberts, E. Stark, and G. Huber, “Continuous-wave laser operation and quantum efficiency of titanium-doped sapphire,” J. Opt. Soc. Am. B, vol. 3, pp. 134–139, 1986.
[14] R. L. Aggarwal, A. Sanchez, M. Stuppi, R. E. Fahey, A. J. Strauss, W. Rapoport, and C. P. Khattak, “Residual infrared absorption in as-grown and annealed crystals
of Ti:Al2O3,” IEEE J. Quantum Electron., vol. 24, pp. 1003–1008, 1988.
[15] E. R. Dobrovinskaya, L. A. Lytvynov, and V. Pishchik, Sapphire: Material, Manufacturing, Applications, (Springer, New York, 2009).
[16] T. Danger, K. Petermann, and G. Huber, “Polarized and time-resolved measurements of excited-state absorption and stimulated emission in Ti:YAlO3 and Ti:Al2O3,” Appl. Phys. A, vol. 57, pp. 309–313, 1993.
[17] R. S. Feigelson, “Growth of fiber crystals,” Crystal Growth of Electronic Materials, p. 127, 1985.
[18] J. Czochralski, “A new method for the measurement of the crystallization rate of metals,” Z. Phys. Chem., vol. 92, pp. 219–221, 1918.
[19] http://www1.udel.edu/chem/GlassShop/PhysicalProperties.htm
[20] L. Wu, A. Wang, J. Wu, L. Wei, G. Zhu, and S. Ying, “Growth and laser properties of Ti:sapphire single crystal fibres,” Electron. Lett., vol. 31, pp. 1151–1152, 1995.
[21] A. A. Anderson, R. W. Eason, L. M. B. Hickey, M. Jelinek, C. Grivas, D. S. Gill, and N. A. Vainos, “Ti:sapphire planar waveguide laser grown by pulsed laser
deposition,” Opt. Lett., vol. 22, pp. 1556–1558, 1997.
[22] A. Crunteanu, M. Pollnau, G. Jänchen, C. Hibert, P. Hoffmann, R. P. Salathé, R. W. Eason, C. Grivas, and D. P. Shepherd, “Ti:sapphire rib channel waveguide fabricated by reactive ion etching of a planar waveguide,” Appl. Phys. Lett., vol. 75, pp. 15–17, 2002.
[23] L. Laversenne, P. Hoffmann, M. Pollnau, P. Moretti, and J. Mugnier, “Designable buried waveguides in sapphire by proton implantation,” Appl. Phys. Lett., vol. 85, pp. 5167–5169, 2004.
[24] V. Apostolopoulos, L. Laversenne, T. Colomb, C. Depeursinge, R. P. Salathé, and M. Pollnau, “Femtosecond-irradiation-induced refractive-index changes and channel waveguiding in bulk Ti3+:sapphire,” Appl. Phys. Lett., vol. 85, pp. 1122–1124, 2004.
[25] L. M. B. Hickey, V. Apostolopoulos, R. W. Eason, and J. S. Wilkinson, “Diffused Ti:sapphire channel-waveguide lasers,” J. Opt. Soc. Am. B, vol. 21, pp. 1452–1462, 2004.
[26] C. Grivas, D. P. Shepherd, R. W. Eason, L. Laversenne, P. Moretti, C. N. Borca, and M. Pollnau, “Room-temperature continuous-wave operation of Ti:sapphire
buried channel-waveguide lasers fabricated via proton implantation,” Opt. Lett., vol. 31, pp. 3450–3452, 2006.
[27] C. Grivas, C. Corbari, G. Brambilla, and P. G. Lagoudakis, “Tunable, continuous-wave Ti:sapphire channel waveguide lasers written by femtosecond and picosecond laser pulses,” Opt. Lett., vol. 37, pp. 4630–4632, 2012.
[28] D. Y. Jheng, K. Y. Hsu, Y. C. Liang, and S. L. Huang, “Broadly tunable and low-threshold Cr4+:YAG crystal fiber laser,” IEEE J. Quantum Eletron., vol. 21, pp.
16–23, 2014.
[29] 李正中, “薄膜光學與鍍膜技術,” 藝軒圖書出版社 , 2002.
[30] http://www.jeol.co.jp/products/detail/BS_JEBG_EBGseries.html
[31] H. K. Pulker, “Coating on Glass,” Chap7, Elsevier Science Publishers, 1984.
[32] J. C. Manifacier, J. Gasiot, and J. P. Fillard, “A simple method for determination of the optical constant n, k and the thickness of weekly absorbing thin films,” J.
Phys. E: Sci. Instrum., vol. 9, pp. 1002–1004, 1976.
[33] https://zh.wikipedia.org/wiki/%E8%A1%8D%E5%B0%84%E5%85%89%E6%A0%85
[34] https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=8627
[35] T. T. Yang, “The study of laser-diode-pumped tunable Ti:sapphire crystal fiber laser,” M.S. thesis, National Taiwan University, Taiwan, 2016.
[36] https://en.wikipedia.org/wiki/Diffraction_grating
[37] https://en.wikipedia.org/wiki/Blazed_grating#Littrow_configuration
[38] https://www.newport.com/p/33009FL01-290R
[39] S. Trieswasser, “Study of ferroelectric transition of solid-solution single crystals of KNbO3-KTaO3,” Phys. Rev., vol. 114, no. 1, pp. 63–70, 1959.
[40] S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography using a frequency-tunable optical source,” Opt. Lett., vol. 22, no. 5, pp. 340–342,
1997.
[41] S. H. Yun, C. Boudoux, G. J. Tearney, and B. E. Bouma, “High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter,” Opt.
Lett., vol. 28, no. 20, pp. 1981–1983, 2003.
[42] M. A. Choma, K Hsu, and J. A. Izatt, “Swept source optical coherence tomography using an all-fiber 1300-nm ring laser source,” Biomed. Optics, vol.10, no. 4, pp.
044009-1–044009-6, 2005.
[43] I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, C. D. Lu, J. Jiang, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Retinal, anterior segment and full eye imaging
using ultrahigh speed swept source OCT with vertical-cavity surface emitting lasers,” Biomed. Opt. Express, vol. 3, no. 11, pp. 2733–2751, 2012.
[44] T. Huo, J. Zhang, J. Zheng, T. Chen, C. Wang, N. Zhang, W. Liao, X. Zhang, and P. Xue, “Linear-in-wavenumber swept laser with an acousto-optic deflector for
optical coherence tomography,” Opt. Lett., vol. 39, no. 2, pp. 247–250, 2014.
[45] J. Miyazu, T. Imai, S. Toyoda, M. Sasaura, S. Yagi, K. Kato, Y. Sasaki, and K. Fujiura, “New beam scanning model for high-speed operation using KTa1-xNbxO3 crystals,” Appl. Phys. Express, vol. 4, no. 11, pp. 111501-1–111501-3, 2011.
[46] Y. Okabe et al., “200 kHz swept light source equipped with KTN deflector for optical coherence tomography,” Electron. Lett., vol. 48, no. 4, pp. 201–202, 2012.
[47] S. Yagi, “KTN crystals open up new possibilities and applications,” NTT Technical Rev., vol. 7, no. 12, pp. 1–5, 2009.
[48] K. Nakamura, J. Miyazu, M. Sasaura, and K. Fujiura, “Wide-angle, low-voltage electro-optic beam deflection based on space-charge-controlled mode of electrical conduction in KTa1-xNbxO3,” Appl. Phys. Lett., vol. 89, pp. 131115-1–131115-3,
2006.
[49] S. Yagi and K. Fujiura, “Electro-optic KTN devices,” Phys. Procedia, vol. 56, pp. 40–47, 2014.
[50] NTTAT, KTN deflector module KAA16210, whitepaper.
[51] J. Miyazu, Y. Sasaki, K. Naganuma, T. Imai, S. Toyoda, T. Yanagawa, M. Sasaura, S. Yagi, and K. Fujiura, “400 kHz beam scanning using KTa1-xNbxO3 crystals,” CLEO, paper CTuG5, 2010.
[52] NTTAT, KTN deflector module KQI16042, Shipping inspection report.
[53] S. C. Wang, C. Y. Hsu, T. T. Yang, D. Y. Jheng, T. I. Yang, T. S. Ho, and S. L. Huang, “Laser-diode pumped glass-clad Ti:sapphire crystal fiber laser,” Opt. Lett.,
vol. 41, no. 14, pp. 3217–3220, 2016.
[54] A. Cucinotta, S. Selleri, L. Vincetti, and M. Zoboli, “Numerical and experimental analysis of erbium-doped fiber linear cavity lasers,” Opt. Commun., vol. 156, no. 4-6, pp. 264–270, 1998.
[55] J. M. Liu, “Photonic Devices,” Cambridge, 2005.
[56] https://www.edmundoptics.com/resources/tech-tools/gaussian-beams/
[57] J. F. Pinto, L. Esterowitz, G. H. Rosenblatt, M. Kokta, and D. Peressini, “Improved Ti:sapphire laser performance with new high figure of merit crystals,” IEEE J. Quantum Electron., vol. 30, pp. 2612–2616, 1994.
[58] https://www.coherent.com/downloads/MBR01_DS_0913revB_1.pdf
[59] Y. Sasaki, S. Toyoda, T. Sakamoto, J. Yamaguchi, M. Ueno, T. Imai, T. Sakamoto, M. Fujimoto, M. Yamada, K. Yamamoto, E. Sugai, and S. Yagi, “Electro-optic KTN deflector stabilized with 405-nm light irradiation for wavelength-swept light source,” Proc. SPIE, vol. 10100, pp. 101000H-1–101000H-6, 2017.
[60] F. S. Chen et al., “Light modulation and beam deflection with potassium tantalate-niobate crystals,” J. Appl. Phys., vol. 37, pp. 388–398, 1966.
[61] W. Y. Oh, S. H. Yun, G. J. Tearney, and B. E. Bouma, “Wide tuning range wavelength-swept laser with two semiconductor optical amplifiers,” IEEE Photon. Technol. Lett., vol. 17, no. 3, pp. 678–680, 2005.
[62] W. L. Erikson, “System design and relaxation oscillations of a titanium-sapphire laser,” M.S. thesis, University of Arkansas, USA, 1992.
[63] S. Wada, K. Akagawa, and H. Tashiro, “Electronically tuned Ti:sapphire laser,” Opt. Lett., vol. 21, no. 10, pp. 731–733, 1996.
[64] V. M. Kodach, D. J. Faber, and T. G. van Leeuwen, “Wavelength swept Ti:sapphire laser,” Opt. Commun., vol. 281, no. 19, pp. 4975–4978, 2008.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70755-
dc.description.abstract摻鈦藍寶石以具有寬廣的放射頻譜而聞名,其螢光頻譜之半高寬可達180 nm而常使用於可調波長雷射或是鎖模雷射;且760 nm的螢光中心波長落於組織散射損耗及水的吸收較小的波段或稱該區段為診療視窗,因此亦廣泛使用於生物量測系統,除此之外,對於光學同調斷層掃描術(OCT)系統而言,寬頻的輸出特性具備了高度的縱向解析度。然而,摻鈦藍寶石因本身的短螢光生命週期以及低吸收截面積特性而難達到低閥值輸出,本實驗室使用雷射加熱基座長晶法生長出纖心直徑為16 μm且衰減係數僅為0.017 1/cm的玻璃纖衣之波導結構,建構出高效率、低閥值的雷射輸出以解決上述缺點。
近年來因掃頻雷射的發展,而掃頻光源式OCT相比於傳統時域式OCT具備了更高的敏感度以及更快的成像速度。鉭鈮酸鉀(KTN)則因近期晶體生長技術的成熟,已有相當程度的應用如超高速光偏折器或是可調焦距透鏡,利用其顯著的二次電光效應(折射率變化大於20倍於鈮酸鋰晶體)以及非常快速的響應時間(數百倍於傳統機械式偏折器技術),可將掃頻雷射系統的尺寸縮至更小,且具有更為快速的掃描能力。
於寬頻可調波長雷射架構中,我們以閃耀光柵作為雷射系統的輸出耦合鏡及可調濾波器並且在腔內配置較低損耗的非球面準直透鏡,當雷射波長調整至805 nm 時,在該波長輸入端鍍膜為3%穿透率和光柵第零階(正向)繞射效率為9.3%,其背向(輸入端)與正向雷射斜線效率分別為1.75%和6.68%,雷射閥值為210 mW。而單一背向的可調輸出頻寬已達190 nm,可調範圍由724至914 nm。
在掃頻式雷射架構中,以高速掃描且大角度調制的KTN光偏折器取代傳統光偏折技術,並配合閃耀光柵製作出以摻鈦藍寶石晶體光纖作為雷射增益介質的掃頻式雷射,當重複率為60 kHz 時,其可調範圍由775至850.6 nm。根據我們所知,目前以非機械且電控式的摻鈦藍寶石掃頻雷射來說,這是第一個能以高速掃描頻率且仍保有近80 nm 可調頻寬的掃頻雷射技術。未來,若能提升幫浦功率至 1.26 W,在相同的可調頻寬下,掃頻摻鈦藍寶石雷射能以相同的雷射數量以100 kHz的重複率輸出;或使用高效率且色散能力較小之閃耀光柵,則掃頻雷射則有潛力朝向更為寬頻的輸出表現。
zh_TW
dc.description.abstractTitanium (Ti):sapphire has been well known for its broadband emission spectra with 180-nm width of 3-dB bandwidth. Due to this property, it can be applied to tunable lasers or mode-locked lasers. The center wavelength of fluorescence is 760 nm, which falls into a region called therapeutic window with low tissue scattering and low water absorption. Therefore, it is widely used in bio-measurement systems. Besides, for optical coherence tomography (OCT) system, the broadband feature means Ti:sapphire light source has high axial resolution.
To overcome short fluorescence lifetime and low absorption cross section that causes high threshold power of Ti:sapphire laser, a glass-clad and crystal-fiber structure with core diameter of 16 μm and low attenuation coefficient of 0.017 1/cm made by laser heated pedestal growth method was used to our researches.
Compared with the traditional time-domain OCT, swept-source OCT shows higher sensitivity and imaging speed features. KTa1-xNbxO3 (KTN) crystal is a brand-new technology as ultra-high speed optical deflectors or vari-focal lens in recent years. With KTN’s large eletro-optic effect (δn: >20 times than LiNbO3) and short response time (hundreds of times than conventional scanners), a small-sized and high-speed swept light source of OCT system can be expected.
Under broadband tunable laser setup, using blazed grating as Ti:sapphire crystal fiber laser’s output coupler and tunable filter and lower loss of aspheric lens as collimated lens in laser cavity, when the lasing wavelength was tuned to 805 nm, the input end coatings had around 3% transmittance and the 0th order (forward output) diffraction efficiency of blazed grating was 9.3%. The backward (input end) and forward laser slope efficiency were 1.75% and 6.68%, respectively. The threshold power was 210 mW. A unidirectional backward tunable laser output had 190-nm tuning bandwidth from 724 to 914 nm.
In wavelength swept laser system, replacing conventional optical scanners, KTN deflector could deflect light without any moving part rapidly and widely. Combining
blazed grating and KTN deflector into external-cavity laser system, we constructed a wavelength swept Ti:sapphire crystal fiber laser which had tuning range from 775 to 850.6 nm with 60 kHz of repetition rate. Recently, to our knowledge, for not mechanically but electrically tuned Ti:sapphire swept laser, this is the first time that the repetition rate and tuning bandwidth can be up to such a fast value and around 80 nm simultaneously. In the future, if we can improve the pump power to 1.26 W, under the same tuning bandwidth, swept Ti:sapphire crystal fiber laser will have 100 kHz of repetition rate with the same laser peaks as 60-kHz result. And using higher efficiency and weaker dispersion of blazed grating, swept Ti:sapphire laser will have a potential toward a wider swept laser performance.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T04:37:18Z (GMT). No. of bitstreams: 1
ntu-107-R04941103-1.pdf: 6121974 bytes, checksum: 9cb172d45fbf120bdd0d66e819a672ce (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents口試委員會審定書 ....................................... I
誌謝 .................................................. II
中文摘要 ............................................. III
ABSTRACT ............................................... V
圖目錄 ................................................ IX
表目錄 ............................................... XIV
第一章 緒論與研究動機 .................................. 1
第二章 玻璃纖衣摻鈦藍寶石晶體光纖主動元件 .............. 5
2.1 摻鈦藍寶石晶體特性 ................................. 5
2.2 晶體光纖製作流程 .................................. 13
2.3 晶體光纖樣本處理 .................................. 20
2.4 晶體光纖之光學特性 ................................ 23
2.4.1 傳輸損耗 ........................................ 24
2.4.2 螢光生命週期 .................................... 26
第三章 晶體光纖雷射之製備與相關元件 ................... 28
3.1 光學薄膜之製備與原理 .............................. 28
3.1.1 介電質電子槍蒸鍍系統原理 ........................ 28
3.1.2 鍍膜設計與分析 .................................. 33
3.2 波長可調元件 ...................................... 41
3.3 光偏折器 .......................................... 44
第四章 半導體雷射幫浦摻鈦藍寶石晶體光纖雷射 ........... 53
4.1 摻鈦藍寶石晶體光纖雷射理論模型 .................... 53
4.2 平面鏡式雙向輸出摻鈦藍寶石晶體光纖雷射 ............ 57
4.2.1 平面式輸出耦合鏡雷射之架構 ...................... 57
4.2.2 平面式輸出耦合鏡雷射之量測 ...................... 60
4.2.3 平面式輸出耦合鏡雷射之模擬分析 .................. 63
4.3 光柵式波長可調摻鈦藍寶石晶體光纖雷射 .............. 67
4.3.1 光柵式輸出耦合鏡波長可調雷射之量測 .............. 67
4.3.2 光柵式輸出耦合鏡波長可調雷射之模擬分析 .......... 72
第五章 掃頻式摻鈦藍寶石晶體光纖雷射 ................... 75
5.1 鉭鈮酸鉀光偏折器之特性量測 ........................ 75
5.2 掃頻式雷射之特性探討 .............................. 83
5.3 掃頻式雷射量測與分析 .............................. 86
第六章 結論與未來展望 ................................. 94
參考文獻 .............................................. 96
dc.language.isozh-TW
dc.subject掃頻式雷射zh_TW
dc.subject晶體光纖zh_TW
dc.subject鉭鈮酸鉀光偏折器zh_TW
dc.subject摻鈦藍寶石zh_TW
dc.subject寬頻可調波長雷射zh_TW
dc.subjectTi:sapphireen
dc.subjectcrystal fiberen
dc.subjectKTN deflectoren
dc.subjectbroadband tunable laseren
dc.subjectwavelength swept laseren
dc.title掃頻式摻鈦藍寶石晶體光纖雷射之研究zh_TW
dc.titleThe study of Ti:sapphire crystal fiber based wavelength swept laseren
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林恭如(Gong-Ru Lin),徐世祥(Shih-Hsiang Hsu)
dc.subject.keyword摻鈦藍寶石,晶體光纖,鉭鈮酸鉀光偏折器,寬頻可調波長雷射,掃頻式雷射,zh_TW
dc.subject.keywordTi:sapphire,crystal fiber,KTN deflector,broadband tunable laser,wavelength swept laser,en
dc.relation.page101
dc.identifier.doi10.6342/NTU201802142
dc.rights.note有償授權
dc.date.accepted2018-08-08
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
5.98 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved